Quasar and galaxy clustering and simulations

Ch. Yèche (CEA-Saclay Irfu)

Outline:

- > Concepts : BAO and RSD
- > BAO and RSD surveys
- Simulations and HPC

HPC meeting at Irfu - Saclay - May 25, 2016

BAO and RSD

Acceleration of Universe expansion > In 1998 revolution of cosmology with standard candles, SNIa > SNIa were dimmer (~0.2 mag), ~10% further away than expected with $\Omega_m = 1$

Concordance Model

- \succ Λ CDM with GR
- > Study of the nature of DE

 $w=P_{DE}/\rho_{DE}=w_0+w_az/(1+z)$

A probe for Dark Energy: Baryonic Acoustic Oscillations

A special distance:

Galaxies form in the overdense shells about 150 Mpc in radius.
For all z, small excess of galaxies

150 Mpc (in comobile coordinates) away from other galaxies.

 \Rightarrow Standard Ruler

Acoustic propagation of an overdensity:
Sound wave through relativistic plasma (baryons, electrons, photons).
Baryon and photon perturbations travel together till recombination (z~1100).
Then, the radius of the baryonic overdensity is frozen at 150 Mpc.

Observation of baryonic acoustic peak

A 3D measurements:

 \succ Position of acoustic peak \Rightarrow Size of the sound horizon r_s

Transverse direction:

$$\Delta \theta = r_s / (1+z) / D_A(z)$$

 \Rightarrow Sensitive to angular distance $D_A(z)$

> Radial direction (along the line of sight): $\Delta z = r_s \cdot H(z)/c$

 \Rightarrow Sensitive to Hubble parameter H(z).

Large-scale Redshift Space Distortions

Acceleration toward overdense regions
 Flattening in radial direction from real space to redshift space (over tens Mpc)
 Allow us to measure action of gravitation (5-40 Mpc) at cosmological distance (Gpc)

Distortion are quantitatively measured by multi-poles decomposition

$$\xi(r,\cos(\theta)) = \sum_{\ell=0,2,4\dots} b^2 C_{\ell} \xi(r) P_{\ell}(\cos(\theta))$$

- *P_I: Legendre polynomials*
- θ angle between pair vector and LoS
- b linear galaxy bias

N. Kaiser, MNRAS 227, 1 (1987)

BAO and RSD Surveys

BOSS 2009-2014

SDSS Survey

2.5m Sloan telescope with a wide FoV ~ 7 deg²

- > α, δ **positions**: 5 filter camera
- > z position: Spectrograph
- ~1000 simultaneous spectra

BOSS tracers

1.2 millions of Luminous Red
 Galaxies (light emitted 6 billions years ago, z~0.6)

170 000 quasars (light emitted 11 billions years ago, z~2.4)

BOSS completed in spring 2014

BAO in Correlation Function

Use a fiducial model to compare against observed features in spherical average statistics.
 Departures quantified by dilatation scales α

9

Redshift Space Distortions

> Amplitude of the flattening gives a dependence on $f(z)\sigma_8(z) \propto dG/dln(a)$, where G is linear growth rate

> Test of GR with $f\sigma_8$ or γ where $f(z) \propto (\Omega_m(z))^{\gamma}$ In GR, γ =0.554

BAO with Ly- α forests

Principles

Use Ly-α forests of quasars (2.2<z<4)
HI absorption in IGM along the line of sight of QSOs
We expect low density gas (IGM) to follow the dark matter density

Detection of BAO:

> 3D BAO: Correlation between the different lines of sight
> BAO measurement for z~2.3 (11 billions years ago).
> Better precision in radial direction (H(z) measurement).

