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Abstract

Planets in close-in orbits interact magnetically and tidally with their host stars. These interactions lead to a net
torque that makes close-in planets migrate inward or outward depending on their orbital distance. We
systematically compare the strength of magnetic and tidal torques for typical observed star–planet systems
(T-Tauri and hot Jupiter, M-dwarf and Earth-like planet, K star and hot Jupiter) based on state-of-the-art scaling
laws. We find that depending on the characteristics of the system, tidal or magnetic effects can dominate. For
very close-in planets, we find that both torques can make a planet migrate on a timescale as small as 10–100
thousands of years. Both effects thus have to be taken into account when predicting the evolution of compact
systems.

Key words: planet–star interactions – planets and satellites: dynamical evolution and stability – stars: magnetic
field – stars: winds, outflows

1. Introduction

Thanks to space missions such as CoRoT (CoRot
Team 2016), Kepler (Borucki et al. 2010), and K2 (Howell
et al. 2014) and ground-based observations (e.g., HARPS; Pepe
et al. 2000), about 3000 exoplanets have been discovered as of
today since the pioneering detection by Mayor & Queloz
(1995). The corresponding planetary systems are very diverse
in terms of planetary size and mass as well as orbital
architecture. Due to the observational biases of the two most
prolific detection techniques (transit and radial velocity), a
majority of the detected exoplanets are close-in planets, which
are very likely strongly interacting with their host star.

Star–planet interactions were proposed to have various
effects on the dynamics and evolution of compact systems
(Cuntz et al. 2000), among which angular momentum
exchanges between the planet’s orbit and the stellar spin
(and to a lesser extent between the planet’s orbit and the
planet’s spin). We concentrate here on the former, and we
consider only planetary systems with one planet and no
protoplanetary disk. These exchanges lead to the spin-up or
spin-down of the star and the orbital migration of the planet
due to two main physical processes: tidal and magnetic
interactions (see Figure 1).

Tidal interactions consist of the gravitational response of a
given body (here, the star) to a perturber (here, the planet) and
its effect on rotation and orbit. There are two different
components of the response: the hydrostatic non-wave-like
equilibrium tide (e.g., Zahn 1966) and the dynamical tide. The
dynamical tide can develop either in the radiative core of
the star (e.g., Zahn 1975) or in its rotating convective envelope
(e.g., Ogilvie & Lin 2007). The resulting dissipation can be
several orders of magnitude higher than the dissipation due to
the equilibrium tide (Ogilvie & Lin 2007; Bolmont &
Mathis 2016), leading to a much faster orbital migration,
especially for stars on the pre-main sequence (Bolmont &
Mathis 2016; Gallet et al. 2017). Recent works on star–planet
tidal interactions allowed us to give estimates of the dissipation

due to the dynamical tide in the convective region of a star of a
given mass, age, metallicity, and rotation (Bolmont et al. 2017;
Gallet et al. 2017).
Simultaneously, magnetic interactions develop due to the

differential motion between the planet and the magnetized
ambient stellar wind at the planetary orbit. A net magnetic
torque applies to the planet, effectively transferring angular
momentum between the planet and star (if the planet is in the
sub-Alfvénic region of the wind, close to the star), or between
the planet and the ambient wind (if the planet is in the super-
Alfvénic region of the wind). In the context of close-in planets,
we consider here only the former interaction. Different regimes
of the interaction occur depending on the magnetic properties
of the planet (e.g., Zarka 2007; Strugarek et al. 2014). If the
planet possesses an intrinsic magnetic field, the dipolar
interaction develops (Saur et al. 2013; Strugarek et al. 2015;
Strugarek 2016); otherwise, the interaction becomes unipolar
(Laine & Lin 2012). The magnetic interaction between a star
and a close-in planet can lead to many other notable effects
such as anomalous emissions or planet inflation. A recent
review on those effects can be found in Lanza (2017 and
references therein).
In past studies about star–planet interactions, tides and

magnetism have not been taken into account together, with the
notable exception of Bouvier & Cébron (2015) in the context of
young fast rotators. The aim of this Letter is thus to offer the
first generic comparison of the strength of tidally induced
versus magnetically induced orbital migration for typical
compact star–planet systems. As a first step, we focus here
on planets on a circular coplanar orbit. In Section 2, we
estimate the migration timescales due to the tidal and the
magnetic interactions. In Section 3, we compute the two
migration timescales for three representative stars of different
rotation and hosting planets of different orbital periods. We
establish the parameter space for which tides or magnetism is
the strongest driver of migration, and we give an example of
three particular observed exoplanetary systems.
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2. Estimates of Torques Applied to Close-in Planets

