
Lecture 10: FERMIONS IN THE GRASSMANN

FORMALISM



We have described methods that allow studying general quantum Bose sys-

tems in the grand canonical formulation of statistical physics. One impor-

tant ingredient was the introduction of generating functions of symmetric

wave functions of bosons, as we have shown in section 4.9.

By contrast, in the case of fermion systems, since fermion wave functions

are antisymmetric in the exchange of a fermion pair, the construction of

generating functions, thus, requires the introduction of an antisymmetric or

Grassmann algebra of ‘classical functions’.

It is then possible to generalize to Grassmann algebras the notions of

derivatives and integrals. This leads to parallel formalisms for bosons and

fermions. In particular, one defines a Grassmann path integral for fermions,

analogous to the holomorphic path integral for bosons.

In the limit of an infinite number of available fermion states, the formalism

allows expressing the partition function of the Fermi gas as an integral over

Grassmann fields with anti-periodic boundary conditions.
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10.1 Grassmann algebras

A Grassmann algebra A on R or C (real or complex numbers) is an associa-

tive algebra generated by a unit (denoted by 1 in what follows) and a set

of generators {θi} that satisfy the anti-commutation relations

θiθj + θjθi = 0 ∀i, j .

(In what follows, unless stated otherwise, we consider only complex algebras

and when we speak of generators, we omit the unit that plays a special role.)

As a consequence:

(i) If the number n of generators is finite, the elements of the algebra

form a vector space of finite dimension 2n over R or C. All elements can be

written as linear combinations of the elements Aν , ν = 1, . . . , 2n:

Aν ∈ {1 and {θi1θi2 . . . θip} with i1 < i2 < · · · < ip , 1 ≤ p ≤ n}. (10.1)

655



(ii) A is a graded algebra: to each monomial θi1θi2 · · · θip , one can associate

an integer p that counts the number of generators in a product. In particular,

if Ap and Aq are two monomials of degree p and q, respectively, then

ApAq = (−1)pqAqAp .

(iii) Elements of A are invertible if and only if in the expansion on the basis

(10.1) the term of degree zero does not vanish.

For example, the element 1 + θ is invertible and its inverse is 1 − θ; in

contrast θ is not invertible. The inverse can be calculated by expanding in

a formal power series starting from the inverse of the term of degree zero.

(iv) All elements in a Grassmann algebra, considered as functions of a gen-

erator θi, are first degree polynomials, that is, affine functions.
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10.1.1 Reflection

In the algebra A, one can define an automorphism P, which thus satisfies

P(A+B) = P(A) + P(B), P(AB) = P(A)P(B),

P(λA) = λP(A) ∀A,B ∈ A , λ ∈ C ,

which has the nature of a reflection:

P(θi) = −θi ⇒ P2 = 1 . (10.2)

Acting on a monomial of degree p, it yields

P(θi1 · · · θip) = (−1)pθi1 · · · θip .

The vector space generated by the elements of A can be divided into the

sum of two vector spaces A± containing the even and odd elements:

P(A±) = ±A
±.
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Note also the property

Aθi = θiP(A). (10.3)

When A+ belongs to A+, it commutes with all elements of A:

A+ ∈ A+ ⇒ A+B = BA+ , ∀B .

In particular, A+ can be identified with the maximal commutative sub-

algebra of A.

On the other hand, if A−, B− both belong to A−, they anti-commute:

A− and B− ∈ A− ⇒ A−B− +B−A− = 0 .

As a consequence, all elements of A− are nilpotent with a vanishing square.
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10.1.2 Formal complex conjugation

In quantum mechanics, one needs mainly Grassmann algebras A with an

even number of generators, which can be divided into two subsets {θi}

and {θ̄i}, i = 1, . . . , n. One can then define in the algebra generated by

{θi, θ̄i} the analogue of the formal complex conjugation of the holomorphic

representation. The operation that plays the role of complex conjugation,

and we denote by A 7→ Ā, actually has properties analogous to the hermitian

conjugation for matrices or operators:











θi ↔ θ̄i ,

(λA1 + µA2) = λ∗Ā1 + µ∗Ā2 ,

A1A2 = Ā2Ā1 , ∀ A1 , A2 ∈ A and λ , µ ∈ C ,

(10.4)

where λ∗ and µ∗ are the complex conjugate of λ and µ, respectively.

Note for example that, as a consequence, θiθ̄j = θj θ̄i.

An element such that Ā = A is called formally real.
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10.2 Differentiation in Grassmann algebras

In Grassmann algebras, it is possible to define a generalized derivative. How-

ever, a too naive definition, would be inconsistent with the non-commutative

character of the algebra.

10.2.1 Definition

Considered as functions of a given generator θi, all elements A of A can be

written as (in general, after some commutations)

A = A1 + θiA2 ,

where A1 and A2 do not depend on θi. One then defines the derivative with

respect to θi by
∂A

∂θi
= A2 . (10.5)

The operator ∂/∂θi is nilpotent with vanishing square: (∂/∂θi)
2 = 0.
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Left and right differentiation. Equation (10.5) defines a left derivative in

the sense that the action of ∂/∂θi consists in commuting θi to the left in all

monomials before suppressing it. In a similar way, one could define a right

derivative by commuting θi to the right before suppressing it.

Derivative of sums and products. It follows from the definition (10.5) that

the derivative (D ≡ ∂/∂θi) is a linear operation

D(λA+ µB) = λD(A) + µD(B) ∀A,B ∈ A , λ, µ ∈ C ,

but the derivative of a product does not satisfy the usual Leibnitz rule

D(AB) = AD(B) + D(A)B. Using the remark (10.3), one verifies that this

rule is replaced by

D(AB) = P(A)D(B) + D(A)B , (10.6)

a rule that is consistent for any associative algebra and homomorphism P.
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Chain rule. The Grassmann derivative implies a special form of chain rule.

If σ(θ) belongs to A− and x(θ) belongs to A+, one finds

∂

∂θ
f(σ, x) =

∂σ

∂θ

∂f

∂σ
+
∂x

∂θ

∂f

∂x
. (10.7)

The verification is simple since F is necessarily an affine function of σ, and

σ and x are affine functions of θ.

Note that in the second term on the right hand side, the ordering of

factors is important.

10.2.2 Operator algebra

The identity and the nilpotent differentiation operators ∂/∂θi, combined

with the generators θi considered as operators acting on A by left-multipli-

cation, generate an operator algebra Cn acting on A whose generators satisfy

the anti-commutation relations

θiθj + θjθi = 0 ,
∂

∂θi

∂

∂θj
+

∂

∂θj

∂

∂θi
= 0 , θi

∂

∂θj
+

∂

∂θj
θi = δij . (10.8)

662



The operators

D±
i =

∂

∂θi
± θi

then satisfy the anti-commutation relations ({U, V } ≡ UV + V U)

{D±
i ,D

±
j } = ±2δij , {D

+
i ,D

−
j } = 0 .

This representation shows that the algebra can be expressed as the direct

sum of two Clifford algebras.
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10.3 Integration in Grassmann algebras

The integration over Grassmann variables, which we denote by the inte-

gration symbol, is defined to be an operation identical to differentiation:

∫

dθiA ≡
∂

∂θi
A, ∀A ∈ A . (10.9)

One may, thus, wonder whether it is really useful to introduce two symbols,

integral and derivative, for one unique operation. Still one verifies that this

operation has also the formal properties that one expects from integration

in the case of definite integrals (without boundary terms):

(i) The operation is linear.

(ii) The integral of a total derivative vanishes, a property that legitimates

integration by parts.

(iii) After integration over a variable, an expression does not depend on

this variable any more.
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(iv) A factor in a product that does not depend on the integration variable

can be factorized in front of the integration sign.

Then, the choice of using the integration or differentiation symbol de-

pends on the context, and allows constructing for fermions a formalism

quite parallel to the formalism for bosons described in section 4, as we will

show.

Change of variables. We consider the integral
∫

dθ f(θ),

and change variables, setting (the change of variables is necessarily affine)

θ = θ′A+ B . (10.10)

We demand that parity, in the sense of the reflection (10.2), is conserved:

since P(θ) = −θ,

P(θ′) = −θ′ ⇔ θ′ ∈ A
− ⇒ A ∈ A

+ , B ∈ A
− .

665



Moreover, the element A must be invertible and, thus, its term of degree

zero in the Grassmann variables must be non-vanishing. These conditions,

in fact, imply that θ and θ′ are two equivalent generators in the algebra.

Then, using the definition (10.9), one finds

∫

dθ f(θ) = A−1

∫

dθ′ f(θ′A+B) =

∫

dθ′
(

∂θ

∂θ′

)−1

f
(

θ(θ′)
)

, (10.11)

where the latter form is independent of the special parametrization (10.10).

This is a very important property of Grassmann integrals: the Jacobian is

(∂θ/∂θ′)−1, instead of ∂θ/∂θ′ in the case of real or complex variables.

This difference is also a reflection of the identity between differentiation

and integration in Grassmann algebras.
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Generalization. More generally, we now show that the change of variables

θi = θi(θ
′), θ′i ∈ A

−,

where the matrix ∂θi/∂θ
′
j is invertible (which is equivalent to the invertibil-

ity of the matrix of the terms of degree zero), generates a Jacobian that is

the inverse of the determinant of ∂θi/∂θ
′
j :

dθ1 . . . dθn = dθ′1 . . . dθ
′
nJ(θ

′) (10.12)

with

J = det
∂θ′i
∂θj

=

(

det
∂θi
∂θ′j

)−1

. (10.13)

Notice that the determinant is defined because all elements of the matrix

∂θi/∂θ
′
j belong to the commutative sub-algebra A+.
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The result can be derived by changing variables one at a time and using

equation (10.11) repeatedly: θ1 7→ θ′1 then θ2 7→ θ′2 until, finally, θn 7→ θ′n.

