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Motivation.

Study nucleon structure to shed new light on nonperturbative QCD.

Perturbative

QCD

v

Perturbative AND

Asymptotic
freedom

Nonperturbative

QCD

=QCD_ 0.(M) = 0.1184 £ 0.0007

" QGev) ™

o

perturbative QCD at work

m Define universal objects describing 3D nucleon structure:

Generalized Parton Distributions (GPD).

m Relate GPDs to measurements using factorization:
Virtual Compton Scattering (DVCS, TCS),
Deeply Virtual Meson production (DVMP).

m Get experimental knowledge of nucleon structure.
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Motivation.

QCD large distance dynamics from the hadron structure viewpoint.

Covariant and m Lattice QCD clearly shows that the mass of hadrons is
Positive GPD

Models generated by the interaction, not by the quark masses.
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oty Durr et al., Science 322, 1224 (2008)
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Example
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Imaging the origin of mass.

Identification of underlying mechanisms from parton distributions.
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Imaging the origin of mass.

Identification of underlying mechanisms from parton distributions.

How can we recover the well-
known characterics of the
nucleon from the properties of
its colored building blocks?

Mass?
Spin?
Charge?

What are the relevant effec-
tive degrees of freedom and

effective interaction at large
distance?
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Anatomy of hadrons.

Cea GPDs, 3D hadron imaging, and beyond (1/4).

Covariant and m Correlation of the longitudinal momentum and the

Positive GPD H i
e transverse position of a parton in a hadron.

m DVCS recognized as the cleanest channel to access GPDs.

Introduction
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Anatomy of hadrons.

Cea GPDs, 3D hadron imaging, and beyond (1/4).

Covariant and m Correlation of the longitudinal momentum and the
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Inverse Radon

- m 24 GPDs Fi(x, &, t, uF) for each parton type i = g, u, d, ...

Conclusion for leading and sub-leading twists.
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Anatomy of hadrons.

Cea GPDs, 3D hadron imaging, and beyond (2/4).

Covariant and m Probabilistic interpretation of Fourier transform of
Positive GPD GPD(x,& = 0, t) in transverse plane.
1 .. b, 0E
Introducti _ 2 1L 6P 2
ntroduction IO(X7 bLa )\7 AN) = 5 H(X, 0, bL) + M 8b2 (X, 0, bL)
Phenomenology L
status
S FAMH(x, 0, bi)}
Universality tests
T m Notations : quark helicity A, nucleon longitudinal
Theoretical . . .
framework polarization Ay and nucleon transverse spin S .
oty Burkardt, Phys. Rev. D62, 071503 (2000)
Double Distributions . . . .
oty Can we obtain this picture from exclusive measurements?
Overp
GPDs from
LFWFs soner Weiss, AIP Conf|
Radon transform
Covariant extension oL PrOC. 1149,
e A 150 (2009
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Conclusion
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Anatomy of hadrons.

Cea GPDs, 3D hadron imaging, and beyond (3/4).

Covariant and m Most general structure of matrix element of energy
POT\;ZSEEPD momentum tensor between nucleon states:

A A A
Introduction N P —|— 77“/ N P — = ul P + — A(t)ry(.“ PV)

2 2
Phenomenology
status A C( t) A
i A 2 v

Experimntal occes +B(t P( VA A AFAY — AZpt ulp— =2
. P am " ;
Theoretical Wlth t — AQ-
framework

o m Key observation: link between GPDs and gravitational
pobmoriatty form factors

Double Distributions
Positivity

/ AxxHI(x, €,1) = A%(¢) + 4¢2C9(1)

GPDs from
LFWFs
/dxxEq(x,§, ) = BI(t)— 42C(D)
Ji, Phys. Rev. Lett. 78, 610 (1997)

Radon
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Anatomy of hadrons.

Cea GPDs, 3D hadron imaging, and beyond (4/4).