We characterize the orbital migration of planets by the
timescale defined as

t = =
G˙ ∣ ∣

( )a

a

J2
, 1P

mig

where Γ is the torque applied to the orbiting planet,

=J M GM ap p is the orbital angular momentum, Mp and
M are the masses of the planet and the star, and a is the

semimajor axis of the planet.

2.1. Tidal Torque

The torque associated with tidal dissipation in the host star
leads to planet migration that scales as (Kaula 1964; Jackson
et al. 2008)
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where =n GM

a3 is the orbital frequency, R the stellar radius,
k2 the usual quadrupolar hydrostatic Love number, and Q* the
tidal dissipation quality factor.

Planets induce tidal flows in stars that have two components:
the equilibrium and the dynamical tides. The equilibrium tide is
a large-scale non-wave-like flow (e.g., Zahn 1966; Remus
et al. 2012; Figure 1) sustained by the hydrostatic adjustment of
the star because of the perturbation induced by a close planet. It
is efficiently dissipated in the turbulent convective envelope of
low-mass stars while its damping can be neglected elsewhere
(Zahn 1977). However, this flow is not a complete solution of
the hydrodynamics equations and it is completed by the so-
called dynamical tide (Zahn 1975). In the convective envelope
of late-type stars, the dynamical tide is constituted by inertial
waves governed by the Coriolis acceleration and damped by
the convective turbulent friction as in the case of the
equilibrium tide (Ogilvie & Lin 2007). They are excited only
when < Wn 2 ( W is the stellar rotation rate). Mathis (2015b)
demonstrated that their dissipation is efficient when a radiative
core is present for sufficiently thick convective envelopes. This
allows the formation of sheared wave attractors and an
important enough volume where dissipation can take place.

In fully convective stars, for which attractors cannot form in the
case of rigid rotation, and for > Wn 2 , only the equilibrium
tide prevails. The dynamical tide can also occur in the radiative
core (Zahn 1975; Ogilvie & Lin 2007), but in this first work,
we will focus on the dissipation in the convective envelope
only. We thus need an accurate estimate of k Q2 for each type
of tide.

2.1.1. Equilibrium Tide

The dissipation of the equilibrium tide can be estimated
using the analytical model developed by Remus et al. (2012).
In this model, the tidal dissipation is written as
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where s = - W( )n2 is the tidal frequency in the coplanar
circular case studied here, nt the turbulent viscosity in the
convection zone, a = R Rbcz , Rbcz being the radius of its
base, ρ the density in the convection zone, and =x r R the
normalized radial coordinate. We derive hereafter an estimate
of Equation (3) based only on the global parameters of the
system.
The turbulent viscosity strength depends on how the

convective turnover time tc compares to the tidal frequency
σ. Following Zahn (1966) and Remus et al. (2012), we can
generically write

n
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where vc is the typical convective velocity and lc is the mixing
length. These three parameters can be estimated using the
derivation from Mathis et al. (2016) based on the mixing-length
theory for a rotating body (proposed in Stevenson 1979 and
validated by recent high-resolution numerical simulations;
Barker et al. 2014). We define the convective Rossby number
as = WR t to

c
c
0 (tΩ being the rotation period of the star and tc

0 the
convective turnover time from the standard mixing-length
theory that neglects rotation), and use the following estimates
(Mathis et al. 2016):
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where we have introduced the stellar luminosity L , the average
density in the convection zone r̄CZ, the mixing-length
parameter aMLT, and the pressure scale height HP. Given that
we aim here for an order of magnitude estimate, we perform
further approximations that r r= ¯CZ and that nt in the integral
in Equation (3) do not vary with depth. Furthermore, we
approximate the mixing length lc by its maximum, which is

