Activités HPC au SACM

Journée High Performance Computing de l'Irfu

N. Chauvin*, A. Chancé, B. Dalena, P.A.P. Nghiem, D. Uriot

*Nicolas.Chauvin@cea.fr

Commissariat à l'Énergie Atomique et aux Énergies Alternatives, DRF/Irfu; F-91191 Gif-sur-Yvette, France.

May 25, 2016

Computational Resources of SACM

- Space Charge Compensation in Low Energy Beam Transport Lines
- **3** Massive Calculations for High Intensity Linacs
- HiLumi LHC/FCC Simulations Activities

HPC at SACM

Computational Resources of SACM

SCC in LEBTs

Linac Simulations

Overview

HPC at SACM

Computational Resources of SACM

- Space Charge Compensation in Low Energy Beam Transport Lines
- **3** Massive Calculations for High Intensity Linacs
- HiLumi LHC/FCC Simulations Activities

Computational Resources of SACM

2

SCC in LEBTs

Linac Simulations

Isipic Cluster

Isipic Cluster

- Funded by Synergium Intenité (2/3 from Région Ile-de-France grant): 90 k€.
- 256 cores: Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz.
- 1024 Goof DDR3 RAM @ 1866 MT/s ⇒ 4 Go of RAM by core.
- Infiniband @ 40 Gb/s
- 37 To of storage (10 hard disk drives)

HPC at SACM

Computational Resources of SACM

3

SCC in LEBTs

Linac Simulations

HPC at SACM

Computational Resources of

SACM SCC in LEBTs

Linac

Simulations HiLumi LHC/FCC

4

Computational Resources of SACM

Space Charge Compensation in Low Energy Beam Transport Lines

3 Massive Calculations for High Intensity Linacs

HiLumi LHC/FCC Simulations Activities

Beam Dynamics in LEBTs of High Intensity Accelerators

- Infu

High Intensity Hadron Accelerators

- Transport is dominated by space charge
- Defocusing effect
- May induce beam losses and emittance growth

Role of a LEBT

- Transport and adapt the beam to the next accelerating section
- Minimize losses and emittance growth

HPC at SACM

Computational Resources of SACM

SCC in LEBTs

Linac Simulations

HiLumi LHC/FCC

Low energy beam

- High space charge effects
- Space charge compensation

Space Charge Compensation (SCC) Principle

LHC/FCC

Example

We consider a proton beam propagating through a H₂ residual gas. It induces a production of pairs e^-/H_2^+ by ionization.

$$p+H_2 \rightarrow p+e^-+H_2^+$$

We assume that $n_{gas}/n_{beam} \gg 1,$ with n_{gas} and n_{beam} the gas and beam density.

The space charge compensation...

- depends on the beam distribution: non-linear phenomenon
- is partial
- is time dependent

To describe correctly the beam dynamics in a LEBT, one have to characterize **the degree of space charge compensation** and, for pulsed beam **the time to establish** the SCC.

→ Self-consistent numerical simulations are needed.

HPC at SACM

Resources of

SCC in LEBTs

SACM

Linac Simulations

LHC/FCC

Simulation of SCC

Plafa

A 3D Particle-In-Cell is used: WARP

- Developed at LBNL
- Runs in parallel using MPI
- Python interface
- Open source

Input

- Beam distributions
- Reactions (ionization...)
- Beam line geometry and pressure
- External fields
- Mesh and boundary conditions

Output

- Beam and secondary particles distributions
- Potential maps induced by particles
- Field maps

HPC at SACM

Computational Resources of SACM

SCC in LEBTs

Linac Simulations

LEBT Simulation Example

Simulation Conditions

- Beam type: continuous protons beam
- Beam intensity: 7.9 mA
- Beam energy: 30 keV

