

www.cea.fr

Prospects on nucleon tomography

BNL Physics Colloquium | Hervé MOUTARDE

Apr. 3, 2018

Foreword.

A decade of collaboration between IRFU and BNL.

Nucleon Tomography

Motivation

Mass without mass Nucleon structure Physical content

Phenomenology

Fit status

Experimental access

DVCS kinematics

Framework

Design Architecture Ergonomics Examples Releases

Conclusion

Involvement in PHENIX (2000-10) and sPHENIX

- Hardware muon arms electronics
- **Software** Muon tracking, simulation
- Analysis J/psi in dd, d-Au, Au-Au

Today's talk: 3D hadron structure and the need for an EIC

Motivation. QCD large distance dynamics from the hadron structure viewpoint.

Nucleon Tomography

■ Lattice QCD clearly showed that the mass of hadrons is generated by the **interaction**, not by the quark masses.

Motivation

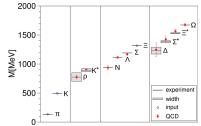
Mass without mass

Physical content

Phenomenology

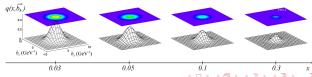
Formal definition Fit status

Experimental access


Framework

Design Architecture

Ergonomics


Examples Releases

Durr et al., Science 322, 1224 (2008)

Can we map the location of mass inside a hadron?

Nucleon structure and its observational consequences.

Nucleon Tomography

Motivation

Mass without mass

Nucleon structure
Physical content

Physical conten

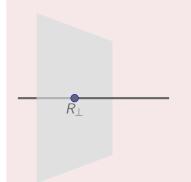
Phenomenology

Formal definition

Experimental access

DVCS kinematics

Framework


Design Architecture

Ergonomics

Examples Releases

Conclusion

Manifestation of 3D nucleon structure in scattering processes?

■ Transverse center of momentum $R_{\perp} = \sum_{i} x_{i} r_{\perp i}$,

Nucleon structure and its observational consequences.

Nucleon Tomography

Motivation

Mass without mass

Physical content

Phenomenology

Formal definition

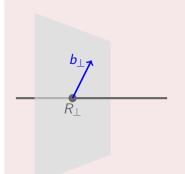
Fit status

Experimental access

DVCS kinematics

Framework

Design Architecture


Ergonomics

Examples Releases

_ . .

Conclusion

Manifestation of 3D nucleon structure in scattering processes?

- Transverse center of momentum $R_{\perp} = \sum_{i} x_{i} r_{\perp i}$,
- Impact parameter b_{\perp} ,

Nucleon structure and its observational consequences.

Nucleon Tomography

Motivation

Mass without mass

Nucleon structure
Physical content

Physical content

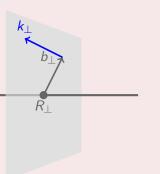
Phenomenology

Formal definition

Experimental access

DVCS kinematics

Framework


Design Architecture

Ergonomics

Examples Releases

Conclusion

Manifestation of 3D nucleon structure in scattering processes?

- Transverse center of momentum $R_{\perp} = \sum_{i} x_{i} r_{\perp i}$,
- Impact parameter b_{\perp} ,
- Transverse momentum k_{\perp} ,

Nucleon structure and its observational consequences.

Nucleon Tomography

Motivation

Mass without mass

Nucleon structure Physical content

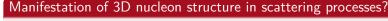
Phenomenology

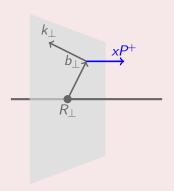
Formal definition

Fit status

Experimental access

DVCS kinematics


Framework


Design Architecture

Ergonomics

Examples Releases

Conclusion

- Transverse center of momentum $R_{\perp} = \sum_{i} x_{i} r_{\perp i}$,
- Impact parameter b_{\perp} ,
- lacksquare Transverse momentum k_{\perp} ,
- Longitudinal momentum xP^+ .

Nucleon structure and its observational consequences.

Nucleon Tomography

Motivation

Mass without mass

Nucleon structure
Physical content

Phenomenology

Formal definition

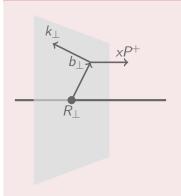
Fit status

Experimental access

DVCS kinematics

Framework

Design Architecture


Freenomics

Examples

Releases

Conclusion

Manifestation of 3D nucleon structure in scattering processes?

- Transverse center of momentum $R_{\perp} = \sum_{i} x_{i} r_{\perp i}$,
- Impact parameter b_{\perp} ,
- lacksquare Transverse momentum k_{\perp} ,
- Longitudinal momentum xP^+ .
- What is the distorsion brought by spin?

Imaging the origin of mass. Identification of underlying mechanisms from parton distributions.

Infa CEA - Saciay

Nucleon Tomography

Motivation

Mass without mass

Nucleon structure

Physical content

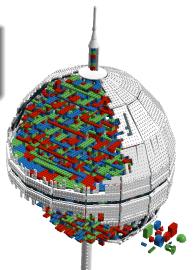
Phenomenology

Formal definition

Experimental access

DVCS kinematics

Framework


Design Architecture

Freenomics

Examples

Releases

How can we recover the well-known characterics of the nucleon from the properties of its **colored building blocks**?

Identification of underlying mechanisms from parton distributions.

Nucleon Tomography

Motivation

Mass without mass

Nucleon structure

Physical content

Phenomenology

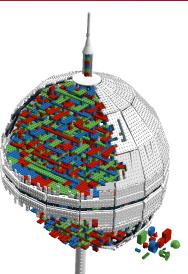
Formal definition

Experimental access

DVCS kinematics

Framework

Design Architecture


Ergonomics

Examples

Releases

How can we recover the well-known characterics of the nucleon from the properties of its colored building blocks?

Mass?

Identification of underlying mechanisms from parton distributions.

Nucleon **Tomography**

Motivation

Mass without mass Nucleon structure Physical content

Phenomenology

Formal definition Fit status

Experimental access DVCS kinematics

Framework

Design Architecture

Ergonomics

Examples Releases

Conclusion

How can we recover the wellknown characterics of the nucleon from the properties of its colored building blocks?

> Mass? Spin?

Identification of underlying mechanisms from parton distributions.

Nucleon **Tomography**

Motivation

Mass without mass Nucleon structure Physical content

Phenomenology

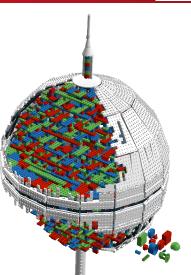
Formal definition Fit status

Experimental access DVCS kinematics

Framework

Design

Architecture Ergonomics


Examples

Releases

Conclusion

How can we recover the wellknown characterics of the nucleon from the properties of its colored building blocks?

> Mass? Spin? Charge?

Identification of underlying mechanisms from parton distributions.

Nucleon **Tomography**

Motivation

Mass without mass Nucleon structure Physical content

Phenomenology

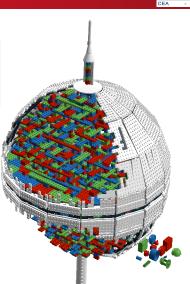
Formal definition Fit status

Experimental access

DVCS kinematics

Framework

Design


Architecture Ergonomics

Examples Releases

Conclusion

How can we recover the wellknown characterics of the nucleon from the properties of its colored building blocks?

> Mass? Spin? Charge?

Identification of underlying mechanisms from parton distributions.

Nucleon Tomography

Motivation

Mass without mass

Nucleon structure

Physical content

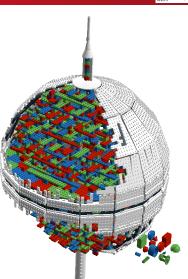
Phenomenology

Formal definition Fit status

Experimental access DVCS kinematics

Framework

Design Architecture


Ergonomics Examples Releases

Conclusion

How can we recover the well-known characterics of the nucleon from the properties of its **colored building blocks**?

Mass? Spin? Charge?

What are the relevant **effective degrees of freedom** and **effective interaction** at large distance?