Covariant and
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Models m Spin sum rule:
Introduction :
Phenomenology / dXX(Hq(X‘/ 57 0) + Eq(X7 57 0)) - Aq(o) + Bq(o) - 2‘jq

Experimental access

Ji, Phys. Rev. Lett. 78, 610 (1997)
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Towards hadron tomography.

GPDs as a scalpel-like probe of hadron structure.

Covariant and Phenomenology status: relevance and need for
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Phenomenology status
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Exclusive processes of current interest (1/2).
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Exclusive processes of current interest (1/2).

Factorization and universality.
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Factorization and universality.

Perturbative

Nonperturbative

Perturbative

Nonperturbative

A

A

Generalized
Parton
Distributions

H. Moutarde | Bound-State Problem, Wuhan | 11 /41



Covariant and
Positive GPD
Models

Introduction

Phenomenology
status
Experimental access
DVCS Kinematics
Universality tests

Towards 3D images

Theoretical

framework
Definition
Polynomiality
Double Distributions
Positivity

Overlap

GPDs from
LFWFs
Radon transform
Covariant extension
Inverse Radon

Example

Conclusion

Exclusive processes of current interest (1/2).

Factorization and universality.

Perturbative

Nonperturbative

Perturbative

Nonperturbative

A

A

Perturbative

Nonperturbative

H. Moutarde

A

A

Generalized
Parton
Distributions

oY
YvY
o

Bound-State Problem, Wuhan | 11 /41



cea

Covariant and
Positive GPD
Models

Introduction

Phenomenology
status
Experimental access
DVCS Kinematics
Universality tests

Towards 3D images

Theoretical

framework
Definition
Polynomiality
Double Distributions
Positivity

Overlap

GPDs from
LFWFs
Radon transform
Covariant extension
Inverse Radon

Example

Conclusion

Exclusive processes of current interest (1/2).

Factorization and universality.

Perturbative

Nonperturbative

Perturbative

Nonperturbative

A

A

Perturbative

Nonperturbative

H. Moutarde

A

A

Generalized
Parton
Distributions

oY
YvY
o

Bound-State Problem, Wuhan | 11 /41



cea

Covariant and
Positive GPD
Models

Introduction

Phenomenology
status
Experimental access
DVCS Kinematics
Universality tests

Towards 3D images

Theoretical

framework
Definition
Polynomiality
Double Distributions
Positivity

Overlap

GPDs from
LFWFs
Radon transform
Covariant extension
Inverse Radon

Example

Conclusion

Exclusive processes of current interest (1/2).

Factorization and universality.

Perturbative

Nonperturbative

Perturbative

Nonperturbative

A

A

Perturbative

Nonperturbative

H. Moutarde

A

A

Generalized
Parton
Distributions

TY
Y Y
e}

Bound-State Problem, Wuhan | 11 /41



Exclusive processes of present interest (2/2).

Cea Factorization and universality.

Covariant and
Positive GPD
Models

m Partonic interpretation relies on factorization theorems.
m All-order proofs for DVCS, TCS and some DVMP.
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~—- Need for global fits of world data.
Cea Different facilities will probe different kinematic domains.
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Need for global fits of world data.
Cea Different facilities will probe different kinematic domains.

= 2
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Typical DVCS kinematics.

Probing gluons, sea and valence quarks through DVCS.

m Study the harmonic structure
of ep — epy amplitude.

Diehl et al.,

Phys. Lett. B411, 193 (1997)

) Kinematics
Experiment e @ [Gev?] | ¢ [Gev2]
HERA 0.001 8.00 -0.30
COMPASS | 0.05 2.00 -0.20
HERMES 0.09 2.50 -0.12
CLAS 0.19 1.25 -0.19
HALL A 0.36 2.30 -0.23
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Goloskokov-Kroll (GK) model on DVCS.

No parameter of the GK model was tuned to analyse DVCS.

