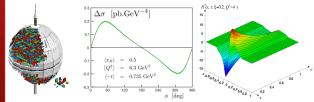
DE LA RECHERCHE À L'INDUSTRIE

Lorentz Covariance and Positivity Constraints in the Modeling of Generalized Parton Distributions

www.cea.fr



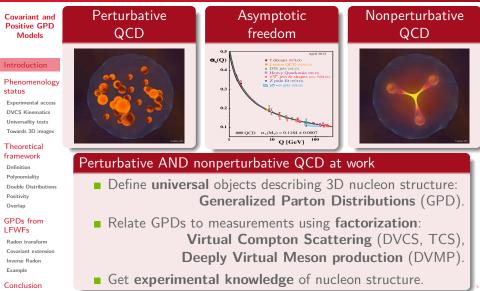
Second Sino-American Workshop and School | Hervé MOUTARDE

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ つくで

Nov. 20th, 2015

Motivation.

Study nucleon structure to shed new light on nonperturbative QCD.



H. Moutarde | Bound-State Problem, Wuhan

Motivation.

QCD large distance dynamics from the hadron structure viewpoint.

Covariant and Positive GPD Models

Lattice QCD clearly shows that the mass of hadrons is generated by the interaction, not by the quark masses.

Introduction

Phenomenology status

- Experimental access
- **DVCS** Kinematics
- Universality tests
- Towards 3D images

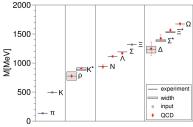
Theoretical framework

- Definition
- Polynomiality
- Double Distributions
- Positivity
- Overlap

GPDs from LFWFs

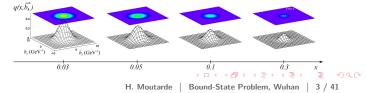
- Radon transform Covariant extension
- Inverse Radon
- Example

Conclusion



Durr et al., Science 322, 1224 (2008)

Can we **map** the *location of mass* inside a hadron?



Covariant and Positive GPD Models

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

- Definition
- Polynomiality
- Double Distributions
- Positivity
- Overlap

GPDs from LFWFs

- Radon transform
- Inverse Radon
- Example

Conclusion

How can we recover the wellknown characterics of the nucleon from the properties of its **colored building blocks**?

Covariant and Positive GPD Models

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

Definition Polynomiality

Double Distributions

Positivity

Overlap

GPDs from LFWFs

Radon transform

Inverse Radon

Example

Conclusion

How can we recover the wellknown characterics of the nucleon from the properties of its **colored building blocks**?

Mass?

Covariant and Positive GPD Models

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

Definition Polynomiality

Double Distributions

Positivity

Overlap

GPDs from LFWFs

Radon transform Covariant extension

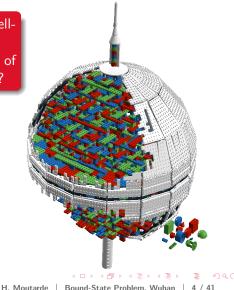
Inverse Radon

Example

Conclusion

How can we recover the wellknown characterics of the nucleon from the properties of its **colored building blocks**?

> Mass? Spin?



Covariant and Positive GPD Models

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

- Definition Polynomiality
- Polynomianty
- Double Distributions
- Positivity
- Overlap

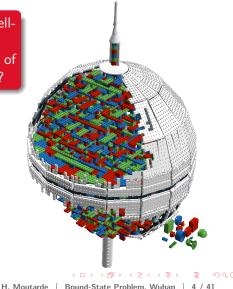
GPDs from LFWFs

- Radon transform Covariant extension
- Inverse Radon Example

Conclusion

How can we recover the wellknown characterics of the nucleon from the properties of its **colored building blocks**?

> Mass? Spin? Charge?



Covariant and Positive GPD Models

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

Definition

- Polynomiality
- Double Distributions
- Positivity
- Overlap

GPDs from LFWFs

Radon transform Covariant extension

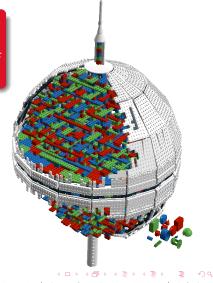
Inverse Radon

Example

Conclusion

How can we recover the wellknown characterics of the nucleon from the properties of its **colored building blocks**?

> Mass? Spin? Charge?



Covariant and Positive GPD Models

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

Definition Polynomiality

- Double Distributions
- Positivity
- Overlap

GPDs from LFWFs

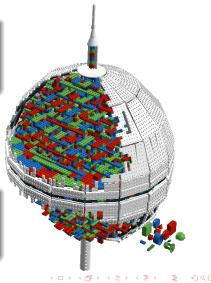
Radon transform Covariant extension Inverse Radon Example

Conclusion

How can we recover the wellknown characterics of the nucleon from the properties of its **colored building blocks**?

> Mass? Spin? Charge?

What are the relevant **effective degrees of freedom** and **effective interaction** at large distance?



Covariant and Positive GPD Models

- Correlation of the longitudinal momentum and the transverse position of a parton in a hadron.
- DVCS recognized as the cleanest channel to access GPDs.

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

- Definition Polynomiality
- Double Distributions
- Positivity
- Overlap

GPDs from LFWFs

Radon transform Covariant extension Inverse Radon Example

Deeply Virtual Compton Scattering (DVCS)				
DVCS e^{-} γ^{*}, Q^{2} γ^{*} factorization μ_{F}		Transverse center of momentum R_{\perp} $R_{\perp} = \sum_{i} x_{i} r_{\perp i}$		
$\begin{array}{c} x+\xi \\ \hline p \\ p \\$	R_{\perp}			

イロト イボト イヨト イヨト

Covariant and Positive GPD Models

- Correlation of the longitudinal momentum and the transverse position of a parton in a hadron.
- DVCS recognized as the cleanest channel to access GPDs.

Introduction

Phenomenology status

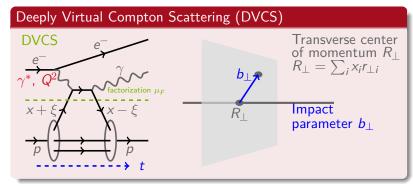
Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

- Definition Polynomiality
- Double Distributions
- Positivity
- Overlap

GPDs from LFWFs

- Radon transform Covariant extension Inverse Radon Example
- Conclusion



イロト イポト イヨト イヨト

Covariant and Positive GPD Models

- Correlation of the longitudinal momentum and the transverse position of a parton in a hadron.
- DVCS recognized as the cleanest channel to access GPDs.

Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

- Definition Polynomiality
- Double Distributions
- Positivity
- Overlan

GPDs from LFWFs

Radon transform Covariant extension Inverse Radon Example

Deeply Virtual Compton Scattering (DVCS) DVCS Transverse center of momentum R_{\perp} $R_{\perp} = \sum_{i} x_{i} r_{\perp i}$ xP^+ $\mathbf{x} + \boldsymbol{\xi}$ Impact $-\varepsilon$ R_{\perp} parameter b_{\perp} Longitudinal momentum xP^+

Covariant and Positive GPD Models

- Correlation of the longitudinal momentum and the transverse position of a parton in a hadron.
- DVCS recognized as the cleanest channel to access GPDs.

