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I: Explicit treatment of the temporal scheme
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The goal of this ”Hands on Computer” project is to derive the induction equation

in cartesian geometry and to write a 2-D code using finite differences and an explicit

temporal scheme to numerically resolve the system of equation for the magneticfield.

1 Induction Equation of the Magnetic Field

In cgs unit system, Maxwell’s equations in vacuum read:

∇ ·E = 4πρ0, (1)

∇×E = −
1

c

∂B

∂t
, (2)

∇ ·B = 0, (3)

∇×B =
4π

c
J+

1

c

∂E

∂t
(4)

where E is the electric field, B the magnetic field, J the electric current, ρ0 the

charge density and c the speed of light. The first equation is Gauss’ law, the second

Faraday’s law, the 3rd states that there is no magnetic monopoles and the last is

Ampère’s law (with the displacement current, term later added by Maxwell)

From Faraday and Omh’s laws, the latter linking electric field and current and

using the definition of current in th emagnetohydrodynamic (MHD) limit (e.g. plasma

motions are slow compared to the speed of light v << c), on can derive an equation

for the time evolution of B: the induction equation.

Start with Ampère’s law, in which we neglect the displacement current:

J = c/4π (∇×B),

In a stationnary conductor, Ohm’s law is simply J = σE, with σ the electric

conductivity. In a conducting fluid, E must be evaluated in a frame of reference R′
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moving at the fluid speed v , hence E′ becomes: E′ = E+ (v ×B)/c, and Ohm’s law

changes into:

J = σ

(

E+
v ×B

c

)

,

Finally, by intrucing these two equations into Faraday’s law, one gets:

∂B

∂t
= −c∇×E = −∇×

(

cJ

σ
− v ×B

)

= −∇×

(

c2

4πσ
∇×B− v ×B

)

(5)

or after simple rearranging of the terms:

∂B

∂t
= ∇× (v ×B)−∇× (η∇×B), (6)

with η = c2/4πσ the magnetic diffusivity. If it is constant in the media, then the

induction equation simplifies to:

∂B

∂t
= ∇× (v×B) + η∆B. (7)

2 Induction Equation in Mean Field Theory

We are mostly interested here to understand how the magnetic field in the Sun

organizes itself on large scale and varies on a 11-yr time scale. We believe this is due to

the so-called fluid dynamo effect. Assuming scales separation we can write a mean field

theory of magnetic field evolution (Moffatt 1978, Krause & Radler 1980). By splitting

the flow and field in two parts, one representing the large scale mean field that we wish

to follow and study and one representing the fluctuating components with respect to

that mean we get:

B =< B > +b′ with < b′ >= 0 ,

v =< V > +v′ with < v′ >= 0

where <> represent an ensemble average. By introducing this decomposition in the

induction equation (6) and by applying the averaging operator, we are getting an

equation for < B >:

∂ < B >

∂t
= ∇× (< V > × < B > + < E > −η∇× < B >) (8)
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where < E >=< v′
×b′ > is the electromotrice mean force (emf). This equation is

the induction equation for the mean field but it depends on the fluctuating field b’,

that requires to follow the evolution of b’ and hence to solve and extra equation. We

can obtain this equation for b′, by substracting equation (8) from equation (6), e.g.:

∂b′

∂t
= ∇× (< V > ×b′ + v′× < B > +G− η∇× b′) (9)

where G = v′
×b′− < v′

×b′ >. This equation is composed of many terms implying

u’ and b’ and requires to have an equation for u’. It would be most useful if we

could close the system by having only to solve for the large scale field < B >. The

simplest approach to reach that goal, is called first order smoothing approximation

(FOSA). It supposes that G is negligible. Then from the equation (9), we see that

b′ = F(< B >), where F is a general function depending linearly on < B >, and

likewise for < E >= G(< B >). By applying a Taylor expansion about < B > for

< E >, we get:

< E >i= αij < Bj > +βijk

∂ < Bj >

∂xk

+ ... .