Asymmetry, HERMES

’ cos 0¢
02— AC

01—

02—

0.3 L
0

0.2 0.3 0.4 0.5
—t  [GeV?]

Kroll et al., Eur. Phys. J. C73, 2278 (2013)

v
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Goloskokov-Kroll (GK) model on DVCS.

Cea No parameter of the GK model was tuned to analyse DVCS.
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Kroll et al., Eur. Phys. J. C73, 2278 (2013)
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Summary of first extractions.

Cea Feasibility of twist-2 analysis of existing data.
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Imaging the nucleon. How?
Extracting GPDs is not enough..Need to extrapolate!

Wl 1. Experimental data fits 2. GPD extraction

Positive GPD Hi 1:8:02, 04
= 502, 0'4 )
Models Ao [ph.GeV 7] *

Introduction

Phenomenology _
status (@ =

o
o2f 15 Gev?
Experimental access (=) = 0.735 GeV
DVCS Kinematics Ve S
Universality tests & [deg] e

Towards 3D images

Theoretical 3. Nucleon im ging

framework

Images from Guidal et al.,
Rept. Prog. Phys. 76 (2013) 066202

Definition
Polynomiality

The 2015 Long Range Plan for Nuclear Science

Double Distributions

Positivity
Overlap Sidebar 2.2: The First 3D Pictures of the Nucleon
GPDs from A computed tomography (CT) scan can help physicians
pinpoint minute cancer tumors, diagnose tiny broken
LFWFs bones, and spot the early signs of osteoporosis. _
Radon transform Now physicists are using the principles behind the E
procedure to peer at the inner workings of the proton. &

Covariant extension
This breakthrough is made possible by a relatively new

concept in nuclear physics called generalized parton
Example distributions.

Inverse Radon

1 o
Conclusion An intense beam of high-energy electrons can be used b, [fm] b, [fm]
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Imaging the nucleon. How?

Cea Extracting GPDs is not enough..Need to extrapolate!

Covariant and
Positive GPD
Models

Extract H(x, &, t, i¢f) from experimental data.

=

Introduction

Extrapolate to vanishing skewness H(x, 0, t, umf)

]

Phenomenology
status

o]

Experimental access Extrapolate H(x, 0, t, ;LrF‘*f) up to infinite t.

DVCS Kinematics

Universality tests

Towards 30 images Compute 2D Fourier transform in transverse plane:
Theoretical
framework +o00 dA
efinition L 2
Hix.b1) = | AL (b AL) H(x,0,~A%)
Double Distributions 0 2
Positivity
o Propagate uncertainties.
GPDs from
LFWFs
Radon tavaforn [@ Control extrapolations with an accuracy matching that of
Covariant extension
tnverse Radon experimental data with sound GPD models.
Example
Conclusion
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Spin-0 Generalized Parton Distribution.

Definition and simple properties.

Hi(x, &, t) =
1 dZ_ ixPtz— A _ V4 y4
LJ oo (m 3ol ()
2/ ax € mEtSa\Tg) 7 9g) "

with t = A% and ¢ = —A1/(2PF).

References

Miller et al., Fortschr. Phys. 42, 101 (1994)
Ji, Phys. Rev. Lett. 78, 610 (1997)
Radyushkin, Phys. Lett. B380, 417 (1996)

m PDF forward limit
H(x,0,0) = q(x)
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- Spin-0 Generalized Parton Distribution.
Cea

Definition and simple properties.

Covariant and ng (X7 g./ t) =

Positive GPD

Models 1 dz— ixP+ 2~ A _ V4 V4
5 | on e T, P+ 5 [9\75) 7 4(5)|™

Introduction

Phenomenology

status W|th t — AQ and E — _A+/(2P+)

References

Theoretical
framework
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PDF forward limit
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H9 is an even function of £ from time-reversal invariance.
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Polynomiality

Positivity

Spin-0 Generalized Parton Distribution.

Not so simple properties.

Lorentz covariance

Positivity of Hilbert space norm

H? has support x € [—1,+1].