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

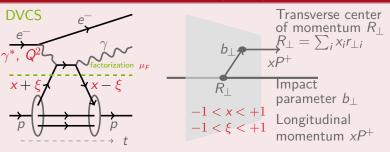
Theoretical framework

- Definition Polynomiality Double Distributions
- Positivity
- Overlap

GPDs from LFWFs

- Radon transform Covariant extension Inverse Radon Example
- Conclusion

Deeply Virtual Compton Scattering (DVCS)



■ 24 GPDs $F^i(\mathbf{x}, \boldsymbol{\xi}, \boldsymbol{t}, \boldsymbol{\mu}_F)$ for each parton type i = g, u, d, ...for leading and sub-leading twists. $\square \rightarrow \langle \overline{a} \rangle \rightarrow \langle \overline{a} \rangle \rightarrow \langle \overline{a} \rangle$ H. Moutarde | Bound-State Problem, Wuhan | 5/41

Covariant and Positive GPD Models

Introduction

Phenomenology status

ρ

- Experimental access DVCS Kinematics Universality tests
- Towards 3D images

Theoretical framework

- Definition
- Polynomiality
- Double Distributions
- Positivity
- Overlap

GPDs from LFWFs

Radon transform Covariant extension Inverse Radon Example

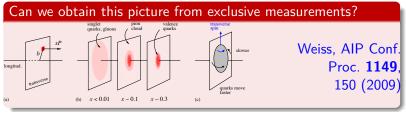
Conclusion

Probabilistic interpretation of Fourier transform of $GPD(x, \xi = 0, t)$ in **transverse plane**.

$$(\mathbf{x}, \mathbf{b}_{\perp}, \lambda, \lambda_{N}) = \frac{1}{2} \left[\mathbf{H}(\mathbf{x}, 0, \mathbf{b}_{\perp}^{2}) + \frac{\mathbf{b}_{\perp}^{i} \epsilon_{ji} S_{\perp}^{i}}{M} \frac{\partial \mathbf{E}}{\partial \mathbf{b}_{\perp}^{2}} (\mathbf{x}, 0, \mathbf{b}_{\perp}^{2}) + \lambda \lambda_{N} \tilde{\mathbf{H}}(\mathbf{x}, 0, \mathbf{b}_{\perp}^{2}) \right]$$

• Notations : quark helicity λ , nucleon longitudinal polarization λ_N and nucleon transverse spin S_{\perp} .

Burkardt, Phys. Rev. D62, 071503 (2000)



H. Moutarde

7 / 41

Covariant and Positive GPD Models

Introduction

Phenomenology status

- Experimental access DVCS Kinematics Universality tests
- Towards 3D images

Theoretical framework

- Definition
- Polynomiality
- Double Distributions
- Positivity
- Overlap

GPDs from LFWFs

- Radon transform Covariant extension
- Inverse Radon

Example

Conclusion

Most general structure of matrix element of energy momentum tensor between nucleon states:

$$P + \frac{\Delta}{2} \left| T^{\mu\nu} \left| N, P - \frac{\Delta}{2} \right\rangle = \bar{u} \left(P + \frac{\Delta}{2} \right) \left[\mathbf{A}(t) \gamma^{(\mu} P^{\nu)} + \mathbf{B}(t) P^{(\mu} i \sigma^{\nu)\lambda} \frac{\Delta_{\lambda}}{2M} + \frac{\mathbf{C}(t)}{M} (\Delta^{\mu} \Delta^{\nu} - \Delta^{2} \eta^{\mu\nu}) \right] u \left(P - \frac{\Delta}{2} \right)$$

- with $t = \Delta^2$.
- Key observation: link between GPDs and gravitational form factors

$$\int \mathrm{d}x \, x \mathbf{H}^q(x,\xi,t) = \mathbf{A}^q(t) + 4\xi^2 \, \mathbf{C}^q(t)$$
$$\int \mathrm{d}x \, x \mathbf{E}^q(x,\xi,t) = \mathbf{B}^q(t) - 4\xi^2 \, \mathbf{C}^q(t)$$

Ji, Phys. Rev. Lett. **78**, 610 (1997)

H. Moutarde | Bound-State Problem, Wuhan

Covariant and Positive GPD Models

Spin sum rule:

Introduction

Phenomenology status

- Experimental access DVCS Kinematics Universality tests
- Towards 3D images

Theoretical framework

- Definition
- Polynomiality
- Double Distributions
- Positivity
- Overlap

GPDs from LFWFs

Radon transform Covariant extension Inverse Radon

Example

Conclusion

$$\int \mathrm{d}x x \big(\boldsymbol{H}^{\boldsymbol{q}}(x,\xi,0) + \boldsymbol{E}^{\boldsymbol{q}}(x,\xi,0) \big) = \boldsymbol{A}^{\boldsymbol{q}}(0) + \boldsymbol{B}^{\boldsymbol{q}}(0) = 2J^{\boldsymbol{q}}$$

Ji, Phys. Rev. Lett. 78, 610 (1997)

• Shear and pressure of a hadron considered as a continuous medium:

$$\left\langle N \left| T^{ij}(\vec{r}) \right| N \right\rangle N = s(r) \left(\frac{r^{i}r^{j}}{\vec{r}^{2}} - \frac{1}{3}\delta^{ij} \right) + p(r)\delta^{ij}$$

Polyakov and Shuvaev, hep-ph/0207153

 < □ > < ⊡ > < ≧ > < ≧ > < ≧ > < ≧</td>

 H. Moutarde
 Bound-State Problem, Wuhan
 8 / 41

Towards hadron tomography. GPDs as a scalpel-like probe of hadron structure.

Covariant and Positive GPD Models

 Phenomenology status: relevance and need for parameterizations.

Introduction

Phenomenology status

- Experimental access DVCS Kinematics
- Universality tests
- Towards 3D images

Theoretical framework

- Definition Polynomiality
- Double Distributions
- Positivity
- Overlap

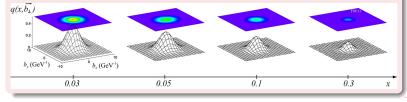
GPDs from LFWFs

Radon transform Covariant extension Inverse Radon Example

Conclusion

- **Theoretical framework:** definition and existing constraints.
- **3 GPDs from Light Front Wave Functions:** a promising computing strategy.

How can we make this picture? What do we learn from it?



H. Moutarde | Bound-State Problem, Wuhan | 9 / 41

Phenomenology status

▲□▶ ▲@▶ ▲글▶ ▲글▶ 글

Exclusive processes of current interest (1/2). Factorization and universality.

Covariant and Positive GPD Models

Introduction

Phenomenology status

Experimental access

DVCS Kinematics Universality tests

Towards 3D images

Theoretical framework

- Definition
- Polynomiality
- Double Distributions
- Positivity
- Overlap

GPDs from LFWFs

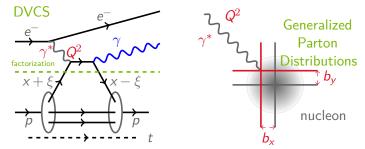
Radon transform

Covariant extension

Inverse Radon

Example

Conclusion



イロト イポト イヨト イヨト

a Exclusive processes of current interest (1/2). Factorization and universality.

