

Habitability ?

eccentricity obliquity tidal-lock circumstellar temperature magnetism interaction tides planet star flare ice water heat brown-dwarf sun moon venus mars atmosphere climate aquability exoplanet super-habitable world magnetosphere stellar wind astrosphere dynamo sun-cycle solar-luminosity solar-analogs effective-stellar-flux liquid-water denseatmosphere IHZ OHZ greenhouse

Habitability?

- Habiter → Habitare (latin, 1050) → to get used to, to live in, to stay and live somewhere... (cf: habere, habitum: to have got, habit) → to become populated (1400-1600).
- Habitat area occupied by a plant, an animal or living species (1800-1900), human organisation (urban habitat) (1925).
- Habitable → Habilitis (latin) → « where we can live in »,
 suitable or fit to live in
- Habitabilité / Habitability: what is habitable, what offers space to live in... (source: S. Tirard)
- → Habitability ⇔ Living conditions (to live *in* = to inhabit = habiter and to live = vivre)

Habitability in astrophysics?

- Habitability is a concept structuring comparative studies between Earth and other zones in the universe.
- Comparable habitable conditions -> comparable evolution
- Habitability, two ways of using this concept as:
 - Description of the conditions for life on Earth and survey of comparable regions.
 - Observation of signatures allowing to assume the potential presence or sustainability of life.
- → Habitability ⇔ Anthropo/geo-morphic conditions

Habitability ⇔ Earth

A search for life on Earth from the Galileo spacecraft

Carl Sagan^{*}, W. Reld Thompson^{*}, Robert Carlson[†], Donald Gurnett[‡] & Charles Hord[‡]

- * Laboratory for Planetary Studies, Cornell University, Ithaca, New York 14853, USA
- * Atmospheric and Cometary Sciences Section, Jet Propulsion Laboratory, Pasadena, California 91109, USA
- Department of Physics and Astronomy, University of lows, lows City, lows 52242-1479, USA
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80309, USA

In its December 1990 fly-by of Earth, the Galileo spacecraft found evidence of abundant gaseous oxygen, a widely distributed surface pigment with a sharp absorption edge in the red part of the visible spectrum, and atmospheric methane in extreme thermodynamic disequilibrium; together, these are strongly suggestive of life on Earth. Moreover, the presence of narrow-band, pulsed, amplitude-modulated radio transmission seems uniquely attributable to intelligence. These observations constitute a control experiment for the search for extraterrestrial life by modern interplanetary spacecraft.

Habiter désigne déjà le séjour de l'homme sur la terre, sur "cette" terre, à laquelle tout mortel se sait confié et livré. Habiter est la manière dont les mortels sont sur terre.

Heidegger, 1951

Already « living in » means the stay of man on Earth, « this » land in which any mortal knows himself confided and forsaken. Living (in) is the way mortals are on earth.

Sagan et al. 1993, Nature

- Scientific theories of the solar system formation:
 - Emanuel Swedenborg in 1734,
 - Compte de Buffon in 1749,
 - Immanuel Kant in 1755,
 - Pierre- Simon Laplace in 1796.

Perryman 2001, The origin of the solar system

→ Isolated solar nebula

Birth environment of the solar system = GMC and star cluster

Adams 2010

- Birth cluster dynamical processes affect star and planet formation (orbit pertubation, disk truncation...)
- Birth cluster provides strong background radiation (photoevaporation, gas removal...)
- Presence of short-lived radioactive species (²⁶Al, ⁶⁰Fe) inferred from decay species in meteorites (²⁶Mg) → presence of supernovae, but preferential location.

Birth environment of the solar system = GMC and star cluster

Adams 2010

Table	II:	Summary	of	Constraints
-------	-----	---------	----	-------------

Solar System Property	Implication	Fraction	
Mass of Sun	$M_{\bullet} \ge 1 M_{\odot}$	0.12	
Solar Metallicity	$Z \geq Z_{\odot}$	0.25	
Single Star	(not binary)	0.30	
Giant Planets	(successfully formed)	0.20	
Ordered Planetary Orbits	$N \le 10^4$	0.67	
Supernova Enrichment	$N \ge 10^{3}$	0.50	
Sedna-Producing Encounter	$10^3 \le N \le 10^4$	0.16	
Sufficient Supernova Ejecta	$d \le 0.3 \text{ pc}$	0.14	
Solar Nebula Survives Supernova	$d \ge 0.1 \text{ pc}$	0.95	
Supernova Ejecta and Survival	$0.1 \text{ pc} \le d \le 0.3 \text{ pc}$	0.09	
FUV Radiation Affects Solar Nebula	$G_0 \ge 2000$	0.50	
Solar Nebula Survives Radiation	$G_0 \le 10^4$	0.80	

Cameron & Truran 1977

Supernova ejecta containing the short-lived species (26AI) could be incorporated in the dense core that formed the Solar System.