Imaging the origin of mass. Identification of underlying mechanisms from parton distributions.

Infa CEA - Saclay

Nucleon Tomography

Motivation

Mass without mass

Nucleon structure
Physical content

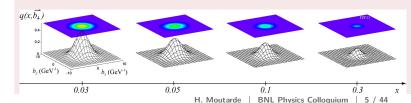
Phenomenology

Formal definition Fit status

Experimental access

Framework

Design Architecture


Ergonomics Examples

Releases

Conclusion

Structuring questions for the hadron physics community

- QCD mechanisms behind the origin of mass in the visible universe?
- Cartography of interactions giving its mass to the nucleon?
- Pressure and density profiles of the nucleon as a continuous medium?
- Localization of quarks and gluons inside the nucleon?
- Possible impact on **initial state** of pp or pA scattering?

Perturbative and nonperturbative QCD.

Study nucleon structure to shed new light on nonperturbative QCD.

Nucleon Tomography

Motivation

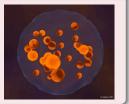
Mass without mass

Nucleon structure
Physical content

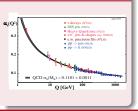
Phenomenology

Formal definition
Fit status
Experimental access
DVCS kinematics

Framework


Design

Architecture Ergonomics


Examples Releases

Conclusion

Perturbative QCD

Asymptotic freedom

Nonperturbative QCD

Interface between perturbative and nonperturbative regimes

- Define universal objects describing 3D nucleon structure:
 Generalized Parton Distributions (GPD).
- Relate GPDs to measurements using factorization:
 Virtual Compton Scattering (DVCS, TCS),
 Deeply Virtual Meson production (DVMP).
- Get **experimental knowledge** of nucleon structure.

Nucleon **Tomography**

- transverse position of a parton in a hadron. Motivation
 - DVCS recognized as the cleanest channel to access GPDs.

Mass without mass

Nucleon structure Physical content

Phenomenology

Formal definition Fit status Experimental access DVCS kinematics

Framework

Design Architecture Ergonomics

Examples Releases

Conclusion

Deeply Virtual Compton Scattering (DVCS) **DVCS** Transverse center of momentum R_{\perp} $R_{\perp} = \sum_{i} x_{i} r_{\perp i}$

Nucleon Tomography

Motivation

Mass without mass Nucleon structure

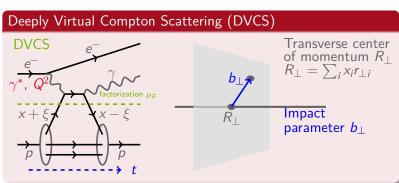
Physical content Phenomenology

Formal definition Fit status

Experimental access

DVCS kinematics

Framework


Architecture Ergonomics

Examples Releases

Conclusion

Correlation of the longitudinal momentum and the transverse position of a parton in a hadron.

■ DVCS recognized as the cleanest channel to access GPDs.

Nucleon Tomography

- Motivation

 Mass without mass
- Nucleon structure

 Physical content

Phenomenology

Formal definition

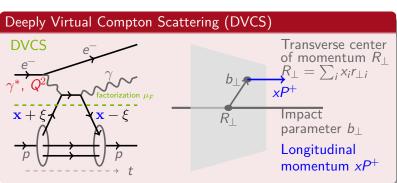
Fit status

Experimental access

DVCS kinematics

Framework

Design


Architecture Ergonomics

Examples Releases

Conclusion

■ Correlation of the **longitudinal momentum** and the **transverse position** of a parton in a hadron.

■ DVCS recognized as the cleanest channel to access GPDs.

Nucleon **Tomography**

Motivation

Mass without mass Nucleon structure

Physical content

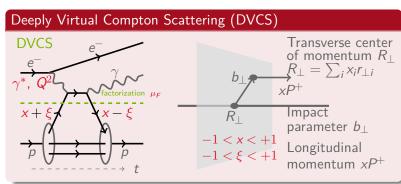
Phenomenology

Formal definition

Fit status Experimental access

DVCS kinematics

Framework


Design

Architecture Ergonomics

Examples Releases

Conclusion

- Correlation of the longitudinal momentum and the transverse position of a parton in a hadron.
- DVCS recognized as the cleanest channel to access GPDs.

24 GPDs $F'(x, \xi, t, \mu_F)$ for each parton type i = g, u, d, ...for leading and sub-leading twists.

Nucleon Tomography

■ **Probabilistic interpretation** of Fourier transform of $GPD(x, \xi = 0, t)$ in **transverse plane**.

$$\rho(\mathbf{x}, b_{\perp}, \lambda, \lambda_{\mathsf{N}}) = \frac{1}{2} \left[\mathbf{H}(\mathbf{x}, 0, b_{\perp}^2) + \frac{b_{\perp}^i \epsilon_{ji} S_{\perp}^i}{M} \frac{\partial \mathbf{E}}{\partial b_{\perp}^2} (\mathbf{x}, 0, b_{\perp}^2) \right]$$

 $\left. +\lambda \lambda_{N} ilde{ extbf{ extit{H}}}(extbf{x},0,b_{\perp}^{2})
ight]$

■ Notations : quark helicity λ , nucleon longitudinal polarization λ_N and nucleon transverse spin S_{\perp} .

Burkardt, Phys. Rev. **D62**, 071503 (2000)

Motivation Mass without mass

Nucleon structure

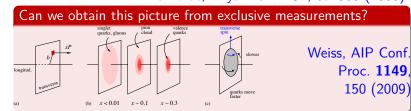
Physical content

Phenomenology

Fit status

Experimental access

DVCS kinematics


Framework

Design Architecture

Ergonomics

Examples Releases

Conclusion

Nucleon Tomography

Probabilistic interpretation of Fourier transform of $GPD(x, \xi = 0, t)$ in transverse plane.

Motivation Mass without mass Nucleon structure

$$\rho(\mathbf{x}, b_{\perp}, \lambda, \lambda_{N}) = \frac{1}{2} \left[\mathbf{H}(\mathbf{x}, 0, b_{\perp}^{2}) + \frac{b_{\perp}^{j} \epsilon_{ji} S_{\perp}^{i}}{M} \frac{\partial \mathbf{E}}{\partial b_{\perp}^{2}} (\mathbf{x}, 0, b_{\perp}^{2}) \right]$$

Physical content

$$+\lambda\lambda_{N}\tilde{\boldsymbol{H}}(\boldsymbol{x},0,b_{\perp}^{2})$$

Phenomenology Formal definition

Notations: quark helicity λ , nucleon longitudinal polarization λ_N and nucleon transverse spin S_\perp .

Fit status Experimental access DVCS kinematics

Burkardt, Phys. Rev. **D62**, 071503 (2000)

BNL Physics Colloquium

Framework Design

Architecture

Ergonomics

Examples Releases

Conclusion

Moutarde et al. Eur. Phys. J. **C78**, 890 (2018)

Nucleon

Anatomy of hadrons. GPDs, 3D hadron imaging, and beyond (3/4).

Tomography

 Most general structure of matrix element of energy momentum tensor between nucleon states:

 $\left\langle N, P + \frac{\Delta}{2} \middle| T^{\mu\nu} \middle| N, P - \frac{\Delta}{2} \right\rangle = \bar{u} \left(P + \frac{\Delta}{2} \right) \middle| A(t) \gamma^{(\mu} P^{\nu)}$ Motivation Mass without mass Nucleon structure

Physical content

Phenomenology Formal definition

Fit status Experimental access

DVCS kinematics Framework

Design Architecture Ergonomics

with
$$t = \Delta^2$$
.