Covariant and Positive GPD Models

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

- Definition
- Polynomiality
- Double Distributions
- Positivity
- Overlap

GPDs from LFWFs

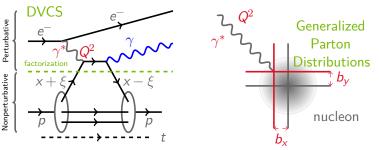
Radon transform

Covariant extension

Inverse Radon

Example

Conclusion



イロト イポト イヨト イヨト

Exclusive processes of current interest (1/2). Factorization and universality.

Covariant and Positive GPD Models

Perturbative

Nonperturbative

Perturbative

Nonperturbative

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

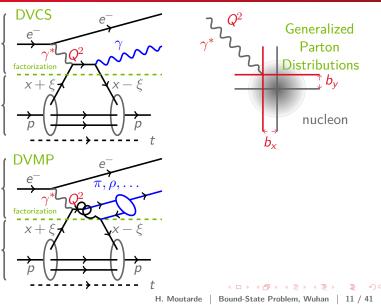
Theoretical framework

- Definition Polynomiality
- Double Distributions Positivity
- Overlap

GPDs from LFWFs

Radon transform Covariant extension Inverse Radon Example

Conclusion



Exclusive processes of current interest (1/2). Factorization and universality.

Covariant and Positive GPD Models

Perturbative

Nonperturbative

Perturbative

Nonperturbative

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

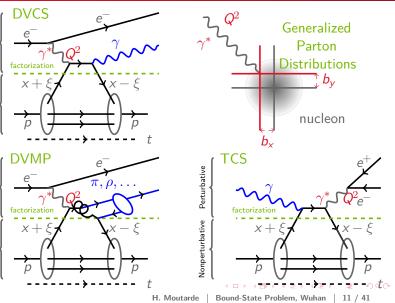
Theoretical framework

- Definition Polynomiality
- Double Distributions Positivity
- Overlap

GPDs from LFWFs

Radon transform Covariant extension Inverse Radon Example

Conclusion



Exclusive processes of current interest (1/2). Factorization and universality. 1s/u CEA Saclay DVCS Q[′]₂ Covariant and Positive GPD Perturbative Generalized Models Parton Distributions Introduction factorization b_v Nonperturbative Phenomenology X +status

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

Definition Polynomiality Double Distributions Positivity

Perturbative

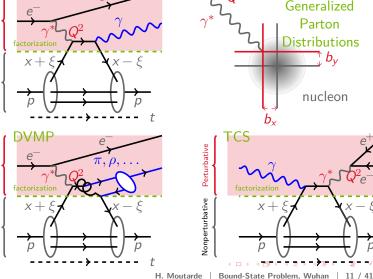
Nonperturbative

Overlan

GPDs from LFWFs

Radon transform Covariant extension Inverse Radon Example

Conclusion



H. Moutarde

 $t \sim$

Exclusive processes of current interest (1/2). Factorization and universality.

Covariant and Positive GPD Models

Perturbative

Nonperturbative

Perturbative

Nonperturbative

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

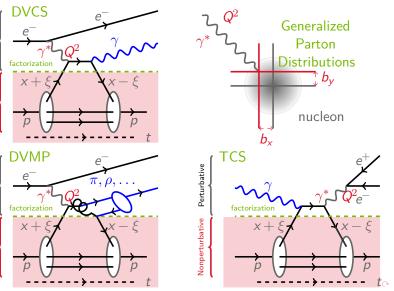
Theoretical framework

- Definition Polynomiality Double Distributions
- Positivity Overlan

GPDs from LFWFs

Radon transform Covariant extension Inverse Radon Example

Conclusion



H. Moutarde

Bound-State Problem, Wuhan | 11 / 41

Exclusive processes of present interest (2/2). Factorization and universality.

Covariant and Positive GPD Models

Introduction

Phenomenology status

Experimental access DVCS Kinematics

Universality tests Towards 3D images

Theoretical framework

- Definition
- Polynomiality
- Double Distributions
- Positivity
- Overlap

GPDs from LFWFs

Radon transform Covariant extension Inverse Radon Example

Conclusion

Bjorken regime : large Q^2 and fixed $xB \simeq 2\xi/(1+\xi)$

- Partonic interpretation relies on factorization theorems.
- All-order proofs for DVCS, TCS and some DVMP.
- GPDs depend on a (arbitrary) factorization scale μ_F .
 - **Consistency** requires the study of **different channels**.

GPDs enter DVCS through **Compton Form Factors** :

$$\mathcal{F}(\xi, t, Q^2) = \int_{-1}^{1} dx C\left(x, \xi, \alpha_{S}(\mu_{F}), \frac{Q}{\mu_{F}}\right) F(x, \xi, t, \mu_{F})$$

for a given GPD F.

• CFF \mathcal{F} is a **complex function**.

H. Moutarde

Covariant and Positive GPD Models

Introduction

Phenomenology status

Experimental access
DVCS Kinematics
Universality tests
Towards 3D images

Theoretical framework

Definition Polynomiality

Double Distributions

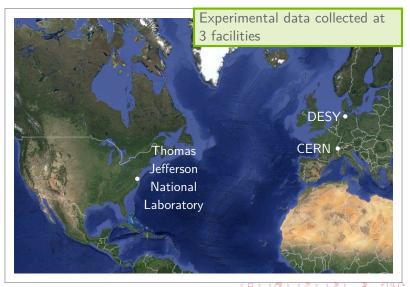
Positivity

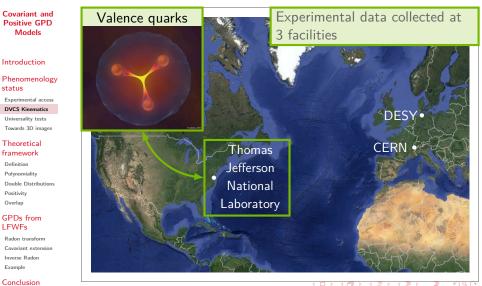
Overlap

GPDs from LFWFs

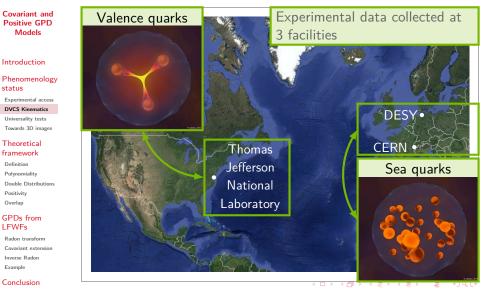
Radon transform Covariant extension Inverse Radon Example

Conclusion





H. Moutarde



Covariant and Positive GPD Models

Introduction

Phenomenology status

Experimental access
DVCS Kinematics

Universality tests

Towards 3D images

Theoretical framework

Definition Polynomiality

Double Distributions

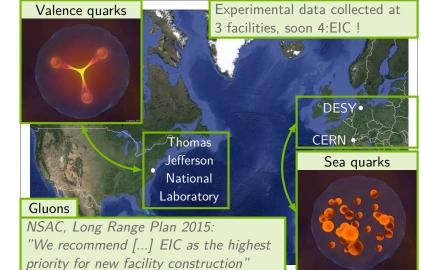
Positivity

Overlap

GPDs from LFWFs

Radon transform Covariant extension Inverse Radon Example

Conclusion



H. Moutarde

Typical DVCS kinematics. Probing gluons, sea and valence guarks through DVCS.

