

Plan and Timetable of my talk

Section 1: <u>General Introduction (</u>5min)

rapidly rotating and magnetized cores Gravitational Waves (GWs) from, Section 2:MHD supernovae with

Kenta Kiuchi(Waseda), Nobutoshi Yasutake(NAOJ) (~20min) Tomoya Takiwaki (RESCEU),

Section 3: 3D Supernova Explosions with SASI

(~20min)

<u>Wakana Iwakami, Naofumi Ohnishi (Tohoku Univ.)</u>

<u>Shoichi Yamada(Waseda Univ.)</u>

about Gravitational Waves (GWs) oduction jeneral Sec.

Fundamental about GWs

Cravitational Wave (GW) is "a ripple" of space-time, predicted by Einstein's theory of general relativity.

 GWs are emitted when matter moves with acceleration.
 (in analogous to the EM waves from accelerating charged particles)

Sensitivity curves for the laser interferometers

When & I	How GWs are	emitted from SNe ?
Origins	when	Why ? (Cause of asphericity)
Bounce origin	At bounce (duration, ~100 msec)	Aspherical motions of inner core induced by rapid rotaion
Convection origin	After bounce (duration, ~ 1 sec)	Aspherical motions of outer core after bounce
Neutrino origin	After bounce (duration, ~ 1 sec)	Aspherical radiations of neutrinos

Section 2 Bounce GW signals Rapidly Rota ā Wagnet

Since Magnetars are minor...

Zhang et al. 00

Effects of Magnetic fields on the waveforms	PRD
Derivations of quadrupole formula including B-field contributions	
Dimensionless amplitude $h_{ij}^{\mathrm{TT}}(R) = rac{2G}{c^4} rac{1}{R} rac{d^2}{dt^2} I_{ij}^{TT} \Big(t - rac{R}{c}\Big)$	
Mass quadrupole $I_{ij} = \int \rho_*(x,t) \Big(x_i x_j - \frac{1}{3} x^2 \delta_{ij} \Big) d^3 x$ $\rho_* = \rho + \left(\frac{H}{8 \tau} \right) + \left(\frac{H}{8 \tau} \right) \left(\frac{1}{2} \left(\frac{H}{8 \tau} \right) + \frac{1}{2} \left(\frac{H}{8 \tau} \right) \right) + \left(\frac{H}{8 \tau} \right) + \left(\frac{H}$	$\frac{B^2}{\pi c^2}$
he amplitude becomes, $h_{\theta\theta}^{\mathrm{TT}} = \frac{1}{8} \left(\frac{15}{\pi}\right)^{1/2} \sin^2 \alpha \ \frac{A_{20}^{\mathrm{E2}}}{R} \ A_{20}^{\mathrm{E2}} \equiv A_{20}^{\mathrm{E2}}$, $H_{20}^{\mathrm{E2}} = A_{20}^{\mathrm{E2}}$, H_{20}^{E2} , $H_{20}^{\mathrm{E2}} = A_{20}^{\mathrm{E2}}$	ſag
$A_{20{ m Mag}}^{ m E2}\equiv A_{20j\times B}^{ m E2}+A_{20 m hom}^{ m E2}$ is the contribution from the magnetic field:	
$A_{20j\times B}^{\text{E2}} = \frac{G}{c^4} \frac{32\pi^{3/2}}{\sqrt{15}} \int_0^1 d\mu \int_0^\infty r^3 dr \Big[(3\mu^2 - 1) \frac{1}{c} (\mathbf{j} \times \mathbf{B})_r - \frac{3\mu_s(1 - \mu^2}{c} \frac{1}{c} (\mathbf{j} \times \mathbf{B})_s \Big]$	(18)
$(a_1 - c_1)^2 - (a_2 - a_3)^2$	
$A_{20\mu\rm{m}}^{\rm E2} = \frac{G}{c^4} \frac{32\pi^{3/2}}{\sqrt{15}} \int_0^1 d\mu \int_0^\infty dr \; \frac{1}{8\pi c} \frac{d}{dt} \left[\frac{\partial}{\partial \theta} [B_r r^3 (3\;\mu^2 - 1)] E_{\phi} - \frac{\partial}{\partial r} [B_{\theta} r^3 (3\mu^2 - 1)] r E_{\phi} \right]$	$+ \phi$
$+ \frac{\partial}{\partial r} \left[B_{\phi} r^3 (3\mu^2 - 1) \right] r E_{\theta} - \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left[B_{\phi} \sin \theta r^3 (3\mu^2 - 1) \right] E_r \right].$	(19)

GW memory from Jets based on Smarr PRD ('77)

Gravitational field of a static point of mass M (@ rest frame)

$$h_{00}^{TT} = \frac{4M}{r}, \quad h_{0j}^{TT} = h_{jk}^{TT} = 0$$

(p= γ u :4-momentum, k: null vector joining the 2 points)

$$=r(1,\mathbf{n}), \ p=M_A(\gamma,\gamma\mathbf{v})$$
 $h_{\mu
u}^{TT}=rac{4p_{\mu}p_{
u}}{-(k_{\lambda}p^{\lambda})}$

The GW is,

KK & Kiuchi in prep Effects of Different Equations of State on **Gravitational-wave Signal**

