HANDS ON COMPUTER

Assuming a isothermal EoS, and a spherically symmetric outflow:

1) Show that the equations can be reduced to:

$$
F(M, x)=C, \text { where } M=u / c_{s}, x=r / r_{c}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial r}\left(\rho u r^{2}\right)=0 \\
& u \frac{\partial u}{\partial r}=-\frac{1}{\rho} \frac{\partial p}{\partial r}-\frac{G M_{\odot}}{r^{2}} \\
& p=c_{s}^{2} \rho
\end{aligned}
$$

2) Plot contour levels of F.
3) Which value of C gives the transonic solution ?
4) Implement a Newton-Raphson method to extract this solution.
5) Which coronal base temperature and density give the solar wind values:

$$
\begin{array}{ll}
u(r=1 \mathrm{~A} . \mathrm{U})=400 \mathrm{~km} \cdot \mathrm{~s}^{-1}, & n_{p}(r=1 \mathrm{~A} . \mathrm{U})=6 \mathrm{~cm}^{-3} \\
u(r=1 \mathrm{~A} . \mathrm{U})=800 \mathrm{~km} \cdot \mathrm{~s}^{-1}, & n_{p}(r=1 \mathrm{~A} . \mathrm{U})=3 \mathrm{~cm}^{-3}
\end{array}
$$