One then verifies

J =
∂θ′1
∂θ1

∣

∣

∣

∣

θ2,...,θn

∂θ′2
∂θ2

∣

∣

∣

∣

θ′

1,θ3,...,θn

· · ·
∂θ′n−1

∂θn−1

∣

∣

∣

∣

θ′

1,...,θ
′

n−2
,θn

∂θ′n
∂θn

∣

∣

∣

∣

θ′

1,...,θ
′

n−1

.

One recognizes one form of the Jacobian for complex variables, but for the

change of variables θ′i 7→ θi. Indeed, if one introduces the matrices

M
(p)
ij =

∂θ′i
∂θj

, i, j ≤ p ≤ n ,

one verifies, using the chain rule (10.7), the recursion relation

∂θ′n
∂θn

∣

∣

∣

∣

θ′

1,...,θ
′

n−1

=
∂θ′n
∂θn

∣

∣

∣

∣

θ1,...,θn−1

−
∑

i,j<n

∂θ′n
∂θi

[

Mn−1
]−1

ij

∂θ′j
∂θn

= detM (n)[M (n−1)]−1 .

The expression (10.13) follows.
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Example. The following example allows a direct verification of equation

(10.12). One starts from the identity

1 =

∫

dθ1 . . .dθn θn . . . θ1 .

After the linear change of variables

θi =
∑

j

aijθ
′
j ,

the result then relies on the identity

θn . . . θ1 = θ′n . . . θ
′
1 deta .
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10.3.1 Integration and complex conjugation

In what follows, we consider algebras with a double family of generators

{θi, θ̄i}, i = 1, . . . , n, related by the complex conjugation defined in (10.4).

In these algebras, one considers integrals of the form

I =

∫

dθ dθ̄ f(θ, θ̄),

where the pair θ, θ̄ stands for any pair of conjugate generators, which are

the direct analogues of the complex integrals of lecture 4.

Expanding the function f on θ and θ̄ in the form

f = a0 + θa1 + θ̄b1 + θ̄θa2 ,

where the coefficients belong to the algebra, one can integrate and finds

I = a2. One now integrates the complex conjugate function:

J =

∫

dθ dθ̄ f(θ, θ̄).
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With the same parametrization

f(θ, θ̄) = ā0 + ā1θ̄ + b̄1θ + ā2θ̄θ ,

and, thus, since θ̄θ commutes with ā2, J = ā2 = Ī. The integral of the

conjugate function is the conjugate of the integral of the function. One

can thus consider the measure dθidθ̄i as being invariant under complex

conjugation.

In particular, the integral of a formally real function (f = f̄) is also

formally real.

In what follows, we also meet integrals of the form

I =

∫

dθdθ̄ eθ̄θ f(θ, θ̄) = a0 + a2 .

Again, the substitution f 7→ f̄ leads to the conjugate result.
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10.4 Gaussian integrals. Expectation values. Wick’s theorem

We now define Gaussian integrals with an integration over two families of

generators {θi, θ̄i}, 1 = 1, . . . , n, analogues of the complex Gaussian integrals

of section 4.1.

10.4.1 Gaussian integrals

As in the case of complex variables, we first calculate Gaussian integrals,

and for the same reason: one often tries to reduce any integral to a formal

sum of a finite or an infinite number of Gaussian integrals.

We first consider the integral

Z(K) =

∫

dθ1dθ̄1dθ2dθ̄2 . . .dθndθ̄n exp





n
∑

i,j=1

θ̄iKijθj



 . (10.14)

According to the rules of Grassmann integration, the result is simply the

coefficient of the product θ̄nθn . . . θ̄1θ1 in the expansion of the integrand.
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The argument of the exponential function contains only terms belonging to

A+, which commute. The integrand can thus be written as

exp

( n
∑

i,j=1

θ̄iKijθj

)

=

n
∏

i=1

exp

(

θ̄i

n
∑

j=1

Kijθj

)

=

n
∏

i=1

(

1 + θ̄i

n
∑

ji=1

Kijiθji

)

.

Expanding the product, one observes that in each factor only the term

proportional to θ̄i contributes to the integral. It thus remains to integrate

n
∏

i=1

θ̄i

( n
∑

ji=1

Kijiθji

)

.

The terms that give a non-vanishing contribution to the integral, are those

that contain the product θn . . . θ2θ1 up to a permutation of the factors θj .
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They have the form

∑

permutations
{j1...jn}

KnjnKn−1jn−1 . . .K1j1 θ̄nθjn . . . θ̄1θj1 .

A commutation of the generators to cast all products into some standard

order, for example θ̄nθn . . . θ̄1θ1, yields a sign, the signature of the permu-

tation, and one then recognizes in the coefficient the determinant of the

matrix K. Thus,

Z(K) = detK . (10.15)

This result is the inverse of the result (4.3), obtained by an integration over

complex variables.
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This calculation is mainly a verification since, for detK 6= 0, one can also

change variables,

θi 7→ θ′i =
∑

j

Kijθj

and use the form (10.12) of the Jacobian. One verifies

Z(K) = detK

∫

dθ′1dθ̄1 . . . dθ
′
ndθ̄n exp

( n
∑

i=1

θ̄iθ
′
i

)

= detK

∫ n
∏

i=1

dθ′idθ̄i
(

1 + θ̄iθ
′
i

)

= detK .
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Real quadratic form. From the definition (10.4) of formal complex conjuga-

tion, it follows that the conjugate of a quadratic form is given by

n
∑

i,j=1

θ̄iKijθj =
n
∑

i,j=1

θ̄jK
∗
ijθi =

n
∑

i,j=1

θ̄iK
†
ijθj .

If the matrix K is hermitian, the quadratic form is formally real (invariant

under formal complex conjugation). Then, the result of the integral is real

since

detK = detK† = (detK)∗,

in agreement with the discussion of section 10.3.1. In particular, if the matrix

K is positive, the Gaussian integrand can be used to define a scalar product

(see section 10.7.1).
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10.4.2 General Gaussian integrals

We introduce another copy of the Grassmann algebra A whose generators

we denote by ηi and η̄i, and consider the Grassmann algebra generated by

the set {θ, θ̄, η, η̄}. Adapting the strategy of section 4.1, we first evaluate

the integral

ZG(η, η̄) =

∫

(

∏

i

dθidθ̄i

)

expEG(θ, θ̄, η, η̄) (10.16)

with

EG(θ, θ̄, η, η̄) =
n
∑

i,j=1

θ̄iKijθj +
n
∑

i=1

(

η̄iθi + θ̄iηi
)

, (10.17)

where EG, thus, is an element of the direct sum of the two copies of the

initial Grassmann algebra. Moreover, we assume detK 6= 0.

To eliminate the terms linear in θ and θ̄, we solve the equations

∂EG

∂θi
= 0 ,

∂EG

∂θ̄i
= 0 .
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Introducing the inverse matrix ∆ = K−1, one can write the solutions θs, θ̄s

as

θsi = −
∑

j

∆ijηj , θ̄
s
i = −

∑

j

η̄j∆ji .

After the change of variables, {θi} 7→ {θ′i} with

θi = θ′i −
∑

j

∆ijηj , θ̄i = θ̄′i −
∑

j

η̄j∆ji .

the resulting integral takes the form (10.14) already calculated (equation

(10.15)). The complete result is

ZG(η, η̄) = detK exp

(

−
n
∑

i,j=1

η̄i∆ijηj

)

. (10.18)
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10.4.3 Gaussian expectation values

We now define expectation values 〈•〉 with respect to the normalized Gaus-

sian measure proportional to the integrand in (10.14) by

〈

θ̄i1θj1 θ̄i2θj2 . . . θ̄ipθjp
〉

= (detK)−1

∫ (

∏

i

dθidθ̄i

)

θ̄i1θj1 . . . θ̄ipθjp exp

( n
∑

i,j=1

θ̄iKijθj

)

(10.19)

with p ≤ n.

All expectation values with an unequal number of θ and θ̄ vanish since

the measure is invariant under the U(1) transformation

θi 7→ eiα θi , θ̄i 7→ e−iα θ̄i .
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Differentiating the integral (10.16) with respect to ηi and η̄i and using

∂

∂ηi
eEG = −θ̄i e

EG ,
∂

∂η̄i
eEG = θi e

EG ,

(notice the sign in the first equation) one verifies that the function ZG given

by expression (10.16) is a generating function of the expectation values

(10.19).

Repeatedly differentiating the integral (10.16) with respect to η and η̄

(the order matters) and setting then η = η̄ = 0, one derives the identity

detK
〈

θ̄i1θj1 θ̄i2θj2 . . . θ̄ipθjp
〉

=

[

∂

∂η̄j1

∂

∂ηi1
· · ·

∂

∂η̄jp

∂

∂ηip
ZG(η, η̄)

]∣

∣

∣

∣

η=η̄=0

.

One then substitutes for ZG the explicit expression (10.18) and obtains
〈

θ̄i1θj1 θ̄i2θj2 . . . θ̄ipθjp
〉

=







∂

∂η̄j1

∂

∂ηi1
· · ·

∂

∂η̄jp

∂

∂ηip
exp

[

−
n
∑

i,j=1

η̄j∆jiηi

]







∣

∣

∣

∣

∣

∣

η=η̄=0

.
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10.4.4 Wick’s theorem

Second moment or two-point function. In the example of the second moment,

one obtains

〈

θ̄iθj
〉

=
∂

∂η̄j

∂

∂ηi
exp

(

−
n
∑

i,j=1

η̄i∆ijηj

)

∣

∣

∣

∣

∣

∣

η=η̄=0

. (10.20)

It follows
〈

θ̄iθj
〉

= ∆ji .

Differentiating systematically with respect to the generators η and η̄, one

obtains all expectation values and can prove Wick’s theorem for Grassmann

variables.
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Fermion Wick’s theorem. All variables η and η̄ that are not differentiated

can immediately be suppressed. The matrix ∆ is then reduced to a p×p ma-

trix with elements ∆jlik . The identity between differentiation and integra-

tion then allows reducing the explicit calculation to a Gaussian integration.