Effects of Different EOSs on GW spectrum

KK & Kiuchi in prep

running detectors

<u>Summary of Bounce-originated GWs</u>
 Rotation:(Initial rotation rate, degree of differential rotation) Mueller 1982,Moenchmeyer et al. '91,Yamada & Sato '95 Zwerger et al. '97, KK et al. (03), Ott et al. (04) Magnetic fields:kK et al. (04), Obergaulinger et al. 05,Cerda et al.07,Takiwaki et al. in prep EOS: (realistic or polytropic EOS, QCD phase transition) KK et al. (03), Ott et al. (04), Yasutake,KK et al. (07) Dimension: (2D or 3D) Rampp et al. (98), Ott et al. (06),Scheidegger et al. (08) GR Gravity: Dimmelmeier et al. 02,Shibata & Sekiguchi (05),Cerda et al.06, Ott et al. 07
 (Very roughly speaking,) • Qualitatively, the waveforms are categorized to Types I, IV (II). • Quantitatively, GWs from a supernova in our galaxy are within the detection limits for LCGT and 2nd LIGO (surely) and of TAMA and 1st LIGO (likely).

laser interferometers in the next generation amplitude: Too weak to be detected by the Waveform : little characteristics

When & I	How GWs are	emitted from SNe ?
Name	when	Why ? (Cause of asphericity)
Bounce origin	At bounce (duration, ~100 msec)	Aspherical motions of inner core at bounce induced by rotaion
Convection origin	After bounce (duration, ~ 1 sec)	Aspherical motions of outer core after bounce
Neutrino origin	After bounce (duration, ~ 1 sec)	Aspherical radiations of neutrinos

<u>Possible Explosion Mechanisms</u>
 <u>Neutrino-heating Mechanism</u> <u>Neutrino-heating Mechanism</u> may work for 1D in O-Ne-Mg massive stars, but fails to explode more massive stars
(Rampp&Janka 02,Liebendoerfer et al.02)
 Neutrino-heating Mechanism + Convection/SASI, Explosion of 2D, low-stars (11.2 Ms), (Buras et al. 2006)
: Nuclear-burning aided explosion (Bruenn et al. 07) : Onset of SASI-aided neutrino driven explosion of 15 Ms star (Marek &Janka 08)
• Acoustic mechanism (Burrows et al. 2005,6)
Rapid rotation
 effect of rotation-induced anisotopic neutrino radiation (KK et al. 2003, Walder et al.) Magnetic fields:
 Jet like explosions may be naturally accompanied with the magnetar's formations.(KK et al.04, Takiwaki et al. 2005,6, Sawai et al. 2005,6,Burrows et al. 07)

Core-Collapse Supernova Explosion in 2D/3D **GW Signals from** Neutrino-Driven Section 2:

Features of neutrino-originated GWs in 2D

 GWs from neutrinos almost monotonically increase with time. For the higher luminosity, the amplitudes become higher.

Iwakami, KK, Ohnishi, Yamada ApJ (2008)

<u>Non-exploding model</u>

Meridian plane

No elongation along the symmetry axis like 2D.

3D detailed simulations of SASI

<u>Exploding model</u>

Iwakami, KK, Ohnishi, Yamada,ApJ (2008)

In 2D

No GWs are observed
seen from the rotational (symmetry) axis.

In 3D,

Equator

Closed Formulae for computing neutrino GWs in 3D

Details in the Waveforms in 3D (1)

The input luminosity differs only 0.5 %.

KK et al. in prep

The waveforms vary stochastically due to SASI, which grows chaotically in all the directions.

etails in the Waveforms in 3D (
etails in the Waveforms in 3	
etails in the Waveforms ir	
etails in the Waveforms	
etails in the Wave	eforms
etails in the V	Vav
etails in the	
etails in	the
etails	
etai	()

L_{ν} (10foe erg/s)	Δt (ms)	$\frac{\left h_{\max}^{\mathrm{p}}\right }{\left(10^{-21}\right)}$	$\frac{ h^{\mathrm{e}}_{\mathrm{max}} }{(10^{-21})}$	$E_{\mathrm{GW}, u}^{E_{\mathrm{GW}, u}}$ $10^{-11}M_{\odot}c^2)$	$E_{ m GW,matter} (10^{-11} M_{\odot} c^2)$	$_{(10^{-11}M_{\odot}c^2)}^{E_{\rm GW}}$
6.8	507	1.85(+)	$3.57(\times)$	0.95	3.45	4.4
6.766 6.7	512 532	6.04(+) 3.21(+)	$2.49(\times)$ $2.78(\times)$	1.50 1.23	7.42	8.72 8.72
6.6	299	$9.10(\times)$	$3.77(\times)$	2.48	10.86	13.34
6.4	795	$(+)_{01.2}$	3.92(+)	2.01	7.74	9.75
6.85	429	$3.45(\times)$	$4.03(\times)$	1.04	5.63	6.67
6.8	547		20.03(+)	1.11	13.1	14.21

 Maximum GW amplitude is obtained for the of the input luminosity on the maximum amplitudes nor on the radiated GW Neither systematic dependence <u>moderate luminosity model.</u> energy are found.

show little variability among the models. Despite a variety of the waveforms, their values are found to

Detectability

KK et al. in prep

Summary

- SASI/convection (Bethe '90, Marek &Janka) in 3D, If core-collapse supernovae are triggered by the neutrino heating mechanism aided by
- visible to the next-generation detectors (KK et al. 07, 08). ones from matter motions below 100 Hz, which are ☆ GWs from neutrinos generically dominate over the 🖈 Gravitational waveforms change stochastically due to the chaotically and non-locally growing SASI

Thank you very much!

For detection. the predictions of GWs in more accurate 3D models are indispensable.