We see that < E > is proportional to the mean field times a pseudo-tensor αij that

can be associated to the α-effect of helicoidal turbulence (Krause & Radler 1980), and

an effective (turbulent) diffusivity.We finally get the following mean field equation for

< B >:

∂ < B >

∂t
= ∇× (< V > × < B > +α < B > −(η + β)∇× < B >) (10)

assuming an isotropic and homogeneous case for the coefficients αij = αδij and

βijk = βǫijk. First term corresponds to the advection and shearing of < B > by large

scale motions (meridional circulation and ω effect), the 2nd term to α-effect and the last

one to magnetic diffusion enhanced by β (often luch larger than η such as β + η ∼ β).

Then depending on which term dominate for the regeneration of the toroidal field either

α or ω, we name the dynamo 1 α2, α− ω ou α2 − ω.

3 A special case: α− ω solar dynamo

From equation 11, in the axisymmetric case (∂/∂z = 0), we will derive 2 coupled

partial derivative equations that we will solve by writing a numerical program using

finite differences. Let’s start from a 2-D Cartesian domain (x,y) ∈ [−1,1]

1. note that there is no such thing as an ω
2 dynamo
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∂ < B >

∂t
= ∇× (< V > × < B > +α < B > −β∇× < B >) (11)

To treat the case of an α − ω dynamo (we will thus neglect the α in the equation

for the toroidal field Bz), we chose the following expression for the α and ω effects:

< V(x,y) >= V0x sin(π(y + 1)/2)êz,

α(x,y) = α0 cos(π(y + 1)/2),

with V0 (always > 0) and α0 to be determine such as to find the dynamo threshold and

the sense of dynamo wave propagation.

As clearly seen in the expression for V we further neglect the meridional circulation

(e.g. Vx = Vy = 0), such that the only large scale flow is a differential rotation along

êz.

In order to solve 2 scalar equations instead of 3 (one by magnetic field components),

we use a poloidal-toroidal decomposition of equation 11:

A) Knowing that < B(x,y) >= ∇×(A(x,y)êz) + Bz(x,y)êz, derive the evolution

equation in cartesian coordinates (x,y) for the toroidal field Bz(x,y) and potential

vector A(x,y) 1. For simplicity we will consider a constant effective diffusivity β and

neglect the α-term for Bz:

B) Using finite difference approximation of derivatives, write the algorithm for 1st

and 2nd order derivates along x and y (we will consider a regular grid xi+1 = ∆x+ xi

and ∆x = 2/Nx with Nx the number of mesh points in x direction, likewise for y).

C) From an explicit temporal scheme (such as euler or runge-kutta4) write the dis-

cretize equation for An+1

i,j and Bz
n+1

i,j which will be solved by the numerical program

where n is a temporal index and (i,j) the spatial index. Be aware than in explicit

schemes the maximum time step must satisfy the Courant-Fredrich-Lefy (CFL) condi-

tion, e.g. ∆t ≤ Min(∆x,∆y)/Vmax) to remain stable. Usually we take 50% of that

maximal value.

1. hint:note that for A, the ∇× operator can be factored out
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D) Write subroutines that compute 1st and 2nd order derivatives in xi and yj.

E) Write the main program and temporal loop (on index n+1, e.g. tn+1) by resolving

the equations in (xi,yj) space. For the time step ∆t do consider the various time scales

in the system (viscous, magnetic, Alfvèn, etc....). Then think of a simple initialization of

the field A(xi,yj) and Bz(xi,yj) at time t0 = 0 and of the key parameters of the problem.

We will consider simple boundary conditions by setting A(xmin,yj) = A(xmax,yj) =

A(xi,ymin) = A(xi,ymax) = 0 (likewise for Bz) for every tn.

F) Output files with A(xi,yj,t
n) et Bz(xi,yj,t

n) in order to visualize them:

a) both field at a given time

b) energy as a function of time, e.g. A(t)2 and Bz(t)
2 for a given mesh point (xi,yj)

c) Make a Butterfly diagram Bz(x = cst,y,t) showing the dynamo wave

G) Try several cases, by changing the amplitude and sign of α0 and the amplitude

of U0 and comment the different observed behavior.
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