One concludes

〈

θ̄i1θj1 . . . θ̄ipθjp
〉

= det∆jlik =
∑

permutations
P of {j1...jp}

ǫ(P )∆jP1 i1
∆jP2 i2

. . .∆jPp ip

=
∑

permutations
P of {j1...jp}

ǫ(P )
〈

θ̄i1θjP1

〉 〈

θ̄i2θjP2

〉

· · ·
〈

θ̄ipθjPp

〉

, (10.21)

where ǫ(P ) = ±1 is the signature of the permutation P .

This result, which is the form Wick’s theorem assumes in the case of

‘complex’ Grassmann variables, differs from expression (4.8a), obtained in

the case of usual complex variables, only by the signature.
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10.5 Perturbative expansion: a quartic perturbation

To calculate expectation values with the weight e−S(θ,θ̄) /Z, where

S(θ, θ̄) = −
n
∑

i,j=1

Kij θ̄iθj − V (θ̄, θ)

with Kij hermitian and V ∈ A+ real and where the normalization Z is

given by the integral

Z =

∫

∏

i

dθ̄idθi e
−S(θ,θ̄), (10.22)

one can expand in powers of the polynomial V and then calculate Gaussian

expectation values using Wick’s theorem in the form (10.21).
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i j

Fig. 10.1 – Faithful Feynman diagram: the interaction vertex , full lines corre-

sponding to ∆ (fermions), dotted lines to V .

Quartic perturbation. We consider the example of a quartic perturbation

(Fig. 10.1) such that

S(θ, θ̄) = −
n
∑

i,j=1

Kij θ̄iθj −
1
2

∑

i,j

Vij θ̄iθiθ̄jθj , (10.23)

where Vij = Vji is real and Kij hermitian.
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The normalization. The first terms of the expansion in powers of V of lnZ,

where Z is the normalization integral (10.22), has the form

lnZ − ln detK = 1
2

∑

i,j

Vij
〈

θ̄iθiθ̄jθj
〉

0,c

+ 1
8

∑

i,j,k,l

VijVkl
〈

θ̄iθiθ̄jθj θ̄kθkθ̄lθl
〉

0,c
+O(V 3) ,

where 〈•〉0,c denotes connected part of the Gaussian expectation value (cu-

mulant expansion).

Using Wick’s theorem, one obtains

lnZ − ln detK = 1
2

∑

i,j

Vij (∆ii∆jj −∆ji∆ij)

+ 1
4

∑

i,j,k,l

VijVkl [2∆ki (−∆ik∆jj∆ll + 2∆il∆lk∆jj −∆ij∆jl∆lk)

+∆ik∆ki∆lj∆jl −∆ki∆il∆lj∆jk] +O(V 3).
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j

i j

i

Fig. 10.2 – Faithful Feynman diagrams: the contributions of order V , full lines

corresponding to ∆ (fermions), dotted lines to V .

In this expression, the signs have an interpretation in terms of the parity of

the number of fermion loops in Feynman diagrams (see Fig. 10.2).
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j

j i iℓ k ℓ k

Fig. 10.3 – Faithful Feynman diagrams: the contributions of order V , full lines

corresponding to ∆ (fermions), dotted lines to V .

Two-point expectation value. At order V 2, after division by the normaliza-

tion Z, which corresponds to the cancellation of disconnected diagrams,

〈

θ̄kθℓ
〉

= ∆ℓk + 1
2

∑

i,j

Vij
〈

θ̄kθℓθ̄iθiθ̄jθj
〉

0,c

+ 1
8

∑

i,j,a,b

VijVab
〈

θ̄kθℓθ̄iθiθ̄jθj θ̄aθaθ̄bθb
〉

0,c
+O(V 3),

where 〈•〉0,c again denotes connected part of Gaussian expectation values.
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Application of Wick’s theorem then leads to (the diagrams of order V are

displayed in Fig. 10.3)

〈

θ̄kθℓ
〉

= ∆ℓk +
∑

i,j

Vij (∆ℓj∆ji∆ik −∆ℓi∆ik∆jj)

+
∑

i,j,a,b

(∆ℓjVjb∆bb∆jiVia∆aa∆ik −∆ℓjVjb∆bb∆jaVia∆ai∆ik

−∆ℓjVbj∆jb∆biVia∆aa∆ik +∆ℓjVbj∆jb∆baVia∆ai∆ik

+∆ℓiVia∆ajVjb∆bb∆ja∆ik −∆ℓjVji∆jaVab∆bb∆ai∆ik

−∆ℓiVia∆ajVjb∆jb∆ba∆ik +∆ℓjVji∆jaVab∆ab∆bi∆ik

−∆ℓjVjb∆ab∆baVai∆ji∆ik +∆ℓjVja∆jbVbi∆ba∆ai∆ik)

+O(V 3). (10.24)
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10.6 Generating functions

General expectation values can then be generated from the function

Z(η, η̄) =

∫ (

∏

i

dθ̄idθi

)

eE(θ,θ̄,η̄,η)

with

E(θ, θ̄, η̄, η) = −S(θ, θ̄) +
n
∑

i=1

(

η̄iθi + θ̄iηi
)

.

From the remarks (cf. definition (10.16)),

∂

∂η̄k
Z(η, η̄) =

∫
(

∏

i

dθidθ̄i

)

θk expE(θ, θ̄, η, η̄), (10.25)

∂

∂ηk
Z(η, η̄) = −

∫ (

∏

i

dθidθ̄i

)

θ̄k expE(θ, θ̄, η, η̄), (10.26)

(notice the sign in equation (10.26)), all expectation values can be derived

from Z(η, η̄).
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10.6.1 Cumulants. Legendre transformation

Cumulants or connected functions. The function

W(η, η̄) = lnZ(η, η̄),

is the generating function of cumulants, to which only connected Feynman

diagrams contribute.

Legendre transformation. Then, one can introduce its Legendre transform

Γ(θ, θ̄) defined by

W(η, η̄) + Γ(θ, θ̄) =

n
∑

i=1

(

η̄iθi + θ̄iηi
)

θi =
∂W

∂η̄i
, θ̄i = −

∂W

∂ηi
.

To Γ(θ, θ̄), only one-line irreducible Feynman diagrams contribute.
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10.6.2 Loop expansion

At leading order (tree approximation), one substitutes in E the solutions

θsi , θ̄
s
i of

∂E

∂θ̄i
= ηi −

∂S

∂θ̄i
= 0 ,

∂E

∂θi
= −η̄i −

∂S

∂θi
= 0 .

Then,

W(η, η̄) = −S(θs, θ̄s) +
∑

i=1

(

η̄iθ
s
i + θ̄siηi

)

and, thus,

Γ(θ, θ̄) = S(θ, θ̄).

Higher orders are obtained by expanding around θs, θ̄s, keeping the quadratic

form in the exponential and expanding terms of higher degree. This gener-

ates Gaussian expectation values, which correspond to a loop expansion.
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One-loop contribution. The one-loop contribution Γ1(θ, θ̄) to Γ expanded to

order (θ̄θ)2 is

Γ1(θ, θ̄) =
∑

a,b

Vab
[

∆abθ̄bθa −∆bbθ̄aθa
)

+
∑

a,b,c,d

(

− 1
2∆ab∆baVacVbdθ̄cθcθ̄dθd +∆ab∆bdVbcVdaθ̄cθcθ̄aθd

− 1
2∆ac∆bd (VcbVda + VabVcd) θ̄bθcθ̄aθd

]

.

Two-point function. The properties of the Legendre transformation imply

∂2Γ

∂θ̄ℓ∂θk
= [
〈

θ̄θ
〉

]−1
ℓk

in the sense of matrices. This quantity has a simpler expansion than the

two-point cumulant
〈

θ̄θ
〉

, involving only one-line irreducible diagrams.
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Using expression (10.24), one finds

[
〈

θ̄θ
〉

]−1
ℓk = Kℓk − Vkℓ∆ℓk + δℓk

∑

j

Vℓj∆jj

+
∑

a,b

[

Vℓk∆ℓaVab (∆bb∆ak −∆ab∆bk)

+ Vℓb∆abVak (∆ba∆ℓk −∆ℓa∆bk)
]

+ δkℓ
∑

a,b,j

Vℓa∆ajVjb (∆jb∆ba −∆bb∆ja) +O(V 3),

a form consistent to order V 2 with the expansion of Γ1.
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Fig. 10.4 – Faithful Feynman diagrams: contributions of order V 2 to the four-point

vertex function, full lines corresponding to ∆ (fermions), dotted lines to V .

Four-point expectation value. We give here only the one-line irreducible

(1LI) contributions corresponding to vertex functions in QFT. We define

Γ
(4)
ijkℓ =

∂4Γ

∂θ̄ℓ∂θk∂θ̄j∂θi
.
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With this convention,

Γ
(4)
ijkℓ = Vik (δiℓδjk − δijδkℓ) + ∆ji∆ℓk (ViℓVjk + VjℓVik)

−∆jk∆ℓi (VkℓVij + VjℓVik)
∑

a

(

δijVia∆ka∆aℓVkℓ − δkjVka∆ia∆aℓViℓ

− δiℓVia∆ka∆ajVkj + δkℓVka∆ia∆ajVij
)

−
∑

a,b

∆ab∆baVaiVbk (δijδkℓ − δiℓδjk) +O(V 3). (10.27)
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10.7 Fermion vector space and operators: one state

The Grassmann formalism that we have just described allows handling

fermions in a way quite analogous to bosons with the holomorphic for-

malism.

Using the holomorphic formalism, we have defined in section 4.3 a scalar

product between analytic functions (equation (4.10)). This scalar product

then allows constructing a Hilbert space of analytic functions. From the

quantum viewpoint, the coefficients of the Taylor series expansion corre-

spond to the components of the state vector on states with a given number

of particles (see section 4.9). Quantum operators are then represented by

multiplications and differentiations acting on these analytic functions.
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Following an analogous scheme, we first define Grassmann ‘analytic’ func-

tions. These functions form a vector space in which we define a scalar prod-

uct. Quantum operators are then represented by elements of the algebra of

multiplication and differential operators acting on these functions.