Relativistic quantum mechanics

Soft pion theorem (pion target)

Hi(x, & =1,t=0) =
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£ ()
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Spin-0 Generalized Parton Distribution.

Not so simple properties.

m Polynomiality
Lorentz covariance
m Positivity

Positivity of Hilbert space norm

m H9 has support x € [—1,+1].
Relativistic quantum mechanics
m Soft pion theorem (pion target)

Dynamical chiral symmetry breaking

How can we implement a priori these theoretical constraints?

m There is no known GPD parameterization relying only on
first principles.

m In the following, focus on polynomiality and positivity.
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Polynomiality.

Cea Mixed constraint from Lorentz invariance and discrete symmetries.

Covariant and m Express Mellin moments of GPDs as matrix elements:
ositive

Models

+1
/ dxx"HI(x, &, t)

Introduction J—1
Phenomenology 1 A — A
status = ———(P+=|g(0)~"(iD")"q(0) |P— =
sipmmer (P 5|90 (B a0 |- 5
DVCS Kinematics
. m Identify the Lorentz structure of the matrix element:
eorencel linear combination of (PT)™H1=5K(AT)¥ for 0 < k < m+1
Definition
Polynomiaiity m Remember definition of skewness AT = —2¢PT.
Double Distributions
Postity m Select even powers to implement time reversal.
Overlap . L O
CPDs from m Obtain polynomiality condition:
LFWFs 1 m
Radon transform .

) ) q . i m—+1
e [ a0 ) = 320 G0+ 2O (9
Example -1 i=0
Conclusion even
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Double Distributions.

Cea A convenient tool to encode GPD properties.

Covariant and m Define Double Distributions F? and G9 as matrix elements
ositive .
Models of twist-2 quark operators:

_ A o o A i
Introduction <P + 2’ E](O)’Y{“I D/l/l L ID/Im}q(O) 'P — 2> — Z <r;:>

Phenomenology

status k=0

xperi :ss A Mm—k+1 A /U'm}
re [Fru(D2PV = Gy (AT P P (‘2) - <_2>
oo o with

Definition
Polynomiality

Double Distributions

Fl. = /Q dBda o* ™ kFI(8, a)

GPDs from Gl = /Q dBda o*BmKGI(3, a)
Radon transform B DD

Conin i Miller et al., Fortschr. Phys. 42, 101 (1994)
Example Radyushkin, Phys. Rev. D59, 014030 (1999)
Conclusion Radvushkin, Phys.-Lett: B449, 81 (1999)
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Introduction

Phenomenology
status
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DVCS Kinematics

Universality tests

Theoretical
framework
Definition
Polynomiality
Double Distributions
Positivity
Overlap

GPDs from
LFWFs

Conclusion

Double Distributions.

Relation to Generalized Parton Distributions.

m Representation of GPD:

Hix 6 t) = [ dfdad(x—5-a8)(F(5,a.0+¢6%(B.a. 1)

Qpp

m Support property: x € [—1,+1].
m Discrete symmetries: F9 is a-even and GY9 is a-odd.

m Pobylitsa gauge: any representation (F9, G9) can be
recast in one representation with a single DD £9:

Hi(x,€,) = (1 — x) / dBda A(B, a, H3(x— B — af)

Qpp

Pobylitsa, Phys. Rev. D67, 034009 (2003)
Miiller, Few Body Syst. 55, 317 (2014)

H. Moutarde | Bound-State Problem, Wuhan | 23 /41



Double Distributions.

Cea Lorentz covariance by example.

Covariant and
Positive GPD
Models

m Choose FI(B,a) = 356(B) ad GI(B,a) = 3ab(P):

Introduction

Phenomenology
status

H(x,&) = SX/Qdﬂda d(x—p—af)

m Simple analytic expressions for the GPD:

Theoretical
framework 6 ( 1 )
efinition X
:ul'yn:miality H(X‘é‘) — 2 lf 0 < ‘£| X< ]_
Double Distributions f
Positivity

o v - Bt

H(x, &) =
AT ’ €1+ €D

Radon transform

if — ¢l <x< ¢ <1.