Key observation: link between GPDs and gravitational form factors

$$\int dx x \mathbf{H}^{q}(x, \xi, t) = \mathbf{A}^{q}(t) + 4\xi^{2} \mathbf{C}^{q}(t)$$
$$\int dx x \mathbf{E}^{q}(x, \xi, t) = \mathbf{B}^{q}(t) - 4\xi^{2} \mathbf{C}^{q}(t)$$

 $+B(t)P^{(\mu}i\sigma^{\nu)\lambda}\frac{\Delta_{\lambda}}{2M}+\frac{C(t)}{M}(\Delta^{\mu}\Delta^{\nu}-\Delta^{2}\eta^{\mu\nu})\right]u\left(P-\frac{\Delta}{2}\right)$

Ji, Phys. Rev. Lett. **78**, 610 (1997)

Nucleon Tomography

Motivation

Mass without mass

Physical content

Phenomenology

Formal definition
Fit status
Experimental access
DVCS kinematics

Framework

Design Architecture Ergonomics

Examples Releases

Conclusion

Spin sum rule:

$$\int dx x (\mathbf{H}^{q}(x,\xi,0) + \mathbf{E}^{q}(x,\xi,0)) = \mathbf{A}^{q}(0) + \mathbf{B}^{q}(0) = 2J^{q}$$

Ji, Phys. Rev. Lett. **78**, 610 (1997)

■ **Shear** and **pressure** of a hadron considered as a continuous medium:

$$\langle N | T^{ij}(\vec{r}) | N \rangle N = s(r) \left(\frac{r^i r^j}{\vec{r}^2} - \frac{1}{3} \delta^{ij} \right) + p(r) \delta^{ij}$$

Polyakov and Shuvaev, hep-ph/0207153

■ Energy density, tangential and radial pressures of a hadron considered as a continuous medium.

Lorcé et al., Eur. Phys. J. C79, 89 (2019)

Mechanical properties of hadrons. From the nucleon to compact stars (1/3).

Nucleon **Tomography**

Motivation

Mass without mass Nucleon structure

Physical content

Phenomenology Formal definition

Fit status Experimental access DVCS kinematics

Framework Design

Architecture Ergonomics

Examples Releases

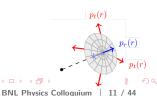
Conclusion

■ Matrix element in the Breit frame
$$(a = q, g)$$
:

$$\left\langle \frac{\Delta}{2} \left| T_{\mathsf{a}}^{\mu\nu}(0) \right| - \frac{\Delta}{2} \right\rangle = M \left\{ \eta^{\mu 0} \eta^{\nu 0} \left[A_{\mathsf{a}}(t) + \frac{t}{4M^2} B_{\mathsf{a}}(t) \right] \right\}$$

Anisotropic fluid in relativistic hydrodynamics:

$$+\eta^{\mu
u}\left[ar{C}_{a}(t)-rac{t}{\mathit{M}^{2}}\;\mathit{C}_{a}(t)
ight]+rac{\Delta^{\mu}\Delta^{
u}}{\mathit{M}^{2}}\;\mathit{C}_{a}(t)
ight\}$$


 $\Theta^{\mu\nu}(\vec{r}) = [\varepsilon(r) + p_t(r)] u^{\mu} u^{\nu} - p_t(r) \eta^{\mu\nu} + [p_r(r) - p_t(r)] \chi^{\mu} \chi^{\nu}$

where
$$u^{\mu}$$
 and $\chi^{\mu} = x^{\mu}/r$.

Define **isotropic pressure** and **pressure anisotropy**:

$$p(r) = \frac{p_r(r) + 2 p_t(r)}{3}$$

$$s(r) = p_r(r) - p_t(r)$$

< □ > < △ →

Mechanical properties of hadrons. From the nucleon to compact stars (2/3).

Nucleon Tomography

Write dictionary between quantum and fluid pictures:

 $\frac{p_{t,a}(r)}{M} = \int \frac{\mathrm{d}^3 \vec{\Delta}}{(2\pi)^3} e^{-i\vec{\Delta} \cdot \vec{r}} \left\{ -\bar{C}_a(t) + \frac{4}{r^2} \frac{t^{-1/2}}{M^2} \frac{\mathrm{d}}{\mathrm{d}t} \left[t \frac{\mathrm{d}}{\mathrm{d}t} \left(t^{3/2} C_a(t) \right) \right] \right\}$

H. Moutarde BNL Physics Colloquium

Motivation
$$\varepsilon_{a}(r)$$

$$\int d^{3}\vec{\Delta} e^{-i\vec{\Delta} \cdot \vec{r}} \int A_{a}(t) + \vec{C}_{a}(t) + \vec{C}_$$

obtivation sas without mass
$$\varepsilon_{a}(r) = \int \frac{\mathrm{d}^{3}\vec{\Delta}}{r} e^{-i\vec{\Delta} \cdot \vec{r}} \left\{ A_{2}(t) + \bar{C}_{2}(t) + \frac{t}{r} \left[B_{2}(t) - 4 \right] \right\}$$

 $\frac{p_{a}(r)}{M} = \int \frac{\mathrm{d}^{3} \Delta}{(2\pi)^{3}} e^{-i\vec{\Delta} \cdot \vec{r}} \left\{ -\bar{C}_{a}(t) + \frac{2}{3} \frac{t}{M^{2}} C_{a}(t) \right\}$

 $\frac{s_{\mathsf{a}}(r)}{M} = \int \frac{\mathrm{d}^{3}\vec{\Delta}}{(2\pi)^{3}} e^{-i\vec{\Delta} \cdot \vec{r}} \left\{ -\frac{4}{r^{2}} \frac{t^{-1/2}}{M^{2}} \frac{\mathrm{d}^{2}}{\mathrm{d}t^{2}} \left(t^{5/2} C_{\mathsf{a}}(t) \right) \right\}$

Physical content $\frac{\mathsf{Phenomenolog}p_{r,a}(r)}{\mathsf{formal definition}} = \int \frac{\mathrm{d}^3 \vec{\Delta}}{(2\pi)^3} \, e^{-i\vec{\Delta} \cdot \vec{r}} \left\{ -\bar{\mathsf{C}}_{\mathsf{a}}(t) - \frac{4}{r^2} \frac{t^{-1/2}}{M^2} \frac{\mathrm{d}}{\mathrm{d}t} \Big(t^{3/2} \, \mathsf{C}_{\mathsf{a}}(t) \Big) \right\}$

 $\frac{\varepsilon_{\mathsf{a}}(r)}{M} = \int \frac{\mathrm{d}^3 \Delta}{(2\pi)^3} \, e^{-i\vec{\Delta} \cdot \vec{r}} \left\{ A_{\mathsf{a}}(t) + \bar{C}_{\mathsf{a}}(t) + \frac{t}{4M^2} \left[B_{\mathsf{a}}(t) - 4C_{\mathsf{a}}(t) \right] \right\}$

Nucleon structure

Mass without mass

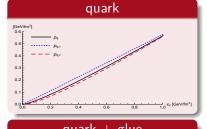
Experimental access DVCS kinematics

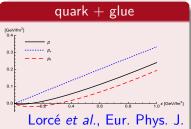
Framework Design Architecture Ergonomics

Examples Releases Conclusion

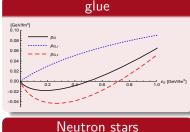
Mechanical properties of hadrons. From the nucleon to compact stars (3/3).

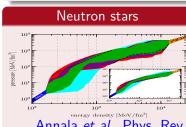
Evaluate orders of magnitude with naive multiple model:


Physical content Phenomenology


Formal definition
Fit status
Experimental access
DVCS kinematics

Framework


Architecture Ergonomics Examples


Releases Conclusion

C79, 89 (2019)

Annala et al., Phys. Rev. Lett. **120**, 172703 (2018)

Phenomenology

Spin-0 Generalized Parton Distribution. Definition and simple properties.