Introduction

Phenomenology status

Experimental access

DVCS Kinematics

Universality tests

Towards 3D images

Theoretical framework

Definition

Polynomiality

Double Distributions

Positivity

Overlap

GPDs from LFWFs

Radon transform

Covariant extension

Inverse Radon

Example

Conclusion

Study the harmonic structure of $ep \rightarrow ep\gamma$ amplitude.

Diehl *et al.*, Phys. Lett. **B411**, 193 (1997)

_	Kinematics			
Experiment	х _В	$Q^2 \; [\text{GeV}^2]$	$t [{\rm GeV}^2]$	
HERA	0.001	8.00	-0.30	
COMPASS	0.05	2.00	-0.20	
HERMES	0.09	2.50	-0.12	
CLAS	0.19	1.25	-0.19	
HALL A	0.36	2.30	-0.23	

 $\langle \Box \rangle \langle \Box$

Goloskokov-Kroll (GK) model on DVCS. No parameter of the GK model was tuned to analyse DVCS.

Covariant and Positive GPD Beam Charge Asymmetry, HERMES Models $A\cos 0\phi$ 0.2 Introduction 0.1 Phenomenology status 0 Experimental access -0.1 DVCS Kinematics Universality tests -0.2 Towards 3D images -0.3 $1\cos\phi$ Theoretical 0.2 framework Definition 0.1 Polynomiality Double Distributions Positivity -0.1 Overlan -0.2 GPDs from LFWFs -0.3 0.1 0.2 0.3 0.4 0.5 Radon transform -t [GeV²] Covariant extension Inverse Radon Kroll et al., Eur. Phys. J. C73, 2278 (2013) Example Conclusion H. Moutarde Bound-State Problem, Wuhan 15 / 41

Cea

Goloskokov-Kroll (GK) model on DVCS. No parameter of the GK model was tuned to analyse DVCS.

Covariant and Positive GPD Models

Introduction

Phenomenology status

Experimental access DVCS Kinematics

Universality tests

Towards 3D images

Theoretical framework

Definition

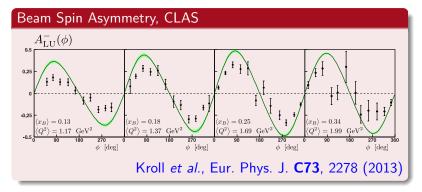
- Polynomiality
- Double Distributions
- Positivity
- Overlap

GPDs from LFWFs

Radon transform Covariant extension Inverse Radon

Example

Conclusion



H. Moutarde | Bound-State Problem, Wuhan | 15 / 41

イロト イポト イヨト イヨト

Summary of first extractions. Feasibility of twist-2 analysis of existing data.

Covariant and Positive GPD Models

Introduction

Phenomenology status

- Experimental access DVCS Kinematics
- Universality tests

Towards 3D images

Theoretical framework

Definition Polynomiality

Double Distributions

Positivity

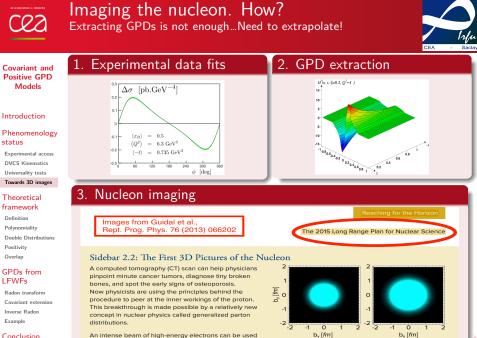
Overlap

GPDs from LFWFs

Radon transform Covariant extension Inverse Radon Example

Conclusion

- **Dominance** of twist-2 and **validity** of a GPD analysis of DVCS data.
- *ImH* **best determined**. Large uncertainties on *ReH*.
- However sizable higher twist contamination for DVCS measurements.
- Already some indications about the invalidity of the H-dominance hypothesis with unpolarized data.



An intense beam of high-energy electrons can be used

Imaging the nucleon. How? Extracting GPDs is not enough...Need to extrapolate!

Covariant and Positive GPD Models

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

Definition Polynomiality

Double Distributions

Positivity

Overlap

GPDs from LFWFs

Radon transform Covariant extension Inverse Radon Example

Conclusion

1 Extract $H(x, \xi, t, \mu_F^{ref})$ from experimental data.

- **Extrapolate** to vanishing skewness $H(x, 0, t, \mu_F^{ref})$.
- **3 Extrapolate** $H(x, 0, t, \mu_F^{ref})$ up to infinite t.
- 4 **Compute** 2D Fourier transform in transverse plane:

$$H(x, b_{\perp}) = \int_{0}^{+\infty} \frac{\mathrm{d}\Delta_{\perp}}{2\pi} \,\Delta_{\perp} \,J_0(b_{\perp}\Delta_{\perp}) \,H(x, 0, -\Delta_{\perp}^2)$$

- 5 Propagate uncertainties.
- **6 Control** extrapolations with an accuracy matching that of experimental data with **sound** GPD models.

Theoretical framework

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

Covariant and Positive GPD Models

$$\begin{array}{l} H^{q}_{\pi}(x,\xi,t) &= \\ \frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} \, e^{ixP^{+}z^{-}} \left\langle \pi, P + \frac{\Delta}{2} \middle| \, \bar{q} \left(-\frac{z}{2} \right) \gamma^{+}q \left(\frac{z}{2} \right) \middle| \pi, P - \frac{\Delta}{2} \right\rangle_{\substack{z^{+}=0\\z_{\perp}=0}} \end{array}$$

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests

Towards 3D images

n

Theoretical framework

Definition

Polynomiality Double Distributions

Positivity

Overlap

GPDs from LFWFs

Radon transform Covariant extension Inverse Radon

Example

Conclusion

with $t = \Delta^2$ and $\xi = -\Delta^+/(2P^+)$.

References

Müller *et al.*, Fortschr. Phys. **42**, 101 (1994) Ji, Phys. Rev. Lett. **78**, 610 (1997) Radyushkin, Phys. Lett. **B380**, 417 (1996)

PDF forward limit

 z^3

$$H^q(x,0,0) = q(x)$$

 < □ > < ⊡ > < ⊡ > < ≣ > < ≡ > < ≡ < ○ ○</td>

 H. Moutarde
 Bound-State Problem, Wuhan
 19 / 41

Covariant and Positive GPD Models

$$\begin{aligned} H^{q}_{\pi}(x,\xi,t) &= \\ \frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} \, e^{ixP^{+}z^{-}} \left\langle \pi, P + \frac{\Delta}{2} \right| \bar{q} \left(-\frac{z}{2} \right) \gamma^{+} q \left(\frac{z}{2} \right) \left| \pi, P - \frac{\Delta}{2} \right\rangle_{\substack{z^{+}=0\\z_{+}=0}} \end{aligned}$$

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests

Towards 3D images

n

Theoretical framework

Definition

Polynomiality Double Distributions Positivity Overlap

GPDs from LFWFs

Radon transform Covariant extension Inverse Radon

Example

Conclusion

with $t = \Delta^2$ and $\xi = -\Delta^+/(2P^+)$.