Covariant extension
Inverse Radon
Example

Conclusion
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Double Distributions.

Lorentz covariance by example.

Covariont and m Compute first Mellin moments
eaas - 0| [T dodHGe) | [ dodHx ) [ [ dedH(x,€)

Introduction 0 1+£72§2 252 1

Phenomenology 1+£ 1+£

status

oves kmemnier ] 16462368 2¢° 142
Univrsalty st 2(118) T+€ 2
Towards 3D images

Theoretical ‘ Q¢2 3 4 ‘ 2

3(1-§) (14264387 +4¢7) 6¢ 3(1+€%)

framework 2 == 7
Definition ]‘0(]‘+E) 5(1+£) 10
Polynomiality

—— g | L2 4e3 el 565 6£7 1+£24¢4
Overlap 5(1-‘1—5) 5(1+§) 5

GPDs from

LFWFs 4 1+£+52+£3+£4+£576EG 6&6 l+£2+f4
ot i 7(+4¢) 7(+¢) !
e dn m Expressions get more complicated as n increases... But
xample

they always yield polynomials!
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Covariant and
Positive GPD
Models

Introduction

Phenomenology
status

Experimental access
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Theoretical
framework
Definition
Polynomiality
Double Distributions
Positivity
Overlap
GPDs from
LFWFs
Radon transform
Covariant extension
Inverse Radon

Example

Conclusion

Positivity.

A consequence of the positivity of the nom in a Hilbert space.

m Identify the matrix element defining a GPD as an inner
product of two different states.

m Apply Cauchy-Schwartz inequality, and identify PDFs at
specific kinematic points, e.g.:

1 x+ & x—¢&
HY 1)) <
0l <\ (e ) o (128
m This procedures yields infinitely many inequalities stable
under LO evolution.

Pobylitsa, Phys. Rev. D66, 094002 (2002)

m The overlap representation guarantees a priori the
fulfillment of positivity constraints.
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Overlap representation.

Cea A first-principle connection with Light Front Wave Functions.

Covariant and

Positive GPD m Decompose an hadronic state |H; P, \) in a Fock basis:

Models

[57

Introduction ‘H P )\ E / dXko_ Nl/) (X1 kJ_l ..... s XN, kJ_N ‘B, k17~--7kN>
Phenomenology
status . . 3 .
Experimental access m Derive an expression for the pion GPD in the DGLAP
DVCS Kinematics .
Universay ests region £ < x < 1:
Towards 3D images

e HI(x, &, t Z / [dxdk | g (x—%7) (5 )* (K, &)Y (%, K L)

Definition
Polynomiality
Double Distributions

— with X, l~<L (resp. %Rl) generically denoting incoming
GPDs from (resp. outgoing) parton kinematics.
LFWFs

Diehl et al., Nucl. Phys. B596, 33 (2001)

m Similar expression in the ERBL region —¢ < x < ¢, but
with overlap of N- and (N + 2)-body LFWFs.

H. Moutarde | Bound-State Problem, Wuhan | 26 / 41

Radon

Conclusion



Overlap representation.

Cea Positivity by example: GPD HY in the Dyson-Schwinger approach.