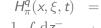
Nucleon **Tomography**

$$\frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{ixP^{+}z^{-}} \left\langle \pi, P + \frac{\Delta}{2} \middle| \bar{q} \left(-\frac{z}{2} \right) \gamma^{+} q \left(\frac{z}{2} \right) \middle| \pi, P - \frac{\Delta}{2} \right\rangle_{z^{+}=0}$$

Motivation Mass without mass

Formal definition

Fit status


Experimental access DVCS kinematics

Framework Design

Architecture Ergonomics Examples

Releases

Conclusion

$$\frac{1}{2} \int \frac{1}{2\pi} e^{-\epsilon} \left\langle \pi, P + \frac{1}{2} \right| q \left(-\frac{1}{2} \right)$$
with $t = \Delta^2$ and $\xi = -\Delta^+/(2P^+)$.

$$n$$
 $\uparrow Z^0$
 $\uparrow Z^0$
 $\uparrow Z^0$
 $\uparrow Z^0$

References

Müller et al., Fortschr. Phys. 42, 101 (1994) Ji, Phys. Rev. Lett. 78, 610 (1997)

Radyushkin, Phys. Lett. **B380**, 417 (1996)

PDF forward limit

$$H^q(x,0,0) = q(x)$$

Nucleon Tomography

Spin-0 Generalized Parton Distribution. Definition and simple properties.

References

Motivation

Mass without mass

Phenomenology

Fit status

DVCS kinematics

Releases

Framework

Design

Ergonomics

Architecture

Conclusion

 $H_{\pi}^{q}(x,\xi,t) =$

PDF forward limit

Form factor sum rule

with $t = \Delta^2$ and $\xi = -\Delta^+/(2P^+)$.

Form factor sum rule
$$f^{+1}$$

$$\int_{-1}^{+1} dx \, H^{q}(x,\xi,t) = F_{1}^{q}(t)$$

Ji, Phys. Rev. Lett. **78**, 610 (1997)

Müller et al., Fortschr. Phys. 42, 101 (1994)

Radyushkin, Phys. Lett. **B380**, 417 (1996)

 $\frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{ixP^{+}z^{-}} \left\langle \pi, P + \frac{\Delta}{2} \middle| \bar{q} \left(-\frac{z}{2} \right) \gamma^{+} q \left(\frac{z}{2} \right) \middle| \pi, P - \frac{\Delta}{2} \right\rangle_{z^{+}=0}$

Spin-0 Generalized Parton Distribution. Definition and simple properties.

Nucleon Tomography

Physical content

Phenomenology

Formal definition

Fit status Experimental access DVCS kinematics

Framework Design

Architecture Ergonomics Examples

Releases Conclusion

$H_{\pi}^{q}(x,\xi,t) =$

$$\frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{ixP^{+}z^{-}} \left\langle \pi, P + \frac{\Delta}{2} \middle| \bar{q} \left(-\frac{z}{2} \right) \gamma^{+} q \left(\frac{z}{2} \right) \middle| \pi, P - \frac{\Delta}{2} \right\rangle_{z^{+}=0}$$

$$\langle \pi, P + 1 \rangle$$

with
$$t = \Delta^2$$
 and $\xi = -\Delta^+/(2P^+)$.

References

Müller et al., Fortschr. Phys. 42, 101 (1994)

Radyushkin, Phys. Lett. **B380**, 417 (1996)

Ji, Phys. Rev. Lett. 78, 610 (1997)

PDF forward limit

Form factor sum rule

 \blacksquare H^q is an **even function** of ξ from time-reversal invariance.

4 D > 4 A > 4 B > 4 B >

Nucleon Tomography

Spin-0 Generalized Parton Distribution. Definition and simple properties.

Motivation

Mass without mass Nucleon structure

Physical content

Phenomenology

Formal definition Fit status

Experimental access DVCS kinematics

Framework Design

Architecture Ergonomics

Examples Releases

Conclusion

 $H_{\pi}^{q}(x,\xi,t) =$

References

Müller et al., Fortschr. Phys. 42, 101 (1994)

with $t = \Delta^2$ and $\xi = -\Delta^+/(2P^+)$.

Radyushkin, Phys. Lett. **B380**, 417 (1996)

- PDF forward limit
- Form factor sum rule
- H^q is an **even function** of ξ from time-reversal invariance.

 $\frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{ixP^{+}z^{-}} \left\langle \pi, P + \frac{\Delta}{2} \middle| \bar{q} \left(-\frac{z}{2} \right) \gamma^{+} q \left(\frac{z}{2} \right) \middle| \pi, P - \frac{\Delta}{2} \right\rangle_{z^{+}=0}$

H^q is real from hermiticity and time-reversal invariance.

Ji, Phys. Rev. Lett. 78, 610 (1997)

Nucleon Tomography

Polynomiality

Motivation

Mass without mass Nucleon structure

Physical content

Phenomenology

Formal definition

Fit status

Experimental access

DVCS kinematics

Framework

Design

Architecture Ergonomics

Examples

Releases

$$\int_{-1}^{+1} dx x^n H^q(x, \xi, t) = \text{polynomial in } \xi$$

Nucleon Tomography

Polynomiality

Motivation Lorentz covariance

Mass without mass Nucleon structure Physical content

Phenomenology

Formal definition

Fit status

Experimental access

Framework

Design

Architecture Ergonomics

Examples

Releases

Conclusion

Nucleon Tomography

Polynomiality

Lorentz covariance

Motivation

Mass without mass

Positivity

Physical content

Phenomenology

Formal definition

Experimental access

Framework

Design Architecture

Ergonomics

Examples Releases

Conclusion

$$H^{q}(x,\xi,t) \leq \sqrt{q\left(\frac{x+\xi}{1+\xi}\right)q\left(\frac{x-\xi}{1-\xi}\right)}$$

Nucleon Tomography

Polynomiality

Positivity

Lorentz covariance

Motivation

Mass without mass Nucleon structure

Physical content

Phenomenology

Formal definition

Fit status Experimental access

DVCS kinematics

Framework

Design Architecture

Ergonomics

Examples Releases

Conclusion

Positivity of Hilbert space norm

Nucleon Tomography

Polynomiality

Lorentz covariance

Motivation

Mass without mass

Nucleon structure

Positivity

Positivity of Hilbert space norm

Physical content

Phenomenology Formal definition

Fit status

Experimental access
DVCS kinematics

Framework

Design Architecture

Ergonomics Examples

Releases

Conclusion

■ H^q has support $x \in [-1, +1]$.

Nucleon Tomography

Polynomiality

Lorentz covariance

Motivation

Mass without mass

Nucleon structure

Physical content

Positivity

Positivity of Hilbert space norm

Phenomenology Formal definition

■ H^q has support $x \in [-1, +1]$.

Fit status

Experimental access
DVCS kinematics

Relativistic quantum mechanics

Framework

Design Architecture Ergonomics

Examples Releases

Conclusion

Nucleon Tomography

Polynomiality

Lorentz covariance

Motivation

Mass without mass

Positivity

Positivity of Hilbert space norm

Physical content
Phenomenology

■ H^q has support $x \in [-1, +1]$.

Relativistic quantum mechanics

Formal definition

Experimental access
DVCS kinematics

Soft pion theorem (pion target)

$$H^{q}(x,\xi=1,t=0) = \frac{1}{2}\phi_{\pi}^{q}\left(\frac{1+x}{2}\right)$$

Design

Architecture Ergonomics Examples

Releases

Conclusion

Nucleon Tomography

Polynomiality

Lorentz covariance

Motivation

Mass without mass

Nucleon structure

Physical content

Positivity

Positivity of Hilbert space norm

Phenomenology Formal definition

■ H^q has support $x \in [-1, +1]$.

Relativistic quantum mechanics

Fit status

Experimental access

_ 9

■ Soft pion theorem (pion target)

Framework Design

Architecture

Examples Releases Dynamical chiral symmetry breaking

Nucleon **Tomography**

Polynomiality

Lorentz covariance

Motivation Mass without mass Nucleon structure Physical content

Positivity

Positivity of Hilbert space norm

Phenomenology Formal definition

 H^q has support $x \in [-1, +1]$.

Relativistic quantum mechanics

Fit status Experimental access DVCS kinematics

■ **Soft pion theorem** (pion target)

Framework Design

Architecture Ergonomics Examples

Dynamical chiral symmetry breaking

BNL Physics Colloquium

Releases Conclusion

How can we implement a priori these theoretical constraints?