A noticeable difference with the boson case is that the Hilbert space for

identical particles obeying the Fermi–Dirac statistics (i.e., fermions) and

that can occupy only one state, reduces to a two-dimensional complex vector

space, as a direct consequence of the Pauli principle: a state can only be

empty (state with zero particle or vacuum) or occupied once.

Therefore, the Grassmann formalism is not really necessary to deal with

this situation. However, the situation changes drastically when fermions can

occupy a large number of states, and this provides the justification.

Finally, unlike the case of bosons, there is an algebraic and physical sym-

metry between filled and empty state, the latter being only defined by the

lowest energy.
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10.7.1 Grassmann analytic functions and scalar product

We first consider a Grassmann algebra A with only two generators θ, θ̄.

We define a Grassmann analytic function as an element of the algebra that

depends only on the variable θ and thus

∂ψ

∂θ̄
= 0 .

Grassmann analytic functions form a subalgebra Aan. of the algebra A.

Analytic functions ψ(θ) are automatically affine functions since

ψ(θ) = ψ0 + ψ1θ , ψ0, ψ1 ∈ C
2 .

These functions span a complex two-dimensional vector space isomorphic

to the space of the vectors (ψ0, ψ1), ψ0 and ψ1 being the components of

the vector on the empty and one-particle state, respectively. By choosing

θ to be a generator of a Grassmann algebra A, one ensures that a state

can be occupied only once since θ2 = 0, in agreement with the Fermi–Dirac

statistics.
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The function complex conjugate to the function ψ is (cf., the definition

(10.4))

ψ(θ) ≡ ψ∗
0 + ψ∗

1 θ̄ .

As for analytic functions of usual complex variables, one then defines a

scalar product between functions of θ:

(ψ, ξ) =

∫

dθ dθ̄ eθ̄θ ψ(θ) ξ(θ). (10.28)

Parametrizing the function ξ as

ξ(θ) = ξ0 + ξ1θ ,

one verifies that the integral leads to the usual scalar product of the two

corresponding complex vectors (ψ0, ψ1) and (ξ0, ξ1):

(ψ, ξ) = ψ∗
0ξ0 + ψ∗

1ξ1 .
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Note, for later purpose, that the same scalar product is obtained from the

expression

(ψ, ξ) =

∫

dθ̄dθ eθθ̄ ξ(θ) ψ(θ), (10.29)

as one verifies by explicit calculation.

If we normalize the functions ψ by the scalar product (10.28): ‖ψ‖2 =

(ψ, ψ) = 1, |ψ0|2 and |ψ1|2 represent the respective probability for a quan-

tum system to be in empty state (vacuum) or occupied state.

10.7.2 Operators

On functions ψ(θ) acts the operator algebra C1 (section 10.2.2), which here

reduces to linear combinations of 1, θ, ∂/∂θ and θ∂/∂θ. The identity and

the three Pauli matrices can be represented by

1 7→ 1 ,
∂

∂θ
+ θ 7→ σ1 ,

∂

∂θ
− θ 7→ iσ2 ,

∂

∂θ
θ − θ

∂

∂θ
7→ σ3 .
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Hermitian conjugation. We consider the scalar product

(ψ, ∂ξ/∂θ) =

∫

dθdθ̄ eθ̄θ ψ(θ)
∂ξ(θ)

∂θ
.

Using the identity

∂

∂θ
eθ̄θ ξ(θ) = eθ̄θ

(

∂ξ(θ)

∂θ
− θ̄ξ

)

,

and integrating by parts, one infers (the same method has been used in

section 4.4.1)

(ψ, ∂ξ/∂θ) = (θψ, ξ),

which shows that the operators θ and ∂/∂θ are hermitian conjugate and

thus θ∂/∂θ is hermitian.

Reflection. The reflection operator (10.2) is represented by

P 7→ 1− θ
∂

∂θ
.
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Note that operators corresponding to physical observables must respect the

fermion character and thus commute with P. This implies here that they

are linear combinations of 1 and θ∂/∂θ.

10.7.3 A few operators

We list below a few operators relevant for what follows.

Occupation number. We define the occupation number operator (here also

the particle number operator):

n ≡ θ
∂

∂θ
⇒ n2 = n . (10.30)

Indeed, its eigenvectors and eigenvalues are

n 1 = 0 , n θ = θ .

It is hermitian with respect to the scalar product (10.28) and commutes

with P.
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Hamiltonian. An operator that commutes with P is necessarily proportional

to n, up to an additive constant. We thus define the Hamiltonian H0 as (in

this first part we set ~ = 1)

H0 = ω n , ω > 0 , (10.31)

and this is the most general Hamiltonian,up to an additive constant, with

only one fermion state. H0 conserves the number of particles and is her-

mitian. The condition ω > 0 ensures that ψ(θ) = 1 is the ground state

and thus the empty state. Otherwise, one has to redefine the basis, which

includes exchanging the roles of θ and ∂/∂θ.

Statistical operator. The statistical operator U0(t) = e−H0t can then be

inferred from the property (10.30). One finds

U0(t) ≡ e−H0t = e−ωtn = 1+
(

e−ωt−1
)

n . (10.32)
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10.7.4 Annihilation and creation operators

The operators θ and ∂/∂θ form a representation of the algebra of the fermion

creation and annihilation operators a† and a, with the correspondence

a† 7→ θ , a 7→
∂

∂θ
.

Indeed, they are hermitian conjugate and satisfy the anticommutation rela-

tions

a2 = a†2 = 0 , aa† + a†a = 1 , (10.33)

which, clearly, encode the Pauli principle.

In terms of creation and annihilation operators, the Hamiltonian (10.31)

reads

H0 = ωa†a .

The correspondence between the normalized eigenvectors |0〉, the ground

state, and the occupied state |1〉 = a† |0〉 is then

|0〉 7→ 1 , |1〉 7→ θ .
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10.8 General Grassmann analytic functions

The generalization to fermions that can occupy a finite number N of states

requires introducing Grassmann analytic functions of N generators θi.

We thus consider a Grassmann algebra A with generators {θi, θ̄i}. We

define Grassmann analytic functions as elements of the algebra that depend

only on the variables θi and thus satisfy

∂ψ

∂θ̄i
= 0 , ∀i .

They form a subalgebra Aan. of the algebra A.

The complex conjugation is defined as in (10.4) (i.e., as the hermitian

conjugation of operators). Then, as a straightforward generalization of the

definition (10.28), the scalar product of two functions ψ and ξ is defined by

(ψ, ξ) =

∫ (

∏

i

dθidθ̄i

)

exp

(

∑

i

θ̄iθi

)

ψ(θ) ξ(θ). (10.34)
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Since
(

ψ(θ) ξ(θ)
)

= ξ(θ)ψ(θ),

it follows from the remarks of section 10.3.1, that

(ψ, ξ)∗ = (ξ, ψ).

To prove that the scalar product defines a positive norm ‖ψ‖, one can

expand all elements of the algebra Aan., considered as a complex vector

space, on the basis of the 2N distinct monomials Aν(θ), ν = 1, . . ., 2N (cf.

equation (10.1)):

{Aν(θ)} = {1, θi1θi2 . . . θip , ∀ 1 ≤ p ≤ N and ∀ i1 < i2 < · · · < ip}.

The evaluation of the scalar product (Aµ, Aν) follows from the evaluation

of the integral (10.19) with Kij = δij . Using Wick’s theorem (10.21), one

obtains

(Aµ, Aν) = δµν .
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The monomials Aν(θ) thus form an orthonormal basis. As a consequence,

if one expands

ψ =
∑

ν

ψνAν , ξ =
∑

ν

ξνAν ,

where ψν , ξν are two complex vectors in C
2N , one finds

(ψ, ξ) =
∑

ν

ψ∗
νξν ,

that is, the usual scalar product of the two vectors.

Again, the same results can be derived from the other form of the scalar

product, which generalizes the definition (10.29),

(ψ, ξ) =

∫ (

∏

i

dθ̄idθi

)

exp

(

∑

i

θiθ̄i

)

ξ(θ)ψ(θ). (10.35)
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10.8.1 Grassmann Dirac’s δ-function

In Grassmann algebras, the role of Dirac’s δ-function is played by the func-

tion δ(θ) ≡ θ. Indeed,
∫

dθ θψ(θ) = ψ(0),

where ψ(0) means the term of degree zero of the affine function ψ(θ). This

δ-function has a useful integral representation:

δ(θ) =

∫

dθ̄ eθ̄θ, (10.36)

where θ̄ is an additional variable and, thus, an additional generator of the

Grassmann algebra. This representation is analogous to the Fourier repre-

sentation of the usual δ-function. One verifies directly

ψ(0) =

∫

dθdθ̄ eθ̄θ ψ(θ).
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10.9 Operators and kernels

Operator algebra. In section 10.2.2 we have introduced the algebra CN of left-

differentiation and multiplication operators acting on a Grassmann algebra

Aan.. We have shown in section 10.7.1 that the operators θi and ∂/∂θi are

hermitian conjugate.

To be able to construct Grassmann path integrals (in particular, a path

integral representation of the partition function), it is necessary to also

introduce a kernel representation of operators (cf. sections 10.13 and 10.14).

Kernel of the identity. The scalar product (10.34) allows defining an or-

thonormal basis and, thus, a representation of the identity operator in the

form of a kernel:

I(θ, θ̄) =
∑

ν

Aν(θ)Aν(θ) =
∏

i

(1 + θiθ̄i) = exp

(

−
∑

i

θ̄iθi

)

. (10.37)
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A direct verification is based on the representation (10.36) of the δ-function.