References

Müller *et al.*, Fortschr. Phys. **42**, 101 (1994) Ji, Phys. Rev. Lett. **78**, 610 (1997) Radyushkin, Phys. Lett. **B380**, 417 (1996)

PDF forward limit

 z^3

Form factor sum rule

$$\int_{1}^{+1} dx H^{q}(x,\xi,t) = F_{1}^{q}(t)$$

H. Moutarde

Bound-State Problem, Wuhan 19 / 41

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Covariant and Positive GPD Models

Introduction

$$\begin{array}{l} H^{q}_{\pi}(x,\xi,t) &= \\ \frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} \, e^{ixP^{+}z^{-}} \left\langle \pi, P + \frac{\Delta}{2} \right| \bar{q} \left(-\frac{z}{2} \right) \gamma^{+}q \left(\frac{z}{2} \right) \left| \pi, P - \frac{\Delta}{2} \right\rangle_{\substack{z^{+}=0\\z_{\perp}=0}} \end{array}$$

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

Definition

Polynomiality Double Distributions Positivity Overlap

GPDs from LFWFs

- Radon transform Covariant extension Inverse Radon
- Example

with $t = \Delta^2$ and $\xi = -\Delta^+/(2P^+)$.

References

Müller *et al.*, Fortschr. Phys. **42**, 101 (1994) Ji, Phys. Rev. Lett. **78**, 610 (1997) Radyushkin, Phys. Lett. **B380**, 417 (1996)

- PDF forward limit
- Form factor sum rule

 z^3

• H^q is an **even function** of ξ from time-reversal invariance.

Covariant and Positive GPD Models

$$\begin{aligned} H^{q}_{\pi}(x,\xi,t) &= \\ \frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} \, e^{ixP^{+}z^{-}} \left\langle \pi, P + \frac{\Delta}{2} \right| \bar{q} \left(-\frac{z}{2} \right) \gamma^{+} q \left(\frac{z}{2} \right) \left| \pi, P - \frac{\Delta}{2} \right\rangle_{\substack{z^{+}=0\\z_{+}=0}} \end{aligned}$$

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

Definition

Polynomiality Double Distributions Positivity Overlap

GPDs from LFWFs

Radon transform Covariant extension Inverse Radon Example

Conclusion

with $t = \Delta^2$ and $\xi = -\Delta^+/(2P^+)$.

References

Müller *et al.*, Fortschr. Phys. **42**, 101 (1994) Ji, Phys. Rev. Lett. **78**, 610 (1997) Radyushkin, Phys. Lett. **B380**, 417 (1996)

- PDF forward limit
- Form factor sum rule

 z^3

- H^q is an **even function** of ξ from time-reversal invariance.
 - H^q is **real** from hermiticity and time-reversal invariance.

H. Moutarde

Bound-State Problem, Wuhan | 19 / 41

Covariant and Positive GPD Models

Polynomiality

Introduction

Phenomenology status

Experimental access

DVCS Kinematics

Universality tests

Towards 3D images

Theoretical framework

Definition

Polynomiality

Double Distributions

Positivity

Overlap

GPDs from LFWFs

Radon transform

Covariant extension

Inverse Radon

Example

Conclusion

 $\int_{-1}^{+1} dx x^n H^q(x,\xi,t) = \text{polynomial in } \xi$

Covariant and				
Positive GPD)			
Models				

Polynomiality

Lorentz covariance

Introduction

Phenomenology status

- Experimental access
- DVCS Kinematics
- Universality tests
- Towards 3D images

Theoretical framework

- Definition
- Polynomiality
- Double Distributions
- Positivity
- Overlap

GPDs from LFWFs

- Radon transform
- Covariant extension
- Inverse Radon
- Example

Conclusion

イロト イポト イヨト イヨト

Covariant and Positive GPD Models

Polynomiality

Positivity

Phenomenology status

Introduction

- Experimental access
- **DVCS** Kinematics
- Universality tests
- Towards 3D images

Theoretical framework

- Definition
- Polynomiality
- Double Distributions
- Positivity
- Overlap

GPDs from LFWFs

- Radon transform
- Covariant extension
- Inverse Radon
- Example

Conclusion

Lorentz covariance

$$H^{q}(x,\xi,t) \leq \sqrt{q\left(rac{x+\xi}{1+\xi}
ight)q\left(rac{x-\xi}{1-\xi}
ight)}$$

Covariant and Positive GPD Models

Polynomiality

Positivity

Phenomenology status

- Experimental access
- **DVCS** Kinematics

Introduction

- Universality tests
- Towards 3D images

Theoretical framework

Definition

- Polynomiality
- Double Distributions
- Positivity
- Overlap

GPDs from LFWFs

- Radon transform
- Covariant extension
- Inverse Radon
- Example

Conclusion

Lorentz covariance

Positivity of Hilbert space norm

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

Definition

- Polynomiality
- Double Distributions
- Positivity
- Overlap

GPDs from LFWFs

- Radon transform
- Covariant extension
- Inverse Radon
- Example

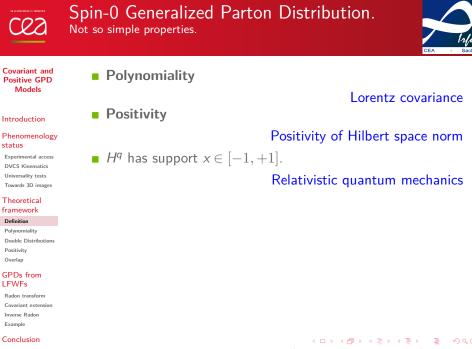
Conclusion

Lorentz covariance

Positivity of Hilbert space norm

• H^q has support $x \in [-1, +1]$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



Covariant and Positive GPD Models Polynomiality

Positivity

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

Definition

Polynomiality

Double Distributions

Positivity

Overlap

GPDs from LFWFs

Radon transform

Covariant extension

Inverse Radon

Example

Conclusion

Lorentz covariance

Positivity of Hilbert space norm

• H^q has support $x \in [-1, +1]$.

Relativistic quantum mechanics

Soft pion theorem (pion target)

$$H^{q}(x,\xi=1,t=0) = \frac{1}{2}\phi_{\pi}^{q}\left(\frac{1+x}{2}\right)$$

 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)
 (□)</t

Covariant and Positive GPD Models Polynomiality

Positivity

Introduction Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

- Definition
- Polynomiality
- Double Distributions
- Positivity
- Overlap

GPDs from LFWFs

- Radon transform
- Covariant extension
- Inverse Radon
- Example

Conclusion

Lorentz covariance

Positivity of Hilbert space norm

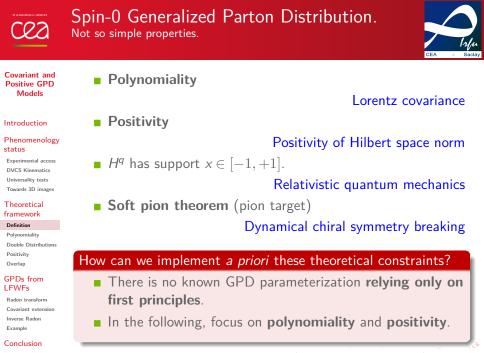
• H^q has support $x \in [-1, +1]$.