- In the following, focus on **polynomiality** and **positivity**.
- Do not discuss the reduction to form factors or PDFs.

16 / 44

DVCS analysis and fits. No global GPD fit has been obtained so far.

Nucleon Tomography

Motivation Mass without mass

Physical content

Phenomenology

Formal definition

Experimental access

DVCS kinematics

Framework

Architecture Ergonomics Examples Releases

Conclusion

■ GPD fits only in the small x_B region with a flexible parameterization (kinematic simplifications).

- Global fits of CFFs in the sea, valence and glue regions.
- Some GPD models with non-flexible parameterizations adjusted to experimental DVCS or DVMP data.

Kumerički et al., Eur. Phys. J. **A52**, 157 (2016)

The situation can be improved!

- GPD parameterizations satisfying a priori all theoretical constraints on GPDs.
- Computing framework to go beyond leading order and leading twist analysis.

Exclusive processes of current interest (1/2). Factorization and universality.

Nucleon Tomography

Motivation

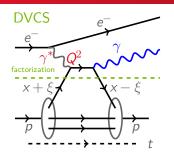
Mass without mass Nucleon structure Physical content

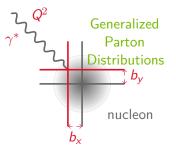
Phenomenology

Formal definition Fit status

Experimental access

DVCS kinematics


Framework


Design Architecture

Ergonomics

Examples Releases

Conclusion

Exclusive processes of current interest (1/2). Factorization and universality.

Nucleon Tomography

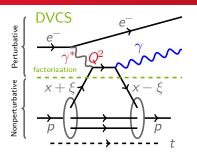
Motivation

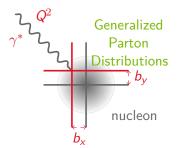
Mass without mass
Nucleon structure
Physical content
Phenomenology

Formal definition Fit status

Experimental access

DVCS kinematics


Framework


Design Architecture Ergonomics

Examples

Releases

Conclusion

Exclusive processes of current interest (1/2). Factorization and universality.

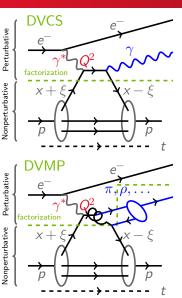
Nucleon Tomography

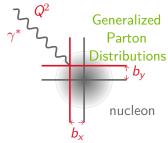
Motivation Mass without mass

Nucleon structure Physical content

Phenomenology

Formal definition


Experimental access


DVCS kinematics

Framework

Architecture Ergonomics Examples

Releases Conclusion

Exclusive processes of current interest (1/2). Factorization and universality.

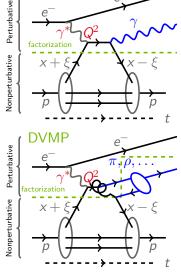
Nucleon **Tomography**

Motivation

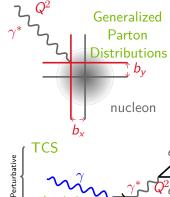
Mass without mass Nucleon structure Physical content

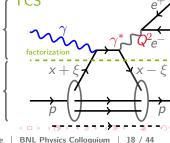
Phenomenology Formal definition

Fit status


Experimental access

DVCS kinematics


Framework Design


Architecture Ergonomics Examples

Releases Conclusion

DVCS

Nonperturbative

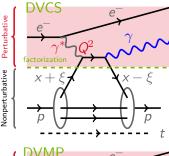
Exclusive processes of current interest (1/2). Factorization and universality.

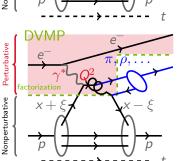
Motivation

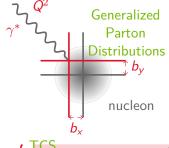
Mass without mass Nucleon structure Physical content

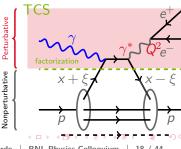
Phenomenology Formal definition

Fit status Experimental access


DVCS kinematics


Framework


Design

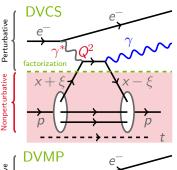

Architecture Ergonomics Examples

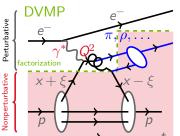
Releases Conclusion

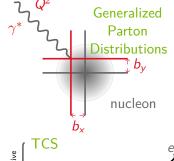
Exclusive processes of current interest (1/2). Factorization and universality.

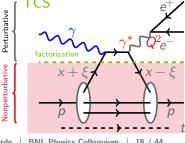
Motivation Mass without mass

Nucleon structure Physical content Phenomenology


Formal definition Fit status


Experimental access


DVCS kinematics Framework


Design Architecture Ergonomics

Examples Releases

Exclusive processes of present interest (2/2). Factorization and universality.

Nucleon Tomography

Motivation

Mass without mass Nucleon structure Physical content

Phenomenology Formal definition

Fit status Experimental access

DVCS kinematics Framework

Design Architecture Ergonomics

Examples Releases

Conclusion

Bjorken regime : large Q^2 and fixed $xB \simeq 2\xi/(1+\xi)$

- Partonic interpretation relies on factorization theorems.
- All-order proofs for DVCS, TCS and some DVMP.
- GPDs depend on a (arbitrary) factorization scale μ_F .
- **Consistency** requires the study of **different channels**.
- GPDs enter DVCS through **Compton Form Factors** :

$$\mathcal{F}(\xi, t, Q^2) = \int_{-1}^{1} dx \, C\left(x, \xi, \alpha_{S}(\mu_F), \frac{Q}{\mu_F}\right) F(x, \xi, t, \mu_F)$$

for a given GPD F.

 \blacksquare CFF \mathcal{F} is a **complex function**.

Nucleon Tomography

Motivation

Mass without mass Nucleon structure Physical content

Phenomenology

Formal definition Fit status

Experimental access

DVCS kinematics

Framework

Design Architecture

Ergonomics

Examples Releases

Nucleon Tomography

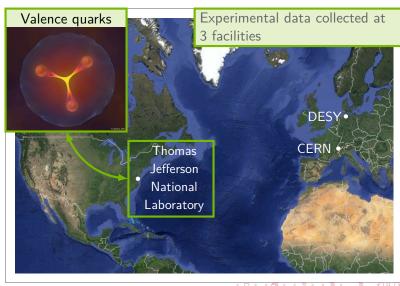
Motivation

Mass without mass Nucleon structure Physical content

Phenomenology

Formal definition

Experimental access


DVCS kinematics

Framework

Design Architecture

Ergonomics

Examples Releases

lyu CEA - Saciay

Nucleon Tomography

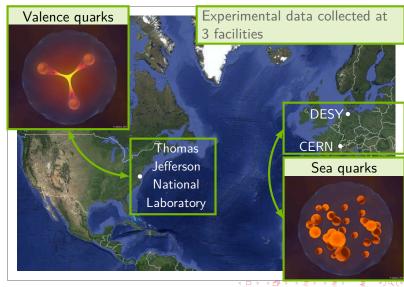
Motivation

Mass without mass Nucleon structure

Physical content Phenomenology

Formal definition

Experimental access


DVCS kinematics

Framework

Design Architecture

Ergonomics

Examples Releases

Nucleon Tomography

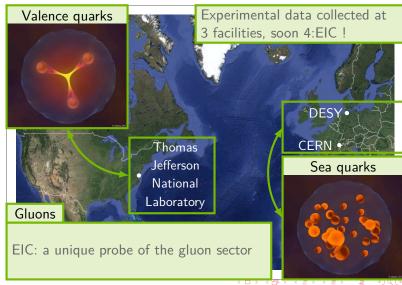
Motivation

Mass without mass Nucleon structure Physical content

Phenomenology

Formal definition Fit status

Experimental access


DVCS kinematics

Framework

Design Architecture

Ergonomics Examples

Releases

Need for global fits of world data. Only a small subset of the (ξ, t, Q^2) space is directly accessed.