BAO in Ly- α

T. Delubac et al., A&A, 574, A59 (2015)

- Consistent with QSO-Ly-α cross-correlation
- ~2.5\sigma tension with Planck 2015

Correlation Ly- α - Ly- α >~90% of the final survey (DR11) > 137 532 QSOs with 2.1<z<3.5 > Measurement of D_A(z) at 6% and H(z) at 3% at z~2.3

Measurement of expansion
First measurement of H at z~2.3 (11 billions years from now)
Deceleration of the expansion for z>0.8, when matter dominated
Slight tension with Planck

13

0.6<z<1.2 > LRG at z~0.7 > Emission line galaxies (stars forming)

0.9<z<2.2 QSOs > Tracers of cosmic structures

> Unexplored Universe

Ly- α QSOs, 2.2<z<5 > Improvement of selection > ~17 deg⁻² \Rightarrow ~30 deg⁻²

<image>

10 spectrographs

Scientific Project

- International Collaboration steered par Berkeley (DOE)
- >14000 deg² survey for 0.3<z<4.5
- > 20M galaxies and quasars (R~4000)

Euclid 2021-2027

Instrument

- > ESA Satellite (launch in 2020) at L2
- > 6 year program
- > 14 countries + 1100 members
- > 1.2m telescope with 0.5 deg² FoV
- ➤ Two instruments (VIS, NISP)
 ➤ Slitless NIR spectrograph (1 blue and 3 red grisms) →1000-2000 nm
- Strong contributions of Irfu/SAP and IAS to VIS and NISP

Scientific Project

- > WL (not in this talk)
- > 15000 deg² survey for 0.9<z<1.85</p>
- For BAO and RSD: 50M galaxy
- spectra with R~250
- \succ Redshift determined with H α line

Forecasts

Improvements with eBOSS

> Continuous measurement of BAO for 0.3<z<4.0.

➤ Exploration of unknown area: Dark matter → Dark energy

Improvements with DESI

► BAO: 1 order of magnitude
 ► Neutrino masses: accuracy
 ~20-25 meV on Σm,

Improvements with Euclid

For BAO in the 1<z<1.6 region
 Much impressive gain for RSD (50M galaxies to compare to ~20M for DESI)

Simulations and HPC

Current status of simulations

Ly- α forests

- > 1D power spectrum:
 - N-body with full-hydro simulation (see Nathalie's talk)
 - Two PRACE projects : ~15 M hours
 - Particle mass: a few $10^5 M_{\odot}$
- ≻ 3D (BAO):
 - N-body Hydro simulation too CPU-time consuming for BAO
 - Gaussian random field with simulation of the absorption in HI (J-M Le Goff)

Galaxy and quasar clustering

- N-body simulations of pure DM
 Why simulations?
 - Covariance matrix
 - Tuning of RSD parameterization
- > Typical simulations for BOSS, (QPM)
 - Box size: 2.5 Gpc/h
 - Resolution: (1280)³ particles
 - Particle mass: $6.10^{10} M_{\odot}$

Simulations for BAO

How to use simulations?

- > Halo of DM
- \succ HOD: Halo of DM by comparing to data
 - LRG ~ 2.10¹³ M_☉
 - Quasar ~ $2.5 \ 10^{12} \ M_{\odot}$
- > Optimization of the simulations
- > Use QPM simulations from (Berkeley and

NYU) and MultiDark from a Spanish consortium

Example with eBOSS QSO?

E. Burtin and P. Zarrouk tuned
CLPT over BigMultiDark
Fit to the data with the modeled
CLPT

 \succ Extraction of f $\sigma_{\! 8}$

Modeling of RSD

Why simulations?

For BAO just used for the covariance matrix

For RSD, science cannot be extracted without comparison with simulations

> Modeling of the CLPT (Convolution Lagrangian Perturbation Theory)

Strategy for simulations

Simulations for Ly- α forests

- > For 1D, continue to produce our own simulations
- > Risk: depend on success to PRACE, GENCI calls...
- > For 3D (BAO), full hydro + N-body might become conceivable for DESI...

Simulations for galaxy and quasar clustering:

Use simulations produced by the collaborations (SDSS, DESI or Euclid)

- > No more real expertize in big cosmological simulation
- > 2-3 FTE per year + CPU time to get this experience
- > Huge MultiDark
 - Size 4 Gpc/h, (3840)³ particles
 - 80M CPU-hours, storage: 1Pb

Risk: no ability to generate simulations with exotic gravity (Galileon...) to test our models