Indeed,

∫

∏

i

(

dθ′idθ̄
′
i

)

I(θ, θ̄′) exp

(

∑

i

θ̄′iθ
′
i

)

ψ(θ′)

=

∫

∏

i

(

dθ′idθ̄
′
i

)

exp

(

∑

i

θ̄′i(θ
′
i − θi)

)

ψ(θ′) = ψ(θ). (10.38)

Reflection operator. The reflection operator (10.2) is represented by

P 7→ exp

(

∑

i

θ̄iθi

)

= I(−θ, θ̄). (10.39)

Indeed, the same calculation shows that

[Pψ](θ) = ψ(−θ).
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Normal order. Using the anti-commutation relations, one can write all

elements of the operator algebra CN as a linear combination of monomials

in which all differential operators are on the right: the is called the normal

order.

Action of kernels on functions.We can act on both sides of identity (10.38)

with operators written in normal order. On the right hand side, one obtains

their kernel representation by acting on I(θ, θ̄′),

θi1θi2 . . . θip
∂

∂θj1

∂

∂θj2
. . .

∂

∂θjq
I(θ, θ̄) = θi1θi2 . . . θip θ̄j1 θ̄j2 . . . θ̄jqI(θ, θ̄),

which are general elements of the Grassmann algebra A.
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In this representation, the action of an operator O(θ, ∂/∂θ) with kernel

O(θ, θ̄) = O(θ, θ̄)I(θ, θ̄),

is given by

[Oψ](θ) =

∫

∏

i

dθ′idθ̄
′
i O(θ, θ̄′) exp

(

∑

i

θ̄′iθ
′
i

)

ψ(θ′). (10.40)

As in the holomorphic formalism, we introduce here also the rather sugges-

tive matrix element notation

〈θ| O
∣

∣θ̄
〉

≡ O(θ, θ̄),

without defining precisely the corresponding bra and ket vectors.

Finally, the kernel corresponding to the product O2O1, inferred from

acting a second time on a function, is given by

〈θ| O2O1

∣

∣θ̄
〉

=

∫

∏

i

dθ′idθ̄
′
i 〈θ| O2

∣

∣θ̄′
〉

exp

(

∑

i

θ̄′iθ
′
i

)

〈θ′| O1

∣

∣θ̄
〉

. (10.41)
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All operators can be expressed in terms of the elements of the basis (10.1):

〈θ| O
∣

∣θ̄
〉

=
∑

µ,ν

OµνAµ(θ)Aν(θ), (10.42)

where the coefficients Oµν are the matrix elements of O in this basis.

Trace. In terms of its kernel, the trace of an operator reads

trO =

∫

∏

i

dθ̄idθi exp

(

−
∑

i

θ̄iθi

)

〈θ| O
∣

∣θ̄
〉

. (10.43)

Comparing expressions (10.41) and (10.43), one might be surprised by the

interchange between the θ̄i and θi. The reason for this change can be directly

related to the second form (10.35) of the scalar product.

Using expression (10.42), one verifies that the expression yields a trace

since

trO =
∑

ν

Oνν .
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Physical observables. Operators associated with physical observables must

respect the fermion character. This condition is equivalent to the commu-

tation of operators with the reflection operator (10.2). The latter can be

written as

POP = O ,

which in terms of kernels becomes (using the representation (10.39))

O(θ, θ̄) = O(−θ,−θ̄). (10.44)

The kernels O(θ, θ̄) representing physical operators must belong to the com-

mutative subalgebra A+.
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Hermitian conjugation and kernels. Comparing explicitly the scalar prod-

ucts (f,Og) and (O†f, g), where the action of a operator on a function

is given by expression (10.40), one verifies directly that the kernel corre-

sponding to the hermitian conjugate of an operator is its formal complex

conjugate in the algebra, as defined in (10.4):

O 7→ O(θ, θ̄) ⇒ O† 7→ O(θ, θ̄).

As expected, the identity kernel I(θ, θ̄) corresponds to a hermitian operator.
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10.10 The one-state example

The representation of the Hamiltonian (10.31) in terms of kernels is obtained

by acting with the differential operator on the identity:

〈

θ|H0|θ̄
〉

= ωθ
∂

∂θ
e−θ̄θ = ωθθ̄ e−θ̄θ = −ωθ̄θ .

The matrix elements of the operator U0(t) satisfy the equation

∂

∂t

〈

θ|U0(t)|θ̄
〉

= −ωθ
∂

∂θ

〈

θ|U0(t)|θ̄
〉

with
〈

θ|U0(0)|θ̄
〉

= e−θ̄θ .

One verifies that the solution is

〈θ|U0(t)
∣

∣θ̄
〉

= e−θ̄θ e−ωt

= 1 + θθ̄ e−ωt, (10.45)

in agreement with expression (10.32).
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Replacing in (10.41) O1 and O2 by U(t1) and U(t2), respectively, one can

also verify directly the semi-group property.

The kernels of the physical operators H0 and U0(t) belong to the com-

mutative subalgebra A+. Moreover, since the operators are hermitian, the

kernels are indeed formally real in the sense of the conjugation (10.4).

Using the explicit expression (10.45) and the definition (10.43) of the

trace, one can calculate the partition function. One finds the expected result

Z0(β) = trU0(β) =

∫

dθ̄dθ e−θ̄θ e−θ̄θ e−ωβ

= 1 + e−ωβ . (10.46)

Remark. The action of the operator U0 on a function ψ(θ) is given by

[U0(t)ψ](θ) =

∫

dθ′dθ̄′ e−θ̄′θ e−ωt

eθ̄
′θ′

ψ(θ′)

= ψ(e−ωt θ), (10.47)

where the equation (10.36) has been used. Note the analogy with equation

(4.27).
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10.11 Many-fermion states. Hamiltonians

We now describe fermion state vectors when identical fermions, thus obeying

the Pauli principle, can occupy an arbitrary finite number of quantum states,

generalizing the discussion of section 10.7.

10.11.1 Fermion states

One-particle states. A fermion state is defined by a vector, which we denote

by ψi, which belongs to a complex vector space H1 of finite dimension N .

Many-particle states. A state vector describing n identical fermions is a

complex vector ψi1i2...in , where the indices ik take N values. The Pauli

principle for fermions implies that the vector ψi1i2...in is antisymmetric in

all permutations of the indices

ψi1i2...ikik+1...in = −ψi1i2...ik+1ik...in ∀k .
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The vectors ψi1i2...in are, thus, antisymmetric tensors with n indices, and

belong to a complex vector space Hn of dimension
(

N
n

)

.

10.11.2 Hamiltonians

Independent particle Hamiltonian. A one-particle (or one-body) Hamilto-

nian H(1) is defined by its action on a one-particle state: it is then repre-

sented by a hermitian N ×N matrix H
(1)
ij , which can be diagonalized. We

denote by ωi its eigenvalues (ωi > 0). Then,

[H(1) ψ]i = ωiψi .

Its action on n-particle states is additive:

[H(1) ψ]i1i2...in =
∑

ℓ

ωiℓ ψi1i2...in .

When the complete Hamiltonian reduces to a one-particle Hamiltonian, the

fermions do not interact: one then speaks of independent particles.
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Pair interaction. A pair or two-body interaction H(2) is defined by its action

on a two-particle state:

[H(2) ψ]i1i2 =
∑

j1,j2

H
(2)
i1i2,j1j2

ψj1j2 ,

where H
(2)
i1i2,j1j2

is a hermitian matrix that satisfies

H
(2)
i1i2,j1j2

= H
(2)
i2i1,j2j1

= (H
(2)
j1j2,i1i2

)∗

and, thus, is an internal mapping in the vector space H2 of antisymmetric

tensors. It is, of course, possible following the same strategy to define many-

particle interactions but we restrict the discussion here to the two-body

interaction, for simplicity.

The action of H(2) on an n-particle state then is given by

[H(2) ψ]i1i2...in =
1

2

∑

ℓ 6=m

∑

j,k

H
(2)
iℓim,jkψi1i2...iℓ−1jiℓ+1...im−1k im+1...in .

On the same model, one can construct many-body interactions.
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10.12 Second quantization representation

In statistical physics, the grand canonical formulation implies dealing with

a variable number of particles. We thus consider the set of state vectors

corresponding to an arbitrary number of identical fermions that belong to

the space ⊕nHn, n = 0, 1, . . . (H0 is the vacuum), and associate to them

a generating function. The tensors ψi1i2...in being antisymmetric, we must

introduce a Grassmann algebra with N generators θi. We then show how

quantum operators can be represented when acting on the Grassmann al-

gebra and generalize the one-state construction of section 10.7 by using the

formalism described in section 10.8.
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10.12.1 State representation

A generating function of state vectors has the form

Ψ(θ) =
N
∑

n=0

1

n!

∑

i1,i2,...,in

θi1θi2 . . . θinψi1i2...in .

With our assumptions, Ψ(θ) is a polynomial of degree N . Notice, conversely,

that the function Ψ(θ) can only generate antisymmetric tensors.

The function Ψ(θ) can be considered as a Grassmann analytic function.

Such functions form a vector space that can be endowed with the scalar

product (10.34) (thus the denomination second quantization). The norm of

Ψ is given by

‖Ψ‖2 = (Ψ,Ψ) =

N
∑

n=0

1

n!

∑

i1,i2,...,in

|ψi1i2...in |
2 .

If the function Ψ has unit norm, the quantity 1
n!

∑

i1,i2,...,in
|ψi1i2...in |

2 is

the probability to find the quantum system in an n-fermion state.

722



10.12.2 Occupation number

In this framework, one can introduce the operators occupation number of

the state i, whose action on Ψ(θ) is given by (definition (10.30))

ni = θi
∂

∂θi
⇒ n2

i = ni , [ni,nj ] = 0 . (10.48)

The sum

N =
∑

i

ni (10.49)

is the operator total number of particles.
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10.12.3 Hamiltonian

As in the Bose case, we note that
∑

j

θjωj
∂Ψ(θ)

∂θj
=
∑

n

1

(n− 1)!

∑

j

θjωj

∑

i2,i3,...,in

θi2θi3 . . . θinψji2...in

=

∞
∑

n=1

1

n!

∑

i1,i2,...,in

θi1θi2 . . . θin
∑

ℓ

ωiℓ ψi1i2...in .