Nucleon Tomography

Motivation

Mass without mass Nucleon structure Physical content

Phenomenology

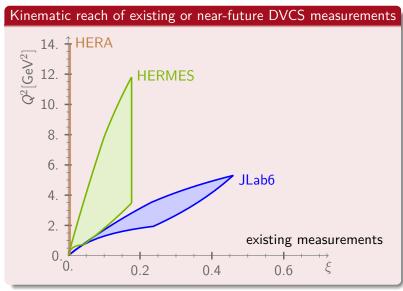
Formal definition

Fit status

Experimental access

DVCS kinematics

Framework


Design

Architecture

Examples

Releases

Conclusion

Need for global fits of world data. Only a small subset of the (ξ, t, Q^2) space is directly accessed.

Nucleon Tomography

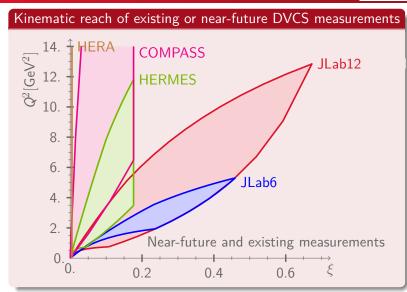
Motivation Mass without mass

Nucleon structure
Physical content

Phenomenology

Fit status

Experimental access


DVCS kinematics

Framework

Design Architecture

Ergonomics Examples

Releases

Need for global fits of world data. Only a small subset of the (ξ, t, Q^2) space is directly accessed.

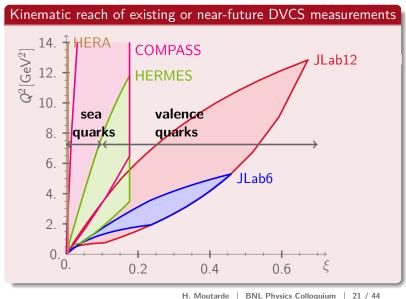
Nucleon **Tomography**

Motivation Mass without mass

Nucleon structure Physical content

Phenomenology Formal definition

Fit status Experimental access **DVCS** kinematics


Framework

Design

Architecture Ergonomics

Examples

Releases

Need for global fits of world data. Only a small subset of the (ξ, t, Q^2) space is directly accessed.

Nucleon Tomography

Motivation Mass without mass

Nucleon structure
Physical content

Phenomenology

Fit status

Experimental access

DVCS kinematics

Framework

Design

Architecture Ergonomics

Examples Releases

Conclusion

Kinematic reach of existing or near-future DVCS measurements **COMPASS** $Q^2 [{\sf GeV}^2$ JLab12 **HERMES** valence sea quarks 8. guarks 6. JLab6 4. $\xi \gtrsim 10^{-4}$ Need an EIC to determine gluon GPDs 0.2 0.4

Need for global fits of world data. Only a small subset of the (ξ, t, Q^2) space is directly accessed.

Nucleon Tomography

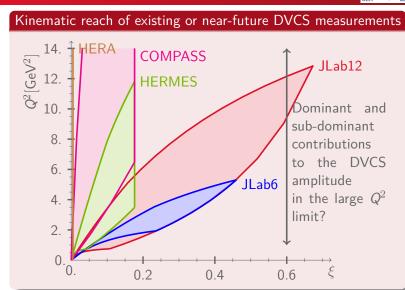
Motivation Mass without mass

Physical content

Phenomenology

Fit status

Experimental access


DVCS kinematics

Framework

Design Architecture

Ergonomics

Examples Releases

Software for the phenomenology of GPDs. Different questions to be answered with the same tools.

Nucleon Tomography

Motivation

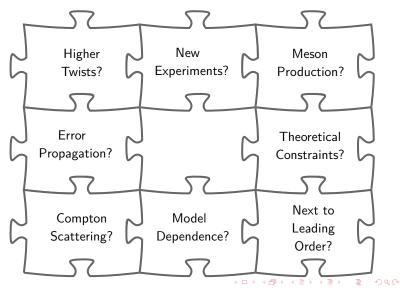
Mass without mass Nucleon structure Physical content

Phenomenology

Formal definition Fit status

Experimental access

DVCS kinematics


Framework

Architecture Ergonomics

Examples

Releases

Conclusion

Software for the phenomenology of GPDs. Different questions to be answered with the same tools.

Nucleon Tomography

Motivation

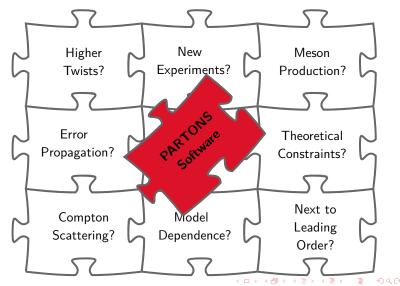
Mass without mass Nucleon structure Physical content

Phenomenology

Formal definition Fit status

Experimental access

DVCS kinematics


Framework

Architecture

Ergonomics Examples

Releases

Conclusion

The PARTONS framework

PARtonic Tomography Of Nucleon Software

Nucleon **Tomography**

data and Motivation phenomenology Mass without mass Nucleon structure

Full processes

Physical content Phenomenology

Formal definition Fit status

Experimental access DVCS kinematics

Framework

Design Architecture

Ergonomics Examples Releases

Conclusion

Computation of amplitudes

Experimental

First principles and fundamental parameters

Small distance contributions

Large distance contributions

Nucleon **Tomography**

Motivation Mass without mass

Nucleon structure Physical content

Phenomenology Formal definition

Fit status Experimental access

DVCS kinematics

Framework

Design Architecture

Ergonomics Examples Releases

Conclusion

Experimental data and phenomenology

Computation of amplitudes

First principles and fundamental parameters

Full processes

Small distance contributions

Large distance contributions

Nucleon Tomography

Motivation

Mass without mass Nucleon structure

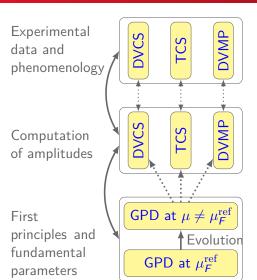
Physical content

Phenomenology

Fit status

Experimental access

DVCS kinematics


Framework

Design Architecture

Ergonomics Examples

Releases

Conclusion

Nucleon Tomography

Motivation

Mass without mass Nucleon structure

Physical content Phenomenology

Formal definition Fit status

Experimental access

Framework

Design Architecture

Ergonomics Examples

Releases

Conclusion

Experimental data and phenomenology

Computation of amplitudes

First principles and fundamental parameters

DVCS

■ K

Many

Kinematic reach.

observables.

BNL Physics Colloquium

Evolution

GPD at $\mu \neq \mu_F^{\text{ref}}$

GPD at μ_F^{ref}

Nucleon **Tomography**

Motivation Mass without mass

Nucleon structure Physical content

Phenomenology

Formal definition Fit status

Experimental access DVCS kinematics

Framework

Design Architecture

Ergonomics Examples

Releases

Conclusion

Experimental data and phenomenology Need for

modularity

Computation of amplitudes

First principles and fundamental parameters

DVMP **DVCS** DVMP

GPD at $\mu \neq \mu_F^{\text{ref}}$

GPD at μ_{F}^{ref}

- Many observables.
- Kinematic reach.
 - Perturbative approximations.
- Physical models.
 - Fits.

BNL Physics Colloquium

- Numerical methods.
- Accuracy and speed.

Evolution

Nucleon Tomography

Motivation

Mass without mass Nucleon structure Physical content

Phenomenology

Formal definition
Fit status
Experimental access
DVCS kinematics

Framework

Design Architecture

Ergonomics Examples

Releases

Conclusion

Experimental data and phenomenology Need for

 ${\sf modularity}$

Computation of amplitudes

First principles and fundamental parameters DVCS DVCS TCS TCS

GPD at $\mu \neq \mu_F^{\mathrm{ref}}$ Evolution

GPD at μ_F^{ref}

- Many observables.
- Kinematic reach.
 - Perturbative approximations.
- Physical models.
- Fits.