Relativistic quantum mechanics

Soft pion theorem (pion target)

Dynamical chiral symmetry breaking

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



Polynomiality. Mixed constraint from Lorentz invariance and discrete symmetries.

21 / 41

Covariant and Positive GPD Models

Introduction

Phenomenology status

- Experimental access
- DVCS Kinematics
- Universality tests Towards 3D images

Theoretical framework

- Definition
- Polynomiality
- Double Distributions Positivity Overlap

GPDs from LFWFs

Radon transform Covariant extension Inverse Radon

Example

Conclusion

• Express Mellin moments of GPDs as **matrix elements**:

$$\int_{-1}^{+1} \mathrm{d}x \, x^m H^q(x,\xi,t)$$

$$\frac{1}{2(P^+)^{m+1}}\left\langle P+\frac{\Delta}{2}\right|\bar{q}(0)\gamma^+(i\overleftrightarrow{D}^+)^mq(0)\left|P-\frac{\Delta}{2}\right\rangle$$

■ Identify the **Lorentz structure** of the matrix element:

linear combination of $(P^+)^{m+1-k}(\Delta^+)^k$ for $0\leq k\leq m+1$

- Remember definition of skewness $\Delta^+ = -2\xi P^+$.
- Select even powers to implement time reversal.
- Obtain polynomiality condition:

$$\int_{-1}^{1} \mathrm{d}x \, x^m H^q(x,\xi,t) = \sum_{i=0 \atop \text{even}}^{m} (2\xi)^i C^q_{mi}(t) + (2\xi)^{m+1} C^q_{mm+1}(t) \; .$$

Bound-State Problem, Wuhan

H. Moutarde

Double Distributions. A convenient tool to encode GPD properties.

Covariant and Positive GPD Models

• Define Double Distributions F^q and G^q as matrix elements of twist-2 quark operators:

Introduction
Phenomenology
$$\left\langle P + \frac{\Delta}{2} \middle| \bar{q}(0) \gamma^{\{\mu} i \overset{\leftrightarrow}{\mathsf{D}}^{\mu_1} \dots i \overset{\leftrightarrow}{\mathsf{D}}^{\mu_m\}} q(0) \middle| P - \frac{\Delta}{2} \right\rangle = \sum_{k=0}^{m} \binom{m}{k}$$

A 1

$$\begin{array}{l} \begin{array}{c} \text{status} & & & \\ \text{Experimental access} \\ \text{DVCS Kinematics} \\ \text{Universality tests} \\ \text{Towards 3D images} \end{array} \left[\mathcal{F}^{q}_{mk}(t) 2 \mathcal{P}^{\left\{\mu\right.} - \mathcal{G}^{q}_{mk}(t) \Delta^{\left\{\mu\right.} \right] \mathcal{P}^{\mu_{1}} \dots \mathcal{P}^{\mu_{m-k}} \left(-\frac{\Delta}{2} \right)^{\mu_{m-k+1}} \dots \left(-\frac{\Delta}{2} \right)^{\mu_{m}} \end{array} \right]$$

Theoretical framework

Ex D١ Un То

Definition

Polynomiality

- Double Distributions
- Positivity
- Overlan

GPDs from LFWFs

Radon transform Covariant extension

Inverse Radon Example

Conclusion

 $N_{\rm DD}$

with

$$F^{q}_{mk} = \int_{\Omega_{\rm DD}} \mathrm{d}\beta \mathrm{d}\alpha \,\alpha^{k}\beta^{m-k}F^{q}(\beta,\alpha)$$

$$G^{q}_{mk} = \int_{\Omega_{\rm DD}} \mathrm{d}\beta \mathrm{d}\alpha \, \alpha^{k} \beta^{m-k} G^{q}(\beta, \alpha)$$

Müller et al., Fortschr. Phys. 42, 101 (1994) Radyushkin, Phys. Rev. D59, 014030 (1999) Radyushkin, Phys. Lett. B449, 81 (1999) . H. Moutarde Bound-State Problem, Wuhan 22 / 41

Double Distributions. Relation to Generalized Parton Distributions.

Covariant and Positive GPD Models

Representation of GPD:

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

- Definition
- Polynomiality

Double Distributions

Positivity

Overlap

GPDs from LFWFs

Radon transform Covariant extension

Inverse Radon

Example

Conclusion

 $H^{q}(x,\xi,t) = \int_{\Omega_{\rm DD}} \mathrm{d}\beta \mathrm{d}\alpha \,\delta(x-\beta-\alpha\xi) \big(F^{q}(\beta,\alpha,t) + \xi G^{q}(\beta,\alpha,t)\big)$

• Support property:
$$x \in [-1, +1]$$
.

- Discrete symmetries: F^q is α -even and G^q is α -odd.
- **Pobylitsa gauge**: any representation (*F*^q, *G*^q) can be recast in one representation with a single DD *f*^q:

$$\mathcal{H}^{q}(x,\xi,t) = (1-x) \int_{\Omega_{\rm DD}} \mathrm{d}\beta \mathrm{d}\alpha \, f^{q}(\beta,\alpha,t) \delta(x-\beta-\alpha\xi)$$

Pobylitsa, Phys. Rev. **D67**, 034009 (2003) Müller, Few Body Syst. **55**, 317 (2014)

H. Moutarde

(日)

OF LA RECAERCHE À L'INDUSTRIE

Double Distributions. Lorentz covariance by example.

Covariant and Positive GPD Models

Introduction

Phenomenology status

- Experimental access
- DVCS Kinematics
- Universality tests
- Towards 3D images

Theoretical framework

Definition

- Polynomiality
- Double Distributions
- Positivity
- Overlap

GPDs from LFWFs

- Radon transform
- Covariant extension
- Inverse Radon
- Example

Conclusion

Choose
$$F^q(\beta, \alpha) = 3\beta\theta(\beta)$$
 ad $G^q(\beta, \alpha) = 3\alpha\theta(\beta)$:

$$H^{q}(x,\xi) = 3x \int_{\Omega} d\beta d\alpha \,\delta(x - \beta - \alpha\xi)$$

Simple analytic expressions for the GPD:

$$\begin{aligned} & \mathcal{H}(x,\xi) &= \frac{6x(1-x)}{1-\xi^2} \text{ if } 0 < |\xi| < x < 1, \\ & \mathcal{H}(x,\xi) &= \frac{3x(x+|\xi|)}{|\xi|(1+|\xi|)} \text{ if } -|\xi| < x < |\xi| < 1. \end{aligned}$$

H. Moutarde | Bound-State Problem, Wuhan | 24 / 41

イロト イポト イヨト イヨト

OF LA RECARDAR À L'INDUSTRIE

Double Distributions. Lorentz covariance by example.