Covariant and m Expressions for vertices and propagators:
Positive GPD

Models

S(p) = [—i p+MAuP)

Introduction 1

Phenomenology AM(S) — Y

status S + M2

Experimental access +l
DVCS Kinematics

M, ,
Universality tests Fﬂ—(k, p) = I"/{) 7 M2 / dZ [)V(Z) [AM(&Z)}

Towards 3D images T -1

e p(d) = R(1-2)

o i with R, a normalization factor and k;, = k— p(1 — z)/2.
Oveap Chang et al., Phys. Rev. Lett. 110, 132001 (2013)
GPDs from

LFWFs m Only two parameters:

Radon transform
Covariant extension
Inverse Radon

Example
Conclusion
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Example

Conclusion

Overlap representation.
Positivity by example: GPD HY in the Dyson-Schwinger approach.

m Expressions for vertices and propagators:

S(p) = [—i - p+MAuP)
M) =
+1
Lr(k,p) = /'A/5IZM2V /1 dzp,(z) [AM(kiz)}V

pu(z) = Ru(lfzzyj

with R, a normalization factor and ki, = k— p(1 — z)/2.
Chang et al., Phys. Rev. Lett. 110, 132001 (2013)
m Only two parameters:

m Dimensionful parameter M.
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Example

Conclusion

Overlap representation.
Positivity by example: GPD HY in the Dyson-Schwinger approach.

m Expressions for vertices and propagators:

S(p) = [—i p+MAuP)
M) = T
+1
Ix(k,p) = I'A/SIZMQV /1 dzp,(z) [AM(kiz)}V

po(2) = R(1-2)

with R, a normalization factor and ki, = k— p(1 — z)/2.
Chang et al., Phys. Rev. Lett. 110, 132001 (2013)
m Only two parameters:
m Dimensionful parameter M.

m Dimensionless parameter v
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Conclusion

Overlap representation.
Positivity by example: GPD H? in the Dyson-Schwinger approach.

m Expressions for vertices and propagators:

Sp) = [—iv p+ MAmp®)
A =
1
Ir(k,p) = 1%/5::/’/\//2”/_1 dzp,(2) [AM(kiz)}V

p(d) = R(1-2)

with R, a normalization factor and ki, = k— p(1 — z)/2.
Chang et al., Phys. Rev. Lett. 110, 132001 (2013)
m Only two parameters:

m Dimensionful parameter M.
m Dimensionless parameter v. Fixed to 1 to recover
asymptotic pion DA.
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Overlap representation.

Cea Positivity by example: GPD HY in the Dyson-Schwinger approach.

Covariant and m Evaluate LFWF in algebraic model:
Positive GPD (1 )
Models X — X
(x ki) o

[(kp —xP )%+ M?)?
m Expression for the GPD at t = 0:

Experimental access (]- - X)z(xz o €2>

o Hx 6, 0) o —F a2

Towards 3D images

Introduction

Phenomenology
status

Theoretical — Overlap — Triangle diagram Remember J. Rodriguez-Quintero’s

framework
Detnition “ talk last Wednesday!

Polynomiality
P D m Manifest 2-body symmetry.
Overlap

m Expression for the PDF:

GPDs from 10l
LFWFs
Radon transform q(x) = 30 X2 (1— X)2
Covariant extension o |

Inverse Radon

Example

m Off-forward case: in progress.

Conclusion . L . L x
02 04 0.6 08 10
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Overlap representation.

Advantages and drawbacks.

m Physical picture.
m Positivity relations are fulfilled by construction.
m Implementation of symmetries of N-body problems.

What is not obvious anymore

What is not obvious to see from the wave function
representation is however the continuity of GPDs at x = £¢
and the polynomiality condition. In these cases both the
DGLAP and the ERBL regions must cooperate to lead to the
required properties, and this implies nontrivial relations
between the wave functions for the different Fock states
relevant in the two regions. An ad hoc Ansatz for the wave
functions would almost certainly lead to GPDs that violate
the above requirements.

Diehl, Phys. Rept. 388, 41 (2003)

o’

H. Moutarde | Bound-State Problem, Wuhan | 28 / 41



GPDs from Light Front Wave
Functions

Q>



The Radon transform.

Cea Definition and properties.