- Numerical methods.
- Accuracy and speed.

Nucleon **Tomography**

Motivation Mass without mass

Nucleon structure Physical content

Phenomenology

Formal definition Fit status Experimental access DVCS kinematics

Framework

Design Architecture

Ergonomics Examples

Releases

Conclusion

Experimental data and phenomenology Need for

modularity

Computation of amplitudes

First principles and fundamental parameters

DVMP **DVCS** DVCS

> GPD at $\mu \neq \mu_F^{\text{ref}}$ Evolution GPD at $\mu_F^{\rm ref}$

- Many observables.
- Kinematic reach.
- Perturbative approximations.
- Physical models.
 - Fits.

- Numerical methods.
- Accuracy and speed.

Nucleon **Tomography**

Motivation

Mass without mass Nucleon structure Physical content

Phenomenology

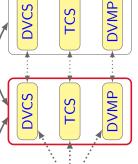
Formal definition Fit status Experimental access DVCS kinematics

Framework

Design Architecture

Ergonomics Examples

Releases


Conclusion

Experimental data and phenomenology Need for

modularity

Computation of amplitudes

First principles and fundamental parameters

GPD at $\mu \neq \mu_F^{\text{ref}}$ Evolution GPD at $\mu_F^{\rm ref}$

- Many observables.
- Kinematic reach.
- Perturbative approximations.
- Physical models.
 - Fits.

- Numerical methods.
- Accuracy and speed.

Nucleon **Tomography**

Motivation

Mass without mass Nucleon structure Physical content

Phenomenology

Formal definition Fit status Experimental access DVCS kinematics

Framework

Design Architecture

Ergonomics Examples

Releases

Conclusion

Experimental data and phenomenology Need for

modularity

Computation of amplitudes

First principles and fundamental parameters

DVMP **DVCS**

GPD at $\mu \neq \mu_F^{\text{ref}}$

GPD at μ_{F}^{ref}

- Many observables.
- Kinematic reach.
- Perturbative approximations.
- Physical models.
 - Fits.

BNL Physics Colloquium

- Numerical methods.
- Accuracy and speed.

Evolution

A computing framework for physics. Done: tests, benchmarking, documentation, tutorials.

Nucleon **Tomography**

Motivation

Mass without mass Nucleon structure Physical content

Phenomenology

Formal definition Fit status

Experimental access DVCS kinematics

Framework

Design Architecture

Ergonomics Examples Releases

Conclusion

3 stages:

- Design.
- Integration and validation.
- Benchmarking and production.
- 1 new physical development = 1 new module.
- Aggregate knowledge and know-how:
 - Models
 - Measurements
 - Numerical techniques
 - Validation
- What can be automated will be automated.
 - Flexible software architecture.

B. Berthou et al., Eur. Phys. J. C78, 478 (2018)

Modularity.

GPDKinematic

(standardized input)

Inheritance, standardized inputs and outputs.

Nucleon Tomography

Motivation

Mass without mass Nucleon structure Physical content

Phenomenology

Formal definition

Experimental access

Framework

Design

Architecture Ergonomics

Examples Releases

Conclusion

(A) Compared to the control of the c

GPDModule

(abstract class)

- Steps of logic sequence in parent class.
- Model description and related mathematical methods in daughter class.

GPDResult

(standardized output)

Flexibility.

Example: implementation of new coefficient functions.

Nucleon **Tomography**

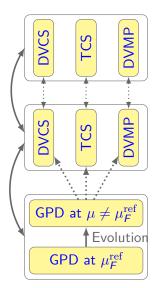
Motivation

Mass without mass Nucleon structure

Physical content Phenomenology

Formal definition Fit status

Experimental access DVCS kinematics


Framework

Design

Architecture Ergonomics

Examples Releases

Conclusion

 A DVCS coefficient function module generically outputs a complex number when provided $(\xi, t, Q^2, \mu_F^2, \mu_P^2)$.

ConvolCoeffFunctionModule.h

virtual std::complex<double> compute(double xi. double t. double Q2. double MuF2. double MuR2, GPDType::Type gpdType) = 0;

■ This module can be anything:

Constant CFFs for local fits.

CFFs for massless quarks.

CFFs for heavy guarks.

CFFs with TMC.

Modularity and layer structure. Modifying one layer does not affect the other layers.

Nucleon Tomography

Motivation

Mass without mass Nucleon structure

Physical content

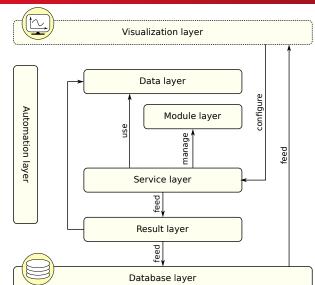
Phenomenology

Formal definition

Fit status

Experimental access

DVCS kinematics


Framework

Design

Architecture Ergonomics

Examples

Releases

Modularity and automation.

Parse XML file, compute and store result in database.

Nucleon Tomography

Motivation Mass without mass

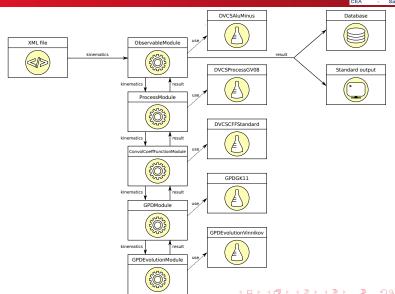
Nucleon structure Physical content

Phenomenology

Formal definition

Experimental access

DVCS kinematics


Framework

Design Architecture

Ergonomics

Examples

Releases

Systematic studies made easy. A faster and safer way to GPD phenomenology.

Nucleon Tomography

Automation allows...:

to run numerous computations with various physical assumptions,

- to run **nonregression** tests.
- to perform **fits** with various models.
- physicists to focus on physics!

Motivation Mass without mass

Nucleon structure Physical content

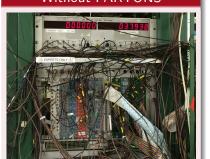
Phenomenology Formal definition

Fit status

Experimental access

DVCS kinematics

Framework


Design Architecture

Ergonomics Examples

Releases

Conclusion

Without PARTONS

With PARTONS

GPD computations made fast.

Improved performances thanks to clever architecture design.

Nucleon Tomography

Motivation

Mass without mass Nucleon structure Physical content

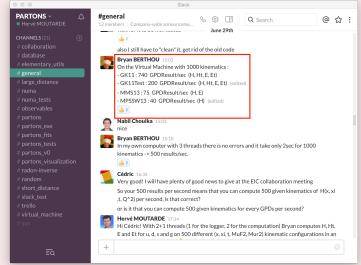
Phenomenology Formal definition

Fit status

Experimental access

Framework

Design


Architecture Ergonomics

Examples

Releases

Conclusion

GPD computations with or without threads

Systematic studies made fast. What can be done from scratch in about 1 hour.

Nucleon Tomography

Motivation Mass without mass

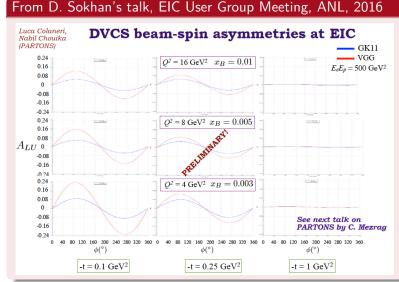
Mass without mass Nucleon structure Physical content

Phenomenology

Experimental access

Formal definition Fit status

DVCS kinematics


Framework

Design Architecture

Ergonomics

Examples

Releases

GPD or CFF fits (1/4). Local fit of CFFs.

Nucleon Tomography

Motivation

Mass without mass Nucleon structure

Physical content

Phenomenology

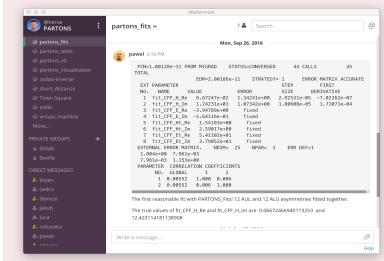
Fit status

Experimental access

DVCS kinematics

Framework

Design


Architecture Ergonomics

Examples

Releases

Conclusion

First local fit of pseudo DVCS data, Sep. 26th, 2016

GPD or CFF fits (2/4).