- Magnetic field in solenoid 1/2: 0.17 T / 0.19 T
- Simulation time: 20 μ s

HPC at SACM

Computational Resources of SACM

SCC in LEBTs

Linac Simulations

HiLumi LHC/FCC

MYRRHA LEBT, in operation at LPSC Grenoble

Beam Dynamics Evolution Beam Density

Beam Dynamics Evolution Beam Density

Beam Dynamics Evolution

Beam Dynamics Evolution

t = 6 μs

Beam Dynamics Evolution

t = **8** μ**s**

Beam Dynamics Evolution Beam Density

Beam Dynamics Evolution Beam Density

0.1

0.05

-0.05

-0.1

0

0.5

X (m)

2.5

 10^{-3}

t = 12 μs

Z (m)

1.5

2

 $\mathbf{t} = \mathbf{12} \ \mu \mathbf{s}$

Space Charge Compensation

SCC Evolution Time

HPC at SACM

Computational Resources of

SACM

Linac Simulations

13 SCC in LEBTs

LHC/FCC

Simulations:

- Performed on isipic (infiniband is needed)
- Typical computing time: several day on 16 to 64 CPUs
- Dedicated data analysis software (ROOT)

F. Gerardin's (LEDA) PhD thesis on Space Charge Compensation in High Intensity LEBTs.

Overview

Computational Resources of SACM

Space Charge Compensation in Low Energy Beam Transport Lines

3 Massive Calculations for High Intensity Linacs

HiLumi LHC/FCC Simulations Activities

HPC at SACM Computational Resources of SACM SCC in LEBTs ¹⁴ Linac Simulations HiLumi

LHC/FCC

Several MW class Linacs in operation, in construction or in project: SNS, J-Prarc, ESS, IFMIF, MYRRHA, SPIRAL2...

Issues

High intensity: accelerator matching and tuning is delicate High power: beam losses have to be kept as low as possible (\lesssim 1W/m)

The **combination** of high beam **intensity** and high beam **power** leads to a **challenging** situation

Accelerator Tuning

- Halo Matching
- Simulations with at least 10⁶ macro-particles
- Beam loss detection @ 10^{-6} of the beam
- Simulated matching method should be transpose to the real machine

HPC at SACM

Computational Resources of SACM

SCC in LEBTs

¹⁵ Linac Simulations

Massive Computing for Beam Dynamics Simulations

Goals

- Simulations with ${\sim}10^9$ macro-particles
- Halo formation and longitudinal dynamics
- Statistical error studies
- Improvement of simulation tools

Method

- TraceWin code is used
- Distributed calculations on several machine types
- Massive hard drive storage (70 To HDD has been bought by LEDA/IFMIF)
- Dedicated data analysis software

Massive Computing for Beam Dynamics Simulations

Distributed calculations with TraceWin

iclust is used for the simulation with $\sim 10^9$ macro-particles

Simulation of IFMIF-LIPAc

Layout and Main Parameters

HPC at SACM

LIPAc Main Parameters

- Continuous D⁺ beam
- Intensity: 125 mA
- LIPAc final energy: 9 MeV
- Hands-on maintenance

- ECR source & 2 solenoids LEBT
- 9.78 m 4-vanes RFQ @ 175 MHz
- MEBT and SFR linac (HWR)
- HEBT, Diagnostics Plate and Beam Dump

¹⁸ Linac Simulations

Simulation of IFMIF-LIPAc

- Simulation with the actual number of particles in a bunch: $4.7{\times}10^9$
- Storage of 6D beam distributions at 2000 positions along the accelerator (\sim every 2cm): 38 To
- 170 CPUs over 25 days
- $\bullet\,$ Post processing: \sim 12 hours with dedicated software running on 30 CPUs
- Initial conditions: particles are randomly generated from a simulation of the ion source extraction system
- LEBT: space charge compensation profile determined with a PIC self-consistent code
- RFQ, SRF Linac and HEBT are modeled by field maps (1D or 3D)