Covariant and o For s > 0 and (Z) < [O, 271']
Positive GPD
Models +o0
S Rf(s, ¢) = / dpda (B, )d(s—f cos p—asin @)

Phenomenology
status an d
Experimental access :
DVCS Kinematics

Universality tests

Rfi—s, ¢) = Rf(s,¢ + )

ZANK
Relation to GPDs:

Towards 3D images

Theoretical
framework

R

Definition

Polynomiality

Double Distributions S

Positivity X = alld E - ta n (/)
Overtap cos ¢

GPDs from

LFWFs Relation between GPD and DD in Pobylitsa gauge

Radon transform

Covariant extension 1 2 .
— VLT s €)= miFobsn(s g)

Conclusion

9
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Conclusion

The range of the Radon transform.
The polynomiality property a.k.a. the Ludwig-Helgason condition.

m The Mellin moments of a Radon transform are
homogeneous polynomials in w = (sin ¢, cos ¢).
m The converse is also true:

Theorem (Hertle, 1983)

Let g(s,w) an even compactly-supported distribution. Then g
is itself the Radon transform of a compactly-supported
distribution if and only if the Ludwig-Helgason consistency
condition hold:

(i) gis C* inw,

(i) [ dss™g(s,w) is a homogeneous polynomial of degree m for all
integer m > 0.

m Double Distributions and the Radon transform are the
natural solution of the polynomiality condition.
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Implementing Lorentz covariance.
Extend an overlap in the DGLAP region to the whole GPD domain.

DGLAP and ERBL regions
(x,§) € DGLAP < |s| > |sing|,
(x,¢§) € ERBL < |s| <|[sing|.

W B=(x-8/1-8 Each point (B,a)
B with 8#0

> contributes
! : (x+8)/(1+¢) toboth DGLAP and
) ERBL regions.
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Implementing Lorentz covariance.

Cea Extend an overlap in the DGLAP region to the whole GPD domain.

Covariant and
Positive GPD
Models

Introduction

Phenomenology

status For any model of LFWF, one has to address the following
poemenil s three questions:

Universality tests

Towards 3D images

Does the extension exist?

Theoretical

framework
petniier If it exists, is it unique?
olynomiality

Double Distributions

Positivity

Overlap How can we compute this extension?

GPDs from
LFWFs

Radon transform
Covariant extension
Inverse Radon

Example
Conclusion
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Implementing Lorentz covariance.

Cea Unicity of the extension.

Covariant and Theorem
Positive GPD

Models Let f be a compactly-supported locally summable function
_ defined on R? and Rf its Radon transform.
'::md”cm"l Let (sp,wp) € R x S' and Uy an open neighborhood of wq such
enomenology
status that

Experimental access

DVCS Kiny

foralls> sy andw € Uy Rf(s,w) =0.

Universality tests

rosssoms Then (R) = 0 on the half-plane (N |wg) > sy of R2.

Theoretical -
P Consider a GPD H being zero on the DGLAP region.

m Take ¢g and sy s.t. cos g # 0 and |sg| > | sin ¢].

m Neighborhood U of ¢g s.t. Vo € Uy |sin ¢| < |sp].

GPDs from m The underlying DD f has a zero Radon transform for all
Radon transform (]5 6 UO and S > 50 (DGLAP)

Covariant extension

ivere Radon m Then f{8,a) = 0 for all (B, a) € Qpp with § # 0.
p m Extension unique up to adding a D-term: §(5)D(«).
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Inverse Radon

Example

Conclusion

Computation of the extension.

Numerical evaluation of the inverse Radon transform (1/3).

A discretized problem

Consider N+ 1 Hilbert spaces H, Hi, .., Hy, and a family of
continuous surjective operators R, : H— H, for 1 < n < .
Being given g1 € Hi, .., gn € H,, we search fsolving the
following system of equations:

R.f=g, forl<n<N

Fully discrete case

Assume f piecewise-constant with values f,, for 1 < m < M.
For a collection of lines (L,)1<p<n crossing pp, the Radon
transform writes:

M
gn=Rf= / = Z fm X Measure(L,NCp) for1<n<N

n m=1

<
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Inverse Radon

Example

Conclusion

Computation of the extension.