Figure 1. Sketch of the star–planet tidal and magnetic interactions. Only the
tides (equilibrium tide and dynamical tide in the convective envelope) raised by
the planet in the star are taken into account here. We consider both dipolar and
unipolar magnetic interactions. Due to these interactions, the planet can migrate
either inward or outward (black arrows).
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given by the depth of the convection zone a-( )R1 . We set

 r b p a= - -¯ ( ) ( )M R3 1 4 1CZ
3 3 to the density of the

convective envelope, with *b = M Mbcz (Mbcz is the radiative
core mass). We finally obtain
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2.1.2. Dynamical Tide: Tidal Inertial Waves

The case of tidal inertial waves excited in the convective
envelope of low-mass stars is complex to treat. As demon-
strated by Ogilvie & Lin (2007), the induced tidal torque
strongly depends on the tidal frequency and can vary over
several orders of magnitude as a function of the stellar mass,
age, metallicity, rotation, and turbulent viscosity. Hence, a
coherent treatment of this tidal dissipation requires the coupling
of hydrodynamical numerical codes to compute tidal inertial
waves (e.g., Guenel et al. 2016), and rotational and orbital
evolution codes to take into account their dissipation along the
evolution planetary systems (e.g., Bolmont et al. 2015; Bolmont
& Mathis 2016). An alternative approach has been proposed by
Ogilvie (2013) and Mathis (2015b, 2015a), who estimated the
order of magnitude of the friction induced by the dissipation of
tidal inertial waves thanks to analytical frequency-averaged
dissipation rates derived using spherical bi-layer rotating stellar
structure models. They obtain

*


p a g
a

a a a a a

g g g a g a

=
-

-

´
- + + + +

+ + + - - -

g
g

g

-

⎡⎣ ⎤⎦
( )( )

( )

( )

( )

( )
( )

k

Q

100

63

1

1

1 1 2 3 1

1 1 1
, 9

2 2
5 2

5

4 2 3

2
3 2 1 3

3

2

5

2

1

2

3

2
2 3 9

4
5

2

where g = a b
b a

-
-

( )
( )

1

1

3

3 and   = W W ( )Rkep with the Keplerian

rotation rate W =( )r GM rkep
3 . In this work, we use the

stellar evolution grid of Gallet et al. (2017)5 to estimate α and β
for a given star.

2.2. Magnetic Torque

2.2.1. Stellar Wind Model

The magnetic interaction in compact star–planet systems
depends on the local properties of the stellar wind at the planetary
orbit. In order to estimate these properties, we use the simple 1D
magnetized wind model starAML (see Réville et al. 2015 for a
complete description; the code is available upon request from the
authors). This model solves the pressure balance of a magnetized
1D Parker-like wind (Parker 1958; Weber & Davis 1967;
Sakurai 1985). The magnetic field of the wind is extrapolated
with a potential field with a source surface (Schatten et al. 1969)
calibrated over 2D and 3D numerical simulations of stellar winds
(see Réville et al. 2016 for 3D). The general properties of the
wind such as velocity, mass and angular momentum loss rates,
and Alfvén radius are then simply computed. In the present work,
we assume a ratio of specific heats =c c 1.05p v , which mimics
the coronal heating and allows us to reproduce the solar wind
with this model. We scale the density and temperature at the base

of the corona with the rotation rate of the star using the
observational prescription of Holzwarth & Jardine (2007). The
large-scale magnetic field of the star Bs is assumed to depend on
the rotation rate of the star as
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where the exponent −1.38 is taken from the empirical trend
found by Vidotto et al. (2014), and B is the reference stellar
field in the rotationally saturated regime ( <R 0.25o

c ). We
choose here a threshold at =R 0.25o

c to be consistent with the
threshold for tides (see Section 2.1.1), which is close to the
observationally constrained saturation value (e.g., Gondoin
2012; Vidotto et al. 2014).
With this wind model, we can furthermore infer whether the

planet is able to sustain a magnetosphere for a given planetary
magnetic field surface amplitude Bp. In this work, we consider
a dipolar or an unipolar regime of interaction depending
whether or not a magnetosphere can be sustained (see
Figure 1).