Covariant and	 Compute first Mellin moments. 				
Positive GPD Models	п	$\int_{-\xi}^{+\xi} \mathrm{d}x x^n H(x,\xi)$	$\int_{+\xi}^{+1} \mathrm{d}x x^n H(x,\xi)$	$\int_{-\xi}^{+1} \mathrm{d}x x^n H(x,\xi)$	
Introduction Phenomenology status	0	$\frac{1+\xi-2\xi^2}{1+\xi}$	$\frac{2\xi^2}{1+\xi}$	1	
Experimental access DVCS Kinematics Universality tests Towards 3D images	1	$\frac{1 + \xi + \xi^2 - 3\xi^3}{2(1 + \xi)}$	$\frac{2\xi^3}{1+\xi}$	$\frac{1+\xi^2}{2}$	
Theoretical framework Definition Polynomiality	2	$\frac{3(1-\xi)(1+2\xi+3\xi^2+4\xi^3)}{10(1+\xi)}$	$\frac{6\xi^4}{5(1+\xi)}$	$\frac{3(1+\xi^2)}{10}$	
Double Distributions Positivity Overlap	3	$\frac{1\!+\!\xi\!\!+\!\xi^2\!+\!\xi^3\!+\!\xi^4\!-\!5\xi^5}{5(1\!+\!\xi)}$	$\frac{6\xi^5}{5(1+\xi)}$	$\frac{1+\xi^2+\xi^4}{5}$	
GPDs from LFWFs Radon transform Covariant extension	4	$\frac{1\!+\!\xi\!\!+\!\xi^2\!+\!\xi^3\!+\!\xi^4\!+\!\xi^5\!-\!6\xi^6}{7(1\!+\!\xi)}$	$\frac{6\xi^6}{7(1+\xi)}$	$\frac{1+\xi^2+\xi^4}{7}$	
Inverse Radon Example	Expressions get more complicated as n increases But				
Conclusion	they always yield polynomials!				
	H. Moutarde Bound-State Problem, Wuhan 24 / 41				

Positivity. A consequence of the positivity of the nom in a Hilbert space.

Covariant and Positive GPD Models

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests

Towards 3D images

Theoretical framework

Definition

Polynomiality

Double Distributions

Positivity

Overlap

GPDs from LFWFs

Radon transform Covariant extension Inverse Radon Example

Conclusion

- Identify the matrix element defining a GPD as an inner product of two different states.
- Apply Cauchy-Schwartz inequality, and identify PDFs at specific kinematic points, *e.g.*:

$$|H^{q}(x,\xi,t)| \leq \sqrt{\frac{1}{1-\xi^{2}}q\left(\frac{x+\xi}{1+\xi}\right)q\left(\frac{x-\xi}{1-\xi}\right)}$$

 This procedures yields infinitely many inequalities stable under LO evolution.

Pobylitsa, Phys. Rev. D66, 094002 (2002)

• The **overlap representation** guarantees *a priori* the fulfillment of positivity constraints.

イロト イヨト イモト イモト

Overlap representation. A first-principle connection with Light Front Wave Functions.

Covariant and Positive GPD Models

Decompose an hadronic state $|H; P, \lambda\rangle$ in a Fock basis:

$$|H; P, \lambda\rangle = \sum_{N,\beta} \int [\mathrm{d}x \mathrm{d}\mathbf{k}_{\perp}]_N \psi_N^{(\beta,\lambda)}(x_1, \mathbf{k}_{\perp 1}, \dots, x_N, \mathbf{k}_{\perp N}) |\beta, k_1, \dots, k_N\rangle$$

Introduction Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

 H^q

Theoretical framework

Definition

Polynomiality

Double Distributions

Positivity

Overlap

GPDs from LFWFs

Radon transform Covariant extension Inverse Radon Example

Conclusion

• Derive an expression for the pion GPD in the DGLAP region $\xi \le x \le 1$:

$$(x,\xi,t) \propto \sum_{\beta,j} \int [\mathrm{d}\bar{x}\mathrm{d}\bar{\mathbf{k}}_{\perp}]_{N} \delta_{j,q} \delta(x-\bar{x}_{j}) \big(\psi_{N}^{(\beta,\lambda)}\big)^{*} (\hat{x}',\hat{\mathbf{k}}_{\perp}') \psi_{N}^{(\beta,\lambda)}(\tilde{x},\tilde{\mathbf{k}}_{\perp})$$

with $\tilde{x}, \tilde{\mathbf{k}}_{\perp}$ (resp. $\hat{x}', \hat{\mathbf{k}}'_{\perp}$) generically denoting incoming (resp. outgoing) parton kinematics.

Diehl et al., Nucl. Phys. B596, 33 (2001)

Similar expression in the ERBL region $-\xi \le x \le \xi$, but with overlap of *N*- and (N + 2)-body LFWFs.

H. Moutarde

Bound-State Problem, Wuhan 26 / 41

Covariant and Positive GPD Models

Introduction

Phenomenology status

- Experimental access
- **DVCS** Kinematics
- Universality tests
- Towards 3D images

Theoretical framework

- Definition
- Polynomiality
- Double Distributions
- Positivity
- Overlap

GPDs from LFWFs

Radon transform Covariant extension Inverse Radon Example

Expressions for vertices and propagators:

$$S(p) = \left[-i\gamma \cdot p + M \right] \Delta_M(p^2)$$

$$\Delta_M(s) = \frac{1}{s + M^2}$$

$$\Gamma_\pi(k, p) = i\gamma_5 \frac{M}{f_\pi} M^{2\nu} \int_{-1}^{+1} dz \, \rho_\nu(z) \, \left[\Delta_M(k_{+z}^2) \right]^\nu$$

$$\rho_\nu(z) = R_\nu (1 - z^2)^\nu$$

with R_{ν} a normalization factor and $k_{+z} = k - p(1-z)/2$. Chang *et al.*, Phys. Rev. Lett. **110**, 132001 (2013) Only two parameters:

< ロト < 同ト < ヨト < ヨト

Covariant and Positive GPD Models

Expressions for vertices and propagators:

Phenomenology status

- Experimental access
- **DVCS** Kinematics
- Universality tests
- Towards 3D images

Theoretical framework

- Definition
- Polynomiality
- Double Distributions
- Positivity
- Overlap

GPDs from LFWFs

Radon transform Covariant extension Inverse Radon Example

 $S(p) = \left[-i\gamma \cdot p + \mathbf{M} \right] \Delta_{\mathbf{M}}(p^{2})$ $\Delta_{\mathbf{M}}(s) = \frac{1}{s + \mathbf{M}^{2}}$ $\Gamma_{\pi}(k, p) = i\gamma_{5} \frac{\mathbf{M}}{f_{\pi}} \mathbf{M}^{2\nu} \int_{-1}^{+1} \mathrm{d}z \,\rho_{\nu}(z) \left[\Delta_{\mathbf{M}}(k_{+z}^{2}) \right]^{\nu}$ $\rho_{\nu}(z) = R_{\nu}(1 - z^{2})^{\nu}$

with R_ν a normalization factor and k_{+z} = k − p(1 − z)/2.
Chang et al., Phys. Rev. Lett. 110, 132001 (2013)
Only two parameters:

Dimensionful parameter M.