Cameron 1990

From interstellar gas to Earth-Moon system

Cameron et al. 1995

Massive supernovae, orion gamma rays and the formation of the solar system

Cameron 1996

The supernova trigger revisited

2 generations of stars: Hester & Desch 2005

Gounelle et al. 2012: 3 generations of stars

- Time 0 is that of the formation of a first generation (#1) of N₁ stars in a region #1 of the GMC (see panel a of Fig. 1).
- After a few Myr, massive stars from generation #1 explode as SNe and start to deliver ⁶⁰Fe into a neighboring region #2.
- Five Myr after time 0 (see in Sect. 4.1 how this time is estimated), an ⁶⁰Fe steady-state abundance (due to the balance between decay and production by SNe from generation #1) is established in region #2.
- At t ~ 10 Myr, a second star generation (#2, containing a total of N₂ stars) forms in region #2, partly due to the compressive action of the generation #1 SNe shockwaves onto the molecular cloud gas (Preibisch & Zinnecker 2007) (see panel b of Fig. 1).
- From t ~ 10 Myr and for some Myr, the wind of one or two massive stars from generation #2 will collect ISM gas to build a dense shell surrounding an HII region of radius 5−10 pc (Deharveng et al. 2010). That collected shell, which contains ⁶⁰Fe originating in the SNe of the first generation, will be wind-enriched in ²⁶Al via efficient turbulent mixing (Koyama & Inutsuka 2002) during a time t₁ lasting a few Myr (see Fig. 2).
- At t ~ 10 Myr + t_{*}, aluminum-26 delivery ends when the dense shell fragments and collapses via a diversity of gravito-turbulent mechanisms, such as gravitational instabilities and ionization of a turbulent medium (Deharveng et al. 2010), to form a third generation star cluster (#3). The collapse phase lasts Δ_C ~ 10³ yr. Our Sun belongs to that third generation of stars (see panel c of Fig. 1). CAIs formed in the protoplanetary disk surrounding the protoSun on a timescale of a few 10⁴ yr (Jacobsen et al. 2008) contains ²⁶Al from the wind of the generation #2 massive star and ⁶⁰Fe from the generation #1 SNe (Fig. 2).

Do we observe such scenarios in the Milky Way?

Combined image: Herschel + BLAST + H α (V. Minier)

Vela C: filamentary structures in column density

Herschel column density image (Hill et al. 2011)

RCW 36 in Vela C: a filament with 2 cavities on each side

Herschel column density image (Hill et al. 2011)

RCW 36 in Vela C: bipolar HII region

Combined Herschel image (Hill et al. 2011)

RCW 36 in Vela C: bipolar HII region SPIRE 250 μm PACS 160 μm PACS 70 μm Combined Herschel image (Hill et al. 2011)

RCW 36 in Vela C: bipolar HII region

The RCW 36 cavity in Vela C: bright rims, pillars and clumps

Star cluster: 350 stars 3000 stars.pc⁻² 2-3 Myr old One O9.5 star 6x10⁴⁷ ph.s⁻¹

Image: Spitzer/IRAC (Minier et al. 2013).
Star cluster has been reproduced using 2MASS and Spitzer data.

The RCW 36 cavity in Vela C: bright rims, pillars and clumps

Star cluster: 350 stars 3000 stars.pc⁻² 2-3 Myr old One O9.5 star 6x10⁴⁷ ph.s⁻¹

Image: Spitzer/IRAC (Minier et al. 2013).
Star cluster has been reproduced using 2MASS and Spitzer data.

Complex S 255 – S 257

3 generations of stars

Conclusions

Habitability is related to Earth conditions (including Sun) and appears as a rare combination of constraints.

Looking for analogs of solar nebula formation

Our results suggest that the RCW36 environment is the scene of

- the ionisation of a molecular filament by a star cluster;
- the expansion of a HII region;
- the triggered formation of potentially new stars.

confirming that Sun formation scenario may still happen.

However: timescale seems more rapid (1-5 Myr) than what is proposed by Gounelle et al.

Circumstellar Habitable Zone > Triggered star formation phase > Galactic Habitable Zone