2.2.2. Unipolar Interaction

In cases where the ambient pressure from the stellar wind is
too strong, the planet magnetic field may not be strong enough
to sustain a magnetosphere. In this case, the magnetic
interaction in a close-in system becomes unipolar and was
studied by Laine et al. (2008) and Laine & Lin (2012). The
magnetic torque can then be written as

sG = S∣ ∣ ∣ ∣ ( )R a B8 , 11M p w
2 2

where Rp is the planet radius, Bw is the stellar wind magnetic
field at the planetary orbit, and Σ is the resistance of the stellar
plasma at the footpoint of the interaction (see Figure 1) that was
estimated to be of the order of ´ -6.5 10 6 s cm−1 by Laine &
Lin (2012). Note that we have simplified the original equation
to neglect the dependency of the torque to the incidence angle
of the interaction footpoint at the stellar surface for the sake of
simplicity. The torque (11) was derived assuming a rocky
super-Earth planet in Laine & Lin (2012) and is valid as long as
ohmic dissipation is more efficient at the footpoint of the
interaction at the stellar surface than inside the planet itself.
This assumption may also hold for gaseous planets, depending
on their poorly constrained conductivity profile in their interior
(e.g., Umemoto et al. 2006; van den Berg et al. 2010). We
suppose here that Equation (11) holds for all planets
considered, but warn the reader that the unipolar torque may
decrease if the conductivity inside the planet is comparable to
or less than the conductivity at the stellar surface.

2.2.3. Dipolar Interaction

The torque GM associated with magnetic forces has been
modeled in Strugarek et al. (2015) and Strugarek (2016) when
the planet possesses a magnetosphere (the so-called dipolar
regime). It can be parameterized as

pG = Lc x∣ ∣ ( ) · ( ) ( )A c P M R a , 12M d t a p p0
25 See https://obswww.unige.ch/Recherche/evol/starevol/Galletetal17.php.
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where Pt is the stellar wind total pressure at the planetary orbit,
Ma the Alfvénic Mach number, and Lp the pressure ratio
between the magnetic pressure in the magnetosphere of the
planet and the wind pressure Pt. The coefficients A0, χ, and ξ

have been calibrated from a set of 3D numerical simulations in
Strugarek (2016) and depend on the magnetic topology of the
interaction. We will consider in this Letter only the aligned
configuration, which maximizes the magnetic torque. Note that
we also omitted the dependency of the torque to the resistive
properties of the wind plasma for the sake of simplicity (see
Strugarek 2016 for a complete discussion). Finally, we assume
that the planet magnetic field Bp is independent of the spin of
the planet (and hence of its orbital period in tidally locked
systems). This is a reasonable approximation, as we expect the
magnetic moment of a planet to depend only weakly on its
rotation rate (Christensen 2010; Davidson 2013).

3. Application to Particular Star–Planet Systems

Our goal is to compare the instantaneous timescales
associated with tidal and magnetic forces (Equation (1)). We
thus define their ratio as

t
t

X = ( ), 13T

M

where the tidal (tT ) and magnetic (tM) migration timescales are
defined by Equation (1) with the torque GT defined by (2) for
tides, and GM by (11) or (12) for magnetism. The overall
migration timescale due to the sum of tidal and magnetic
torques G + GT M can be written as

t
t t

t t
=

+
( ). 14T M

T M

The migration timescale formulae in Section 2 are generic to
star–planet close-in systems. We now apply them to three
illustrative systems listed in Table 1.

We first consider the case of a T-Tauri star like Tap-26 (Yu
et al. 2017), with a surrounding hot Jupiter possessing a
magnetic field twice as strong as Jupiter’s. The T-Tauri is a
young solar-like star that is assumed here to generate a strong
surface magnetic field of the order of 2500 G (e.g., Donati &
Landstreet 2009). The resulting tidal and magnetic migration
timescales are shown in the left column of Figure 2 as a
function of the rotation period of the star and the orbital period
of the planet (the Tap-26 system is labeled by the orange
circle).