Numerical evaluation of the inverse Radon transform (2/3).

Kaczmarz algorithm

Denote P, the orthogonal projection on the affine subspace
R.f= g,. Starting from £ € H, the sequence defined

iteratively by: P pyPyy .. P

converges to the solution of the system.
The convergence is exponential if the projections are randomly
ordered.

Strohmer and Vershynin, Jour. Four. Analysis and Appl. 15,
437 (2009)
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And if the input data are inconsistent?

m Instead of solving g = Rf, find fsuch that ||g— Rf|2 is
minimum.

m The solution always exists.

m The input data are inconsistent if ||g — Rf]j2 > 0.
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Conclusion

Computation of the extension.

Numerical evaluation of the inverse Radon transform (3/3).

Relaxed Kaczmarz algorithm
Let w €]0,2[ and:
Py =(1-w)ldy+wP, forl1<n<N

erte: RRT = (RI'R_/T')1§I'7J'§N = D—|— L + L]L

where D is diagonal, and L is lower-triangular with zeros on the
diagonal.
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Computation of the extension.
Cea Numerical evaluation of the inverse Radon transform (3/3).

Covariant and Theorem
Positive GPD

Madels Let 0 <w < 2. For £ € Ran R (e.g. 2 =0), the Kaczmarz
method with relaxation converges to the unique solution

Introduction

f* € Ran R' of:
Phenomenology
status T =1 _
Experimental access R (D + WL) (g o Rf‘)) _ 0 I
DVCS Kinematics
where the matrix D and L appear in the decomposition of RR'.
Theoretcal If g = Rf has a solution, then f is its solution of minimal
ramewor!
Defition norm. Otherwise:
Polynomiality fw = f[\/],D + O(UJ) B
Double Distributions
Positivit - 3 . . . s
o where fyp is the minimizer in H of:
GPDs fi
LFWSFsmm <g o /Rf‘g* 737{>D )
Radon transform
o oo the inner product being defined by:
Example
_ /p-1
Conclusion <h ’k>D T <D h |k> :

y
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Test on a 1D example.

Cea Recovering a PDF from the knowledge of its Mellin moments.

Covariant and
Positive GPD
Models

A pion valence PDF-like example

Aim: reconstruct the PDF g(x) = 30x%(1 — x)? from the
Introduction knowledge of its first 30 Mellin moments.

Phenomenology
status

Experimental access — Recongtruction — Target PDF
DVCS Kinematics

m Piecewise-constant PDF: 20
values.

Universality tests

Towards 3D images

151
Theoretical
framework

Input: 30 Mellin moments.

Definition 10

Polynomislity m Unrelaxed method w = 1.

Double Distributions

Positivity 051

Overtap m 10000 iterations.

GPDs from . . . .
LFWFs 0.2 04 06 0.8 10

Radon transform

Covarant extension m Extensive testing in progress
N m Various inputs: PDFs and LFWFs.
m Numerical noise.

Conclusion
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Conclusions and prospects.

Cea Positivity and polynomiality constraints consistently implemented.

Covariant and

Positive GPD m Last decade demonstrated maturity of GPD
Models phenomenology.

Introduction m Good theoretical control on the path between GPD

Phenomenology models and experimental data.

Experimental access

puCs Kinenaics m Challenging constraints expected from Jefferson Lab in
niversality tests

Towards 30 images the valence region.

Theoretical

framework

m Building of QCD-inspired models to make progress.

Definition

Polynomiality

Doute Distibutions m Systematic procedure to construct GPD models from any
Positivity

Overtap "reasonable” Ansatz of LFWFs.

GPDs from

LFWFs

o m Characterization of the existence and unicity of the
Covarant extension extension from the DGLAP to the ERBL region.

Inverse Radon

Example

Conclusion m Numerical tests in progress. Stay tuned!
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