The representation of the one-particle Hamiltonian H(1) acting on the gen-

erating functions Ψ(θ) thus is

H(1) ≡
∑

i

θiωi
∂

∂θi
=
∑

i

ωi ni .

An analogous calculation shows that the two-body interaction is represented

by

H(2) = 1
2

∑

i1,i2,j1,j2

θi1θi2H
(2)
i1i2,j1j2

∂2

∂θj1∂θj2
.

724



The total Hamiltonian H = H(1) + H(2) is hermitian with respect to the

scalar product (10.34). It has a representation analogous to the Hamiltoni-

ans of the holomorphic representation and the general strategy described in

sections 4.9 and 4.10 can again be followed here.

The Hamiltonian H conserves the number of particles. One thus verifies

that the particle number operator N (equation (10.49)) commutes with H:

[N,H] = 0 .

Chemical potential. Since the Hamiltonian conserves the number of par-

ticles, in statistical physics one must then introduce a chemical potential

µ coupled to N to be able to vary the average number of particles. In

the definition of the partition function, this amounts to the substitution (a

modification of H(1))

H 7→ H− µN .
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Remarks.

(i) As in the example with only one generator, the Clifford algebra (10.8)

is isomorphic to the algebra of creation and annihilation operators ai, a
†
i for

fermions with the correspondence

a†i 7→ θi , ai 7→ ∂/∂θi .

Indeed, the operators θi and ∂/∂θi are hermitian conjugates and the com-

mutation relations (10.8) are identical to the commutation relations of

fermion creation and annihilation operators:

a†ia
†
j + a†ja

†
i = aiaj + ajai = 0 and a†iaj + aja

†
i = δij .

(ii) Note that the relations (10.8) exhibit a full symmetry between the

hermitian conjugate operators θi and ∂/∂θi. Therefore, θ could also be as-

sociated with fermion annihilation and ∂/∂θ with fermion creation.
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Then, θ would become the empty state and 1 the occupied state. This

remark becomes specially relevant when the parameter ω in the Hamiltonian

(10.31) is negative. Then, the ground state is the vector θ.

In the more general framework of section 10.12, the vacuum would then

correspond to the product of all generators.

One generally prefers identifying the ground state with the vacuum, and

assign positive energies to particle excitations. An equivalent representa-

tion can be obtained by Grassmann Fourier transformation. Adding one

generator η to the Grassmann algebra, one defines

ψ̃(η) =

∫

dθ eθη ψ(θ).

Then, if ψ(θ) = ψ0 + θψ1,

ψ̃(η) = ψ1 + ηψ0

and θ and ∂/∂θ are represented by ∂/∂η and η, respectively.
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10.13 Grassmann path integral: one-state problem

We first construct a path integral representation of the kernel of the operator

U0(t) = e−tH0 , proportional to the density matrix at thermal equilibrium,

in the case of the one-state problem. Since the density matrix then reduces

to a 2 × 2 matrix, its calculation from a path integral may appear as an

unnecessary complication. However, the path integral representation is use-

ful because it can easily be generalized to an arbitrary number of available

states. This justifies its introduction even to solve this elementary problem.

The method, in the case of a fermion Hamiltonian, follows, rather closely,

the method of section 4.6, the main difference being that complex variables

are replaced by Grassmann variables.
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10.13.1 Grassmannian path integral

To construct a path integral, one needs the expansion of the kernel of the

statistical operator (10.45) to first order for t→ 0:

〈θ|U0(t)
∣

∣θ̄
〉

= exp
[

−θ̄θ(1− ωt) +O
(

t2
)]

. (10.50)

Using the semi-group property U0(t) = [U0(t/n)]
n expressed in the form

(10.41), one can then write the statistical operator at finite euclidean time

as

〈

θ′′ |U0(t
′′, t′)| θ̄′

〉

= lim
n→∞

∫

(

n−1
∏

k=1

dθkdθ̄k

)

exp
[

−θ̄0θ0 − Sε(θ, θ̄)
]

with

Sε(θ, θ̄) =

n
∑

k=1

[

θ̄k−1 (θk − θk−1)− ωεθ̄k−1θk
]

,

ε = (t′′ − t′)/n, and the definitions θ̄0 = θ̄′ , θn = θ′′.
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The formal limit n → ∞ yields a generalized path integral involving a

summation over Grassmann paths {θ(t), θ̄(t)}, which are generators of an

infinite-dimensional Grassmann algebra.

The kernel representation of U0(t
′′, t′) = U0(t

′′ − t′) is given by

〈

θ′′ |U0(t
′′, t′)| θ̄′

〉

=

∫ θ(t′′)=θ′′

θ̄(t′)=θ̄′

[

dθ(t)dθ̄(t)
]

exp
[

−θ̄(t′)θ(t′)− S0(θ, θ̄)
]

(10.51)

with

S0(θ, θ̄) =

∫ t′′

t′
dt θ̄(t)

[

θ̇(t)− ωθ(t)
]

.

Notice that in the one-state problem, the integral is automatically Gaussian.
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Generating function of fermion correlation functions. A generating function

of fermion correlation functions with the weight e−S0 /Z0 is provided by

the more general integral obtained by adding to the action S0 linear terms

corresponding to a coupling to external Grassmann sources η̄(t) and η(t).

We thus consider the more general path integral

〈

θ′′ |UG(t
′′, t′; η, η̄)| θ̄′

〉

=

∫ θ(t′′)=θ′′

θ̄(t′)=θ̄′

[

dθ(t)dθ̄(t)
]

e−θ̄(t′)θ(t′) e−SG(θ,θ̄;η,η̄)

(10.52)

with

SG(θ, θ̄; η, η̄) = S0(θ, θ̄)−

∫ t′′

t′
dt
[

η̄(t)θ(t) + θ̄(t)η(t)
]

, (10.53)

where now the four infinite sets {θ(t)}, {θ̄(t)}, {η(t)} and {η̄(t)} form a set

of generators of the Grassmann algebra.
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10.13.2 Calculation of the path integral

The integral (10.52) is Gaussian and can be calculated exactly. The ‘saddle

point equation’ obtained by varying θ(t) yields

˙̄θ(t) + ωθ̄(t) + η̄(t) = 0

and, thus, taking into account boundary conditions,

θ̄(t) = θ̄s(t) ≡ e−ω(t−t′) θ̄′ −

∫ t

t′
e−ω(t−u) η̄(u)du .

In the same way, the variation of θ̄(t) yields

θ̇(t)− ωθ(t)− η(t) = 0

and, thus,

θ(t) = θs(t) ≡ e−ω(t′′−t) θ′′ −

∫ t′′

t

e−ω(u−t) η(u)du .
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Translating θ(t) and θ̄(t) by the solutions of the ‘classical’ equations: θ 7→

θs + θ, θ̄ 7→ θ̄s + θ̄, one then obtains

〈

θ′′ |UG(t
′′, t′; η, η̄)| θ̄′

〉

= N (t′, t′′) exp
[

−θ̄(t′)θ(t′)− Sc(θ
′′, θ̄′; η̄, η)

]

(10.54)

with

θ̄(t′)θ(t′) = θ̄′θ′′ e−ω(t′′−t′) −θ̄′
∫ t′′

t′
dt e−ω(t−t′) η(t)

and

Sc = −

∫ t′′

t′
η̄(t)θs(t)dt

= −

∫ t′′

t′
dt η̄(t) e−ω(t′′−t) θ′′ +

∫ t′′

t′
dt

∫ t′′

t

du η̄(t) e−ω(u−t) η(u) .
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To calculate the normalization

N (t′, t′′) =

∫ θ(t′′)=0

θ̄(t′)=0

[

dθ(t)dθ̄(t)
]

exp

[

−

∫ t′′

t′
dt θ̄(t)

(

θ̇(t)− ωθ(t)
)

]

,

one again changes variables, setting

θ̄(t) = e−ωt ζ̄(t) , θ(t) = eωt ζ(t).

The Jacobian equals 1. After this change, the dependence on ω has dis-

appeared. One finds N = 1 in the mixed representation evaluated for

θ = θ̄ = 0. Thus N = 1.

As in the boson case, correlation functions are obtained by differentiating

expression (10.54) with respect to η and η̄.
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10.13.3 Two-point function and partition function

From expression (10.54), one infers the functional trU(β/2,−β/2; η, η̄), the

trace being defined by equation (10.43):

trUG(β/2,−β/2; η, η̄) =

∫

dθ̄ dθ e−θ̄θ
〈

θ |U(β/2,−β/2; η, η̄)| θ̄
〉

.

A simple evaluation of the Grassmann integrals yields

trUG(β/2,−β/2; η, η̄) = Z0(β) exp

[

−

∫ β/2

−β/2

du dt η̄(u)∆(t− u)η(t)

]

,

where Z0(β) is the partition function Z0(β) = 1 + e−ωβ and

∆(t) = 1
2
e−ωt [sgn(t) + tanh(ωβ/2)] , (10.55)

where sgn(t) is the sign function, sgn(t) = 1 for t > 0, sgn(t) = −1 for t < 0.
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The function ∆(t) is the solution of the differential equation

∆̇(t) + ω∆(t) = δ(t)

with, in contrast with the boson case (equations (3.37, 4.36)), anti-periodic

boundary conditions:

∆(β/2) = −∆(−β/2).

In the limit β → ∞, it reduces to

∆(t) = 1
2
e−ωt

(

sgn(t) + 1
)

,

an expression identical to the one obtained in the case of holomorphic for-

malism (see equation (4.37)).

Despite the non-trivial way the trace is defined, the result obtained here

is identical to the one given by a path integral with anti-periodic boundary

conditions.
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Thus,

trUG(β/2,−β/2; η, η̄) =

∫

[

dθ(t)dθ̄(t)
]

exp
[

−SG(θ, θ̄; η, η̄)
]

(10.56)

with θ(−β/2) = −θ(β/2), θ̄(−β/2) = −θ̄(β/2) and

SG(θ, θ̄; η, η̄) =

∫ β/2

−β/2

dt
{

θ̄(t)
[

θ̇(t)− ωθ(t)
]

− η̄(t)θ(t)− θ̄(t)η(t)
}

.