The isocontours of the tidal migration timescale are shown in
Figure 2(A). The gray area masks regions where the torque is
too weak and the associated migration timescale is larger than
the age of the universe. The different regimes of the tidal

migration efficiency clearly appear in this panel. A sharp
transition is observed at = Wn 2 (oblique black dashed line):
the dynamical tide (red) operates only in star–planet systems
below this transition line, dramatically improving the efficiency
of the tidal dissipation. A second transition is observed in the
equilibrium tide region above (dark red), labeled by the
horizontal black line with long dashes, where the star enters a
large Rossby number regime (see Section 2.1.1). In the upper
part of the diagram, the tidal migration timescale becomes
essentially independent of the slow rotation rate of the star, as
expected. The black oblique line represents the corotation
radius: a planet below this line migrates outward and a planet
above this line migrates inward.
The magnetic migration timescale is shown in Figure 2(B).

Because the Alfvén surface of the wind is located farther than a
10 day orbit, the wind is assumed here to be in corotation with
the star, meaning that the corotation line is the same here as for
tides. We suppose that the planet possesses an intrinsic surface
magnetic field of 10 G. A sharp transition occurs at 0.9 days
(black dashed–dotted line) as the magnetic interaction changes
from dipolar (dark blue) to unipolar (blue). The latter is shown
to be more efficient than the effective drag occurring in the
dipolar interaction case.
The ratio between the two timescales Ξ is shown in Figure 2

(C). The thick black contour labels the positions where the tidal
and magnetic torques have the same amplitude. Red (blue)
regions denote regions where the tidal (magnetic) torque
dominates. We note that, generally, tidal effects dominate in the
regions where dynamical tides operate. For slowly rotating
systems, though, both torques are clearly comparable with one
slightly dominating the other depending on the orbital period of
the planet.
Finally, the overall migration timescale τ is shown in

logarithmic scale in Figure 2(D). The closest planets migrate on
a timescale of several thousands of years due to both tidal and
magnetic torques for most stellar rotation rates. Both torques
strongly decrease with the orbital distance. As a result, planets
with orbital periods longer than 10 days are essentially
insensitive to tidal and magnetic torques.
Figure 2(E)–(H) show the same quantities for a fully

convective M dwarf resembling Kepler–42 (Muirhead
et al. 2012, the orange circle labels Kepler–42 c). In this case,
the dynamical tide is much less efficient as there are no
attractors, and as a result the tidal migration timescale is long
for all rotation rates. The torque applied to close-in planets is
completely dominated by magnetic effects, due to both the
weak tidal torque and the relatively strong magnetic field of the
M dwarf. The critical period at which the star reaches a Rossby
number of 0.25 is 28 days in this case. Because of the relatively
weak magnetic field of the planet, the magnetic interaction
mostly develops in a unipolar regime in such systems. Only

Table 1
Representative Systems

Star–Planet System M (M ) R (R ) B (G) αa βa Teff
a (K) Mp Å(M ) Rp Å(R ) Porb (days) Bp (G) Analog System

T-Tauri + hot Jupiter 1.05 1.12 2500 0.583 0.728 4475 318 11 10.9 10 Tap-26 (b)b

M dwarf + Earth 0.13 0.17 1000 0 0 3070 0.3 0.7 0.45 1 Kepler–42 (c)c

K star + hot Jupiter 0.80 0.80 140 0.672 0.929 4875 363 12.5 2.2 28e HD 189733 (b)d

Note. The stellar parameters (a) are taken from Gallet et al. (2017). The planet parameters are derived from Yu et al. (2017) (b), Muirhead et al. (2012) (c), and Bouchy
et al. (2005) (d). The magnetic field of the star and the planet are assumed here, except for the third system (e) for which we took the value inferred by Cauley et al.
(2015) using observed abnormal pre-transit absorptions to estimate the size of the planet’s hypothetical magnetosphere.
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planets with orbital periods smaller than ∼0.3 days are
expected to significantly migrate.

Finally, we study in Figures 2(I)–(L) the case of an evolved
K star with a close-in hot Jupiter like HD189733 (Bouchy
et al. 2005, the orange circle labels HD 189733 b). The
magnetic field of the star is much weaker than in the two
previous cases, and the tidal torque completely dominates the
migration path of the close-in planet (Figure 2(K)). We
immediately see that for the HD189733 system, it is unlikely

that the tidal and magnetic torques studied in this work can
make the planet migrate significantly. Indeed, only planets with
orbital periods smaller than ∼2 days are expected to migrate in
such a system.