Computational Resources of SACM

SCC in LEBTs

¹⁹ Linac Simulations

Simulation Results

150 100

-50

x (mm)

Beam Density along the Linac

HPC at SACM Computational **Resources of** SACM **SCC in LEBTs** 20 Linac Simulations HiLumi LHC/FCC

Simulation Results Beam Density along the LIPAc

Beam Density: energy

Simulation Results Beam Density along the LIPAc

Beam Density: energy

Lost Particles Density: energy

HPC at SACM

Simulation Results Beam Distributions in Phase Spaces

XY distribution after RFQ

 $\Phi \Delta \mathbf{E}$ distribution after RFQ

Computational Resources of SACM

HPC at SACM

SCC in LEBTs

²³ Linac Simulations

Overview

HPC at SACM

Computational Resources of SACM

- 2 Space Charge Compensation in Low Energy Beam Transport Lines
- **B** Massive Calculations for High Intensity Linacs
- HiLumi LHC/FCC Simulations Activities

Linac Simulations

²⁴ HiLumi LHC/FCC

HiLumi LHC/FCC LEDA Activities

Plafu

HPC at SACM

Resources of

SCC in LEBTs

SACM

Linac

²⁵ HiLumi LHC/FCC

HiLumi LHC

The goal is to reach an integrated luminosity of 250 $\rm fb^{-1}$ per year.

- Study of alternative optics
- Field quality study of the new magnets
- Fringe field magnets modelisation

EuroCirCol dans FCC-hh

Design of a 100 TeV proton-proton collider

- Study and optimization of the arcs optics
- Definition of the magnet fields quality

Boundary condition search

Scan of initial boundary condition to search for a matched optics configuration:

- system of 40 variables and 44 constraints
- implemented in bash scripts + MadX

CPU:

- ~5-6 h, CPU X9650, 4Cores, 3GHz
- ∼30 min on iclust (9000 matching distributed on 40-60 jobs)

Scan of initial boundary condition to search for a matched optics configuration:

- single scan 1.4 Go
- asked 100 Go: /home/nfs/manip/mnt/perso/payet → no automatic back-up!

HPC at SACM

Computational Resources of SACM

SCC in LEBTs

Linac Simulations

⁶HiLumi LHC/FCC

Long Term Tracking Simulations

Calculation of Dynamic Aperture (the region in phase space where stable motion occurs) for LHC upgrades.

Typically the DA is computed simulating the particles motion over 10^5 turns, using a set of initial conditions distributed on a polar grid, Five different phase space angles are used.

Currently running on lxplus (CERN):

- bash scripts to run SixTrack code
- 100 jobs in parallel per user
- \sim 1 week for one full scan (\sim 6000 jobs)
- possibility to use BOINC system
- can we join LHC@home?

Porting on iclust ?

- what is max # jobs a single user can run?
- possibility to have ~ 1 To of back-up space?

Conclusions and Perspectives

Conclusions

- Space charge compensation studies (thesis) *isipic*
- High power linac beam dynamics simulations: multi-parametric calculations, statistics iclust (+ \sim 100 To HDD)
- Hi-Lumi/FCC optics optimization and magnet studies *iclust*

Perspectives

- Linac optimization for IFMIF-DONES (1 post-doc) iclust
- Laser-plasma acceleration simulations in the framework of Eupraxia (1 post-doc) *isipic*
- HL-LHC/FCC dynamic aperture calculations iclust

Conclusions and Perspectives

Conclusions

- Space charge compensation studies (thesis) *isipic*
- High power linac beam dynamics simulations: multi-parametric calculations, statistics iclust (+ \sim 100 To HDD)
- Hi-Lumi/FCC optics optimization and magnet studies *iclust*

Perspectives

- Linac optimization for IFMIF-DONES (1 post-doc) iclust
- Laser-plasma acceleration simulations in the framework of Eupraxia (1 post-doc) *isipic*
- HL-LHC/FCC dynamic aperture calculations iclust