By contrast, the integral with periodic boundary conditions is obtained by

integrating expression (10.54) with eθθ̄ and yields tr Pe−βH (cf. expression

(10.39)).

The two-point correlation function calculated with the Gaussian measure

e−S0 /Z0 is obtained by differentiating trUG(β/2,−β/2; η, η̄) twice. One

finds
〈

θ̄(t)θ(u)
〉

= ∆(t− u).
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Since the integrand is Gaussian, all other correlation functions are obtained

by using Wick’s theorem (10.21), which here takes the form

〈

θ̄(t1)θ(u1) . . . θ̄(tp)θ(up)
〉

=
∑

permutations
P of {1...p}

ǫ(P )
〈

θ̄(t1)θ(uP1)
〉 〈

θ̄(t2)θ(uP2)
〉

· · ·
〈

θ̄(tp)θ(uPp
)
〉

. (10.57)

Remark. The derivative of lnZ0 with respect to ω is related to the two-

point function (10.55) since

d lnZ0

dω
=

∫ β/2

−β/2

dt
〈

θ̄(t)θ(t)
〉

= β∆(0) = 1
2β[sgn(0) + tanh(ωβ/2)]

and, thus,

Z0(β) = eωβ(sgn(0)+1)/2 +eωβ(sgn(0)−1)/2 . (10.58)

738



One faces a problem already encountered in the case of holomorphic path

integrals.

The choice sgn(0) = −1 corresponds to the normal order (10.31), but

leads to the problem of non-commutation of time differentiation and path

integration already encountered in the commutative case.

The choice sgn(0) = 0 leads to the energy eigenvalues ±ω/2 and corre-

sponds to the Hamiltonian ω[a†, a]/2, which is the ‘symmetrized’ version of

the operator (10.31). A way to ensure that the choice sgn(0) = 0 yields the

exact result, is to insert in the path integral the average of the normal and

anti-normal ordered forms (see the discussion of section 4.7).
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10.14 Grassmann path integrals: generalization

The preceding formalism can be generalized to a Grassmann algebra with

an arbitrary number of generators θi, as the calculation of the partition

function in the second quantization formalism of section 10.12 requires.

10.14.1 General Hamiltonian

A general Hamiltonian is represented by a differential operatorH(θ, ∂/∂θ; t)

acting on functions of θi’s. A Hamiltonian written in normal form with all

differentiations on the right, can also be represented by the kernel (section

10.9)
〈

θ |H| θ̄
〉

= H(θ, θ̄; t)I(θ, θ̄).

An important restriction is that the matrix elements of the Hamiltonian

must belong to the commutative subalgebra A+ (equation (10.44)).
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AHamiltonian does not necessarily conserve the number of fermions. Fermion

number conservation implies that in each monomial contributing to the ker-

nel, the number of θ and θ̄ factors is equal.

The generalized form of equation (10.50) is

〈

θ |U(t+ ε, t)| θ̄
〉

= exp

[

−
∑

i

θiθ̄i − εH(θ, θ̄; t) +O
(

ε2
)

]

.

Following the method of section 10.13.1, one then derives a path integral

representation for U(t′′, t′) at finite euclidean time difference. One obtains

〈

θ
′′ |U(t′′, t′)| θ̄′

〉

=

∫ θ(t′′)=θ
′′

θ̄(t′)=θ̄′

[

dθ(t)dθ̄(t)
]

e−θ̄(t′)·θ(t′) exp
[

−S(θ, θ̄)
]

(10.59)

with

S(θ, θ̄) =

∫ t′′

t′
dt
{

θ̄(t) · θ̇(t) +H
[

θ(t), θ̄(t); t
]

}

. (10.60)
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Partition function. In the case of a time-independent Hamiltonian, the

corresponding partition function then reads

Z(β) = trU(β/2,−β/2) =

∫

[

dθ(t)dθ̄(t)
]

exp
[

−S(θ, θ̄)
]

, (10.61)

where the path integral has to be calculated with anti-periodic boundary

conditions:

θ(−β/2) = −θ(β/2), θ̄(−β/2) = −θ̄(β/2).

This follows, for example, from the representation (10.56) and perturbation

theory in the form of equation (10.64). The trace of the right hand side

involves only trUG, which can be calculated from the path integral with

anti-periodic boundary conditions (equation (10.56)).
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Fermion systems with pair interactions. We now specialize the expressions

of section 10.14 to the many-fermion systems described in sections 10.11,

10.12. The partition function Z(β, µ) is then given by a Grassmann path

integral of the form (10.61) where the action is

S(θ, θ̄) =

∫ β/2

−β/2

dt
[

θ̄(t) ·
(

θ̇(t) + µθ(t)
)

+H
(

θ(t), θ̄(t)
)

]

, (10.62)

H(θ, θ̄) =
∑

i

θiωiθ̄i +
1
2

∑

i1,i2,j1,j2

θi1θi2H
(2)
i1i2,j1j2

θ̄j1 θ̄j2 ,

a form analogous to the boson expression (4.60).
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10.14.2 Equation of state

Differentiating the path integral (10.61), one verifies that the equation state

can be written as

〈N〉 =
1

β

∂ lnZ

∂µ
=

1

β

∑

i

∫ β/2

−β/2

dt
〈

θi(t)θ̄i(t)
〉

=
∑

i

〈

θi(0)θ̄i(0)
〉

,

where in the second expression the expectation value is calculated with the

weight e−S /Z and time translation invariance has been used.

In the case of independent particles, expectation values involve only the

Gaussian two-point function (10.55). One recovers the standard expression

(with the choice sgn(0) = −1)

〈N〉 =
∑

i

1

eβ(ωi−µ) +1
= tr

1

eβ(H(1)−µ)+1
, (10.63)

where H(1) is the one-particle Hamiltonian.
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At low temperature, that is for β → ∞,

〈N〉 ∼
∑

i

θ(µ− ωi),

where θ(s) is the step function. The chemical potential can be identified with

the Fermi energy: at zero temperature, all states below the Fermi energy

are occupied; all states above the Fermi energy are empty.

At low temperature, when interactions between fermions are added, only

states with energies close to the Fermi energy are relevant.

10.14.3 Perturbative expansion

We have shown in section 10.4 how to calculate Gaussian integrals and

expectation values of polynomials. The same method can be used here to

calculate the path integral (10.61) perturbatively.
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Expressing a Hamiltonian as the sum of a quadratic term and an interaction,

H(θ, θ̄) = −
∑

i

ωiθ̄iθi +HI(θ, θ̄),

one expands the integral in powers ofHI and calculates the successive terms,

for example, using Wick’s theorem (10.57).

One verifies that the perturbative expansion of general matrix elements

has the formal representation

〈

θ
′′ |U(t′′, t′)| θ̄′

〉

= exp

[

−

∫

dtHI(∂/∂η̄,−∂/∂η)

]

〈

θ
′′ |UG(η; t

′′, t′)| θ̄′
〉∣

∣

η=η̄=0
, (10.64)

where UG is the product of integrals (10.52) corresponding to the different

pairs of generators θi, θ̄i.
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Ambiguities. In perturbative calculations, problems due to operator or-

dering appear here also, as in the case of the holomorphic path integral.

Indeed, perturbative calculations involve sgn(0). The ansatz consistent with

the normal-order construction, is again to set sgn(0−) = −1, but generates

some difficulties. It is more convenient to substitute to H(θ, θ̄) the equiva-

lent expression consistent with sgn(0) = 0.
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10.14.4 The evolution operator

With the conventions of section 10.13, for a finite number of fermions and a

normal-ordered Hamiltonian of the form h(θ, ∂/∂θ), the evolution operator

is given by the path integral

〈θ′′|U(t′′, t′)
∣

∣θ̄
′
〉

=

∫

[

∏

α

dθα(t)dθ̄α(t)

]

exp iA(θ, θ̄), (10.65a)

A(θ, θ̄) =

∫ t′′

t′
dt
{

iθ̄(t) · θ̇(t)− h
[

θ(t), θ̄(t)
]

}

+ iθ̄(t′) · θ(t′), (10.65b)

real time continuation of the representation (10.60). We recall that hermitic-

ity is equivalent to A = Ā.
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In the case of a free Hamiltonian

h(θ, θ̄) = ωθθ̄ = −ωθ̄θ ,

if ω is negative the one-particle state has an energy lower than the vacuum

or ground state (see also the discussion at the end of section 10.12.3). This

simply means that the two states have been misidentified; they have to be

interchanged. A simple transformation deals with the problem. We set

υ(t) = θ̄(t), ῡ(t) = θ(t) .

Then, after an integration by parts of the term iυ(t) ˙̄υ(t),

A(υ, ῡ) =

∫ t′′

t′
dt [iῡ(t)υ̇(t) + |ω|ῡ(t)υ(t)]− iῡ(t′′) · υ(t′′),

which now corresponds to one-particle states with positive energy. In addi-

tion, in the boundary term t′ has been replaced by t′′.
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Exercises

Exercise 10.1

One site electron problem. Electrons living on one site are still characterized

by the two possible values of their spin. A site thus can be empty, occupied

by one electron with spin up or down, or two electrons with spin up and

down.

One denotes below by θ+, θ− the Grassmann variables associated with

spin up and down electrons, respectively. Hermiticity is then defined with

respect to the Grassmann scalar product.

Write, in normal-ordered form, the most general hermitian Hamiltonian

invariant under spin reversal and conserving total electron number. One

then considers the Hamiltonian

H = ω

(

θ+
∂

∂θ+
+ θ−

∂

∂θ−

)

+ v θ−θ+
∂

∂θ+

∂

∂θ−
, ω > 0 , v ∈ R . (10.66)
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What are its symmetries? Determine its spectrum. Infer the partition func-

tion at temperature 1/β. Show that the situation v < −2ω has a natural

interpretation if the role of creation and annihilation operators is inter-

changed.