4. Discussion and Conclusions

Magnetic and tidal effects generally act together in close-in
systems to make planets migrate inward or outward. We found

Figure 2. Tidal and magnetic torques in three representative star–planet systems (each column represents one system). The tidal (first row: (A), (E), (I)) and magnetic
(second row: (B), (F), (J)) migration timescales are contoured with labels in years. The ratio between the tidal and magnetic migration timescales is shown in the third
row ((C), (G), (K)), with blue (red) denoting magnetic (tidal) dominance. The overall migration timescale is displayed in logarithmic scale in the bottom row ((D), (H),
(L)). The magenta line corresponds to a timescale of 5Myr, which is representative of a stellar structure evolution timescale on the pre-main sequence. All panels are
shown as a function of the rotation period of the star and the orbital period of the planet, in days. The gray area masks regions where the migration timescale is larger
than the age of the universe. The Roche limit is labeled by the white transparent area and calculated as in Strugarek et al. (2014). The orange circles label the position
of the three analog systems identified in Table 1. The oblique black lines label corotation (solid line) and dynamical tide transition (dashed line). The horizontal black
line with long dashes labels the transition at =R 0.25o

c , and the dashed–dotted line traces the change of magnetic interaction regime.
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that both effects can dominate depending on the star–planet
system considered. Magnetic effects are likely to dominate
when the dynamical tide is not operating (e.g., for fully
convective stars) and when the stellar magnetic field is strong.
The overall torque depends on many parameters of the star–
planet system, such as the stellar structure, its magnetic field,
and rotation rate and the planet orbital distance, its structure,
and its internal magnetic field. The multiple dependencies of
the torques are fully accounted for in the simple scaling laws
we summarized in this Letter. When considering particular
systems for which some parameters are not available, a simple
parameter space exploration rapidly gives minimal and
maximal migration timescale that can be attained due to tides
and magnetic fields.

We have applied these scaling laws to three representative
systems (Figure 2). We found that very close-in planets could
migrate on a timescale as small as tens to hundreds of
thousands of year due to the combination of tidal and magnetic
interactions with their host. This migration timescale is short
and renders the detection of such systems statistically unlikely.
The observation of systems for which the magnetic or tidal
torques are strong would provide a fantastic test-bed for the
estimates we derived in this Letter. For the three systems
studied here, the known planets lie in a region of a very long
migration timescale (orange disks). In the particular case of
HD189733, this suggests that no significant angular momen-
tum transfer between HD189733b and its host is occurring
due to either magnetic or tidal interactions.

We have considered isolated, tidally locked planets on a
coplanar circular orbit. While this may be a reasonable
assumption for single-planet systems, it is not realistic for
multiple-planet systems. The tidal torque scaling laws should
be derived in the case of elliptic systems (e.g., using
Kaula 1961), but more theoretical work is still needed to
develop estimates of the magnetic torques in such systems. The
friction induced by the damping of tidal gravity waves in the
radiative core of low-mass stars (Zahn 1975) should also be
taken into account in a near future, as well as tidal elliptic
instabilities (Cébron et al. 2013).

In the context of young star–planet systems, we have also
neglected the contributions from interactions with a disk. Planet
migration in a disk through Lindbald resonances is generally
thought to be more efficient than the effects considered in this
work (e.g., Baruteau et al. 2014; Bouvier & Cébron 2015). We
note though that the migration due to self-consistent dynamical
tides was not systematically compared to disk-induced
migration, which we leave for future work.

Finally, we recall that we have focused our discussion on
order of magnitude estimates of instantaneous migration
timescales. The scaling laws summarized in this Letter could
also be implemented in stellar and orbital evolution codes
(Zhang & Penev 2014; Bolmont et al. 2015; Gallet et al. 2017)
to evolve self-consistently the star and its orbiting planet over
secular timescales, in particular when the migration timescale is
longer than the characteristic evolution time of the star (see,
e.g., the magenta line in Figure 2). For older stars such as the M
dwarf and K star studied here, the stellar parameters are not
expected to change significantly during their evolution over the
main sequence, and our instantaneous estimates already
provide a good approximation of the migration path of close-
in planets.

As a general conclusion, stars and close-in planets are
interacting both through gravitational and electromagnetic
interactions and both of them should be taken into account to
predict their evolution.
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