Global fit of CFFs using a analytic parameterization.

Nucleon Tomography

Motivation

Mass without mass

Physical content

Phenomenology

Formal definition

Experimental access

DVCS kinematics

Framework

Design Architecture

Ergonomics Examples

Releases

Conclusion

Parametric global fit of JLab DVCS data, Apr. $5^{ m th}$, 2017

RESULTS

■ Kinematic cuts Q² > 1.5 GeV² (where we can rely on LO approximation)

-t / Q^2 < 0.25 (where we can rely on GPD factorization)

■ χ^2 / ndf 3272.6 / (3433 - 7) ≈ 0.96

■ Free parameters a_{Hsea}, a_{Hsea}, a_{Hsea}, C_{sub}, a_{sub}, N_E, N_E

χ² / ndf per data set

[1] Phys. Rev. C 92, 055202 (2015) [2] Phys. Rev. Lett. 115, 212003 (2015)

[3] Phys. Rev. D 91, 052014 (2015)

Experiment	Reference	Observables	N points all	N points selected		chi2 / ndf
Hall A	[1] KINX2	σUU	120	120	135.0	1.19
Hall A	[1] KINX2	ΔσLU	120	120	98.9	0.88
Hall A	[1] KINX3	σUU	108	108	274.8	2.72
Hall A	[1] KINX3	ΔσLU	108	108	107.3	1.06
CLAS	[2]	σUU	1933	1333	1089.2	0.82
CLAS	[2]	ΔσLU	1933	1333	1171.9	0.88
CLAS	[3]	AUL, ALU, ALL	498	305	338.1	1.13
Pawel Sznajder DIS 2017						12

GPD or CFF fits (3/4). Global fit of CFFs using neural networks.

Nucleon Tomography

Motivation

Mass without mass Nucleon structure

Physical content

Phenomenology

Formal definition

Experimental access

Framework

Design Architecture

Ergonomics

Examples Releases

Releases

Conclusion

Neural network global fit of CLAS asymmetries, May $31^{\rm st}$, 2017

- Re CFF
- Our very first attempt to use NN technique → proof of feasibility
- Genetic algorithm (GA) to learn NN
- NN and GA libraries by PARTONS group
- Very simple design of NN
- CLAS asymmetry data only

GPD or CFF fits (4/4). From local to global fits in 8 months!

Nucleon Tomography

Motivation

Mass without mass Nucleon structure Physical content

Phenomenology

Formal definition

Fit status

Experimental access

DVCS kinematics

Framework

Design

Architecture Ergonomics

Examples

Releases

Conclusion

PARTONS architecture allows focusing on parameterization and fitting engine.

- The same machinery is used for local and global fits.
- Fast and constant progress since the first fits.
- More to come in the near future.

See Pawel Sznajder's seminar in Stony Brook tomorrow!

First release content. DVCS channel only.

Nucleon Tomography

Motivation

Mass without mass

Physical content

Phenomenology

Fit status

Experimental access

DVCS kinematics

Framework

Design Architecture Ergonomics

Examples Releases

Conclusion

GPD modules

- GK
- VGG
- Vinnikov (evolution)
- MPSSW13 (NLO study)
- MMS13 (DD study)

DVCS modules

- VGG
- GV
- BMJ

CFF modules

- LO
- NLO
- NLO Noritzsch

Evolution modules

Vinnikov (LO)

$lpha_{ m s}$ modules

- 4-loop perturbation
- constant value

Open source release. Publicly available on CEA GitLab server.

Nucleon Tomography

Motivation

Mass without mass Nucleon structure Physical content

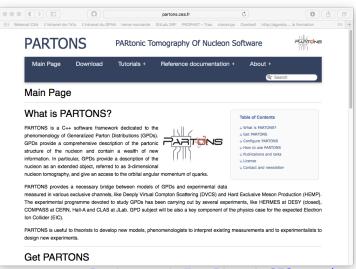
Phenomenology

Formal definition

Fit status

Experimental access

DVCS kinematics


Framework

Design Architecture

Ergonomics

Examples Releases

Conclusion

Open source release. Publicly available on CEA GitLab server.

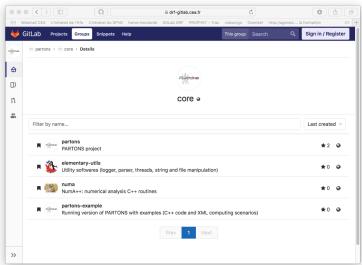
Nucleon **Tomography**

Motivation Mass without mass

Nucleon structure Physical content

Phenomenology Formal definition

Fit status Experimental access


DVCS kinematics

Framework Design Architecture

Ergonomics

Examples Releases

Conclusion

Berthou et al., Eur. Phys. J. C78, 478 (2018)

Open source release. Publicly available on CEA GitLab server.

Nucleon Tomography

Motivation

Mass without mass Nucleon structure Physical content

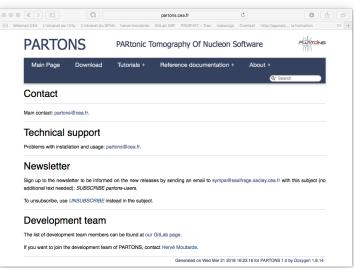
Phenomenology

Formal definition

Fit status

Experimental access

DVCS kinematics


Framework

Design Architecture

Ergonomics

Examples Releases

Conclusion

Future releases.

A lot remains to be integrated...Contributors welcome!

Nucleon Tomography

Motivation

Mass without mass Nucleon structure

Physical content

Phenomenology

Formal definition

Fit status

Experimental access

DVCS kinematics

DVC3 KIIIE

Framework

Design Architecture Ergonomics

Examples Releases

Conclusion

Channel modules

- DVMP
- TCS
- \bullet γM production
- ???

Other modules

- Mellin moments (EM tensor, lattice QCD)
- **????**

Hadron structure modules

- DAs
- DDs
- Form factors
- PDFs
- LFWFs
- ???

Nonperturbative QCD modules

■ Gap equation solver

BNL Physics Colloquium

7??

Within the next four years. Virtual Access Infrastructure 3DPartons in STRONG-2020

Nucleon Tomography

Motivation

Mass without mass Nucleon structure Physical content

Phenomenology

Formal definition Fit status

Experimental access

DVCS kiner

Framework

Design Architecture Ergonomics

Examples Releases

Conclusion

A workpackage of the EU-funded STRONG-2020 program

- Mutualize developments for GPD and TMD frameworks.
- Address the question of event generation.
- Open-source release and maintenance of computing codes related to 3D hadron structure.

Conclusion and prospects. Putting all the pieces together.

Nucleon Tomography

Motivation

Mass without mass
Nucleon structure
Physical content
Phenomenology

Formal definition
Fit status
Experimental access

DVCS kinematics Framework

Design Architecture Ergonomics Examples Releases

Conclusion

We now have tools to systematically relate these models to experimental data in multi-channel analysis.

- We now have an **operating engine** for global CFF fits.
- We revisit the **mechanical properties** of hadrons to assess how much we can learn from GPD extractions.
- We can now build generic GPD models satisfying a priori all theoretical constraints.

New studies become possible!

- Global GPD fits.
- Energy-momentum structure of hadrons.
- Quantitative impact of nonperturbative QCD ingredients on 3D hadron structure studies.
- GPD and TMD studies in a common framework.
- ... And probably much more!

See you soon in Paris!

Nucleon Tomography

Motivation

Mass without mass Nucleon structure Physical content

Phenomenology

Formal definition

Experimental access

Framework

Design Architecture

Ergonomics

Examples Releases

Commissariat à l'énergie atomique et aux énergies alternatives
Centre de Saclay 91191 Gif-sur-Yvette Cedex

Etablissement public à caractère industriel et commercial R.C.S. Paris B 775 68