Solution. In addition to the terms appearing in (10.66), one possible ad-

ditional term is

θ+
∂

∂θ−
+ θ−

∂

∂θ+
.

It is eliminated if one demands separate conservation of up and down elec-

tron numbers.

The four eigenvectors are 1, θ+, θ−, θ−θ+ and the corresponding eigenval-

ues are E0 = 0, E1 = E2 = ω, E3 = 2ω + v, respectively. The partition

function thus is

Z(β) = 1 + 2 e−ωβ +e−(2ω+v)β .

When 2ω+ v is negative, the ground state is no longer the empty state but,
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instead, the doubly-occupied state. The description in terms of electron ex-

citations is no longer convenient. The excitations now correspond to remove

electrons. A formal way to implement this idea is to introduce the operators

ζ− =
∂

∂θ+
, ζ+ =

∂

∂θ−
, θ+ =

∂

∂ζ−
, θ− =

∂

∂ζ+
.

This transformation is consistent with the commutation relations and her-

mitian conjugation. The Hamiltonian can then be rewritten as

H = E0 − (ω + v)

(

ζ+
∂

∂ζ+
+ ζ−

∂

∂ζ−

)

+ vζ−ζ+
∂

∂ζ+

∂

∂ζ−
, E0 = 2ω + v ,

where 2ω + v < 0 implies −ω − v > ω > 0.

Exercise 10.2

Write the path integral representation of the corresponding partition func-

tion. Expand and calculate it up to second order in v (the one-component

Gaussian two-point function is given by equation (10.55)).
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Solution.

Z(β) =

∫

[dθ(t)dθ̄(t)] exp
[

−S(θ, θ̄)
]

,

where the action takes the form (10.62):

S(θ, θ̄) =

∫ β/2

−β/2

dt

[

∑

±

θ̄±(t)θ̇±(t) +H
(

θ(t), θ̄(t)
)

]

,

H(θ, θ̄) = ω
∑

±

θ±θ̄± + v θ−θ+θ̄+θ̄− ,

and the boundary conditions are anti-periodic:

θ±(−β/2) = −θ±(β/2), θ̄±(−β/2) = −θ̄±(β/2).
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The perturbative expansion takes the form

Z(β)/Z0(β) = 1− v

∫ β/2

−β/2

dt
〈

θ−(t)θ+(t)θ̄+(t)θ̄−(t)
〉

+ 1
2v

2

∫ β/2

−β/2

dt du
〈

θ−(t)θ+(t)θ̄+(t)θ̄−(t)θ−(u)θ+(u)θ̄+(u)θ̄−(u)
〉

+O(v3),

where Z0 is the square of the partition function (10.58) and the Gaussian

expectation values 〈•〉 over θ+ and θ− factorize. One finds

Z(β)/Z0(β) = 1− vβ∆2(0) + 1
2v

2β

∫ β/2

−β/2

dt
(

∆2(0)−∆(t)∆(−t)
)2

+O(v3)

= 1− 1
4vβ

(

sgn(0) + tanh(ωβ/2)
)2

+ 1
32v

2β2
(

1 + 2 sgn(0) tanh(ωβ/2) + sgn2(0)
)2

+O(v3).
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Setting ǫ = sgn(0), one concludes

E0 = −(1 + ǫ)ω + 1
4 (1 + ǫ)2v ,

E1 = E2 = −ǫω − 1
4 (1− ǫ2)v ,

E3 = (1− ǫ)ω + 1
4 (1− ǫ)2v .

For sgn(0) = −1, one recovers the spectrum of the initial Hamiltonian. To

obtain the same result with the convention sgn(0) = 0, one must substitute

ω 7→ ω′ = ω + v/2 and shift the empty state energy by E0 = −ω′ + v/4.

Exercise 10.3

One now adds the term

γ

(

θ−θ+ +
∂

∂θ+

∂

∂θ−

)
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with γ real, to the Hamiltonian, which becomes

H = ω

(

θ+
∂

∂θ+
+ θ−

∂

∂θ−

)

+ v θ−θ+
∂

∂θ+

∂

∂θ−
+ γ

(

θ−θ+ +
∂

∂θ+

∂

∂θ−

)

.

(10.67)

This model describes the interaction with a medium that can absorb and

emit electron pairs with equal probability. Determine the eigenvectors and

spectrum of the total Hamiltonian.

Solution. The new interaction mixes only the spinless states 1 and θ−θ+.

The energies of the other states are unchanged. In the 1, θ−θ+ subspace the

Hamiltonian reads
(

0 γ
γ 2ω + v

)

with eigenvalues

ω + v/2±
√

(ω + v/2)2 + γ2 . (10.68)
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The ground state energy thus is ω + v/2−
√

(ω + v/2)2 + γ2 and the par-

tition function is given by

Z(β) = 2 e−ωβ
(

1 + e−βv/2 cosh
√

(ω + v/2)2 + γ2
)

. (10.69)

Exercise 10.4

In what follows one sets v = 0 and ρ =
√

ω2 + γ2, ω = ρ cosϕ, γ =

ρ sinϕ. Show that the spectrum then has an interpretation in terms of two

independent quasi-particles by setting

θ+ = aη+ + b
∂

∂η−
, θ− = dη− + c

∂

∂η+
, a, b, c, d ∈ R ,

where η+, η− are two generators of a Grassmann algebra, and the corre-

sponding operators η± and ∂/∂η± are hermitian conjugate in the same way

as θ± and ∂/∂θ±.
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First, express ∂/∂θ± in terms of the η type operators. Then, show that

the consistency of these transformations with the commutation relations

(10.8) imply three conditions on the coefficients a, b, c, d that express that

a, b, c, d are the four entries of an orthogonal matrix. Finally determine the

coefficients to reduce the Hamiltonian to the form

H = E0 +Ω

(

η+
∂

∂η+
+ η−

∂

∂η−

)

, Ω > 0 .

Solution. The form of the Hamiltonian is obtained for the choice

(

a b
c d

)

=

(

cos(ϕ/2) sin(ϕ/2)
− sin(ϕ/2) cos(ϕ/2)

)

,

and E0 = ω − ρ, Ω = ρ.

Exercise 10.5
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Write the corresponding path integral representation of the partition func-

tion and perform the change of variables

θ+ = aη+ + bη̄− , θ− = dη− + cη̄+ ,

θ̄+ = aη̄+ + bη− , θ̄− = dη̄− + cη+ ,

using the values found in the preceding exercise. Show that the resulting

path integral is consistent with the spectrum.

Solution. After the change of variables, one finds a path integral corre-

sponding to the Hamiltonian

H = Ω

(

η+
∂

∂η+
+ η−

∂

∂η−

)

,

up to an additive constant.
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Exercise 10.6

Spin group: fermion representation. One now considers the three operators

τ1 =
1

2

(

θ+
∂

∂θ−
+ θ−

∂

∂θ+

)

, τ2 =
i

2

(

θ−
∂

∂θ+
− θ+

∂

∂θ−

)

,

τ3 =
1

2

(

θ+
∂

∂θ+
− θ−

∂

∂θ−

)

.

In what follows, one sets ~ = 1.

Verify that the operators are hermitian. Calculate the products τiτj and

τ
2 =

∑

i τ
2
i . Infer the commutators [τi, τj ]. Find the eigenvectors and eigen-

values of τ3 and τ
2. Calculate the commutators of τi with the Hamiltonian

(10.66) and the interaction (10.67). Comment.

Solution. The operators are generators of the Lie algebra of the spin group

760



SU(2):
τiτj =

1
3τ

2δij +
1
2 iǫijkτk ,

τ
2 =

3

4

(

θ+
∂

∂θ+
+ θ−

∂

∂θ−
− 2θ+

∂

∂θ+
θ−

∂

∂θ−

)

.

The eigenvectors of τ3 are 1, θ+, θ−, θ+θ− with eigenvalues 0, 1/2,−1/2, 0,

respectively, that is the spin components of the corresponding states. The

corresponding eigenvalues of τ 2 are 0, 3/4, 3/4, 0, as expected for spin 1/2

particles. Finally, θ+∂/∂θ+ and θ−∂/∂θ− commute, and introducing

h = θ+
∂

∂θ+
+ θ−

∂

∂θ−
,

one verifies

τih = hτi = τi .

The commutation of the Hamiltonian (10.66) with the generators of the

SU(2) group follows from these relations and the commutations of the τi’s
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with τ
2. One verifies that the interaction (10.67) is also SU(2) invariant,

which explains the form of the spectrum.

Exercise 10.7

Spin group: alternative representation. One now considers the operators

τ1 =
1

2

(

θ+θ− +
∂

∂θ−

∂

∂θ+

)

, τ2 =
1

2i

(

θ+θ− −
∂

∂θ−

∂

∂θ+

)

,

τ3 =
1

2

(

∂

∂θ+
θ+ − θ−

∂

∂θ−

)

=
1

2

(

1− θ+
∂

∂θ+
− θ−

∂

∂θ−

)

.

The questions are the same as above. In addition, show that the Hamiltonian

(10.67) can be expressed in terms of the τ matrices. Recover the spectrum

(10.68).

Solution. One finds, for example,

τ
2 =

3

4

(

1− θ+
∂

∂θ+
− θ−

∂

∂θ−
+ 2θ+

∂

∂θ+
θ−

∂

∂θ−

)

.
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The eigenvectors of τ3 are 1, θ+, θ−, θ+θ− with eigenvalues 1
2 , 0, 0,−

1
2 , re-

spectively, that is the spin components of the corresponding states. The

corresponding eigenvalues of τ 2 are 3
4 , 0, 0,

3
4 .

Finally, the complete Hamiltonian can be written as

H = ω − (2ω + v)τ3 +
2
3vτ

2 − 2γτ1 .

After a rotation in the (1, 3) plane, one can rewrite it as

H = ω + 2
3vτ

2 + 2
√

γ2 + (ω + v/2)2τ3 ,

which shows that the spectrum is

ω + v/2±
√

γ2 + (ω + v/2)2, ω , ω .
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