イロト 不得下 イヨト イヨト 二日

Covariant and Positive GPD Models

Introduction

Phenomenology status

- Experimental access
- **DVCS** Kinematics
- Universality tests
- Towards 3D images

Theoretical framework

- Definition
- Polynomiality
- Double Distributions
- Positivity
- Overlap

GPDs from LFWFs

- Radon transform Covariant extension Inverse Radon
- Example

Conclusion

Expressions for vertices and propagators:

$$S(p) = \left[-i\gamma \cdot p + M \right] \Delta_M(p^2)$$

$$\Delta_M(s) = \frac{1}{s + M^2}$$

$$\Gamma_\pi(k, p) = i\gamma_5 \frac{M}{f_\pi} M^{2\nu} \int_{-1}^{+1} dz \,\rho_\nu(z) \, \left[\Delta_M(k_{+z}^2) \right]^\nu$$

$$\rho_\nu(z) = R_\nu (1 - z^2)^\nu$$

with R_{ν} a normalization factor and $k_{+z} = k - p(1 - z)/2$. Chang *et al.*, Phys. Rev. Lett. **110**, 132001 (2013) Only two parameters:

- Dimensionful parameter *M*.
- Dimensionless parameter ν

H. Moutarde

Bound-State Problem, Wuhan | 27 / 41

イロト イヨト イモト イモト

27 / 41

Covariant and Positive GPD Models

Introduction

Phenomenology status

Experimental access

DVCS Kinematics

Universality tests

Towards 3D images

Theoretical framework

Definition

Polynomiality

Double Distributions

Positivity

Overlap

GPDs from LFWFs

Radon transform Covariant extension Inverse Radon

Example

Conclusion

Expressions for vertices and propagators:

$$\begin{split} S(p) &= \left[-i\gamma \cdot p + M \right] \Delta_M(p^2) \\ \Delta_M(s) &= \frac{1}{s + M^2} \\ \Gamma_\pi(k,p) &= i\gamma_5 \frac{M}{f_\pi} M^{2\nu} \int_{-1}^{+1} \mathrm{d}z \, \rho_\nu(z) \, \left[\Delta_M(k_{+z}^2) \right]^\nu \\ \rho_\nu(z) &= R_\nu (1 - z^2)^\nu \end{split}$$

with R_ν a normalization factor and k_{+z} = k − p(1 − z)/2.
Chang et al., Phys. Rev. Lett. 110, 132001 (2013)
Only two parameters:

イロト イポト イヨト イヨト

Bound-State Problem, Wuhan

- Dimensionful parameter *M*.
- Dimensionless parameter v. Fixed to 1 to recover asymptotic pion DA.

H. Moutarde

Covariant and Positive GPD Models

• Evaluate LFWF in algebraic model:
$$\psi(x,{\bf k}_\perp) \propto \frac{x(1-x)}{[({\bf k}_\perp - x{\bf P}_\perp)^2 + M^2]^2}$$

Introduction

Phenomenology status

Experimental access

DVCS Kinematics

Universality tests

Towards 3D images

Theoretical

Radon transform Covariant extension Inverse Radon

Example

Conclusion

 $\psi(\mathbf{x}, \mathbf{k}_{\perp}) \propto \frac{\mathbf{x}(\mathbf{1} - \mathbf{x})}{[(\mathbf{k}_{\perp} - \mathbf{x}\mathbf{P}_{\perp})^2 + \mathbf{x}]}$ Expression for the GPD at t = 0:

$$H(x,\xi,0) \propto \frac{(1-x)^2(x^2-\xi^2)}{(1-\xi^2)^2}$$

- Overlap - Triangle diagram

Remember J. Rodríguez-Quintero's talk last Wednesday!

- Manifest 2-body symmetry.
- Expression for the PDF:

 $q(x) = 30x^2(1-x)^2$

■ Off-forward case: in progress. H. Moutarde | Bound-State Problem, Wuhan | 27 / 41

Overlap representation. Advantages and drawbacks.

Covariant and Positive GPD Models

- Physical picture.
- Positivity relations are fulfilled **by construction**.
- Implementation of symmetries of *N*-body problems.

What is not obvious anymore

What is *not* obvious to see from the wave function representation is however the **continuity of GPDs at** $x = \pm \xi$ and the **polynomiality** condition. In these cases both the DGLAP and the ERBL regions must cooperate to lead to the required properties, and this implies **nontrivial relations between the wave functions** for the different Fock states relevant in the two regions. An *ad hoc* Ansatz for the wave functions would **almost certainly lead** to GPDs that **violate the above requirements**.

Diehl, Phys. Rept. 388, 41 (2003)

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

- Definition Polynomiality
- Double Distributions
- Positivity
- Overlap

GPDs from LFWFs

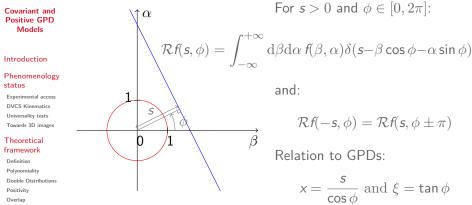
Radon transform Covariant extension Inverse Radon Example

Conclusion

GPDs from Light Front Wave Functions

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

The Radon transform. Definition and properties.



GPDs from LFWFs

Radon transform

Covariant extension Inverse Radon Example

Conclusion

 $\mathcal{R}f(-s,\phi) = \mathcal{R}f(s,\phi\pm\pi)$ Relation to GPDs: $x = \frac{s}{\cos \phi}$ and $\xi = \tan \phi$

Relation between GPD and DD in Pobylitsa gauge

$$\frac{\sqrt{1+\xi^2}}{1-x}H(x,\xi) = \mathcal{R}t^{\text{Pobylitsa}}(s,\phi) ,$$

The range of the Radon transform. The polynomiality property a.k.a. the Ludwig-Helgason condition.

31 / 41

Covariant and Positive GPD Models

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

- Definition Polynomiality
- Double Distributions
- Positivity
- Overlap

GPDs from LFWFs

Radon transform

Covariant extension Inverse Radon Example

Conclusion

 The Mellin moments of a Radon transform are homogeneous polynomials in ω = (sin φ, cos φ).

The converse is also true:

Theorem (Hertle, 1983)

Let $g(s, \omega)$ an even compactly-supported distribution. Then g is itself the Radon transform of a compactly-supported distribution if and only if the **Ludwig-Helgason consistency condition** hold:

(i) g is
$$C^{\infty}$$
 in ω ,

(ii) $\int ds s^m g(s, \omega)$ is a homogeneous polynomial of degree m for all integer $m \ge 0$.

 Double Distributions and the Radon transform are the natural solution of the polynomiality condition.

H. Moutarde Bound-State Problem, Wuhan

Implementing Lorentz covariance. Extend an overlap in the DGLAP region to the whole GPD domain.

CEA - Saciay

32 / 41

Covariant and Positive GPD Models

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

Definition Polynomiality

Double Distributions Positivity

Overlap

GPDs from LFWFs

Radon transform Covariant extension

Inverse Radon Example

Conclusion

	CEA - Saclay
DGLAP and ERBL regions	
$(x,\xi) \in \text{DGLAP} \iff s \ge $ $(x,\xi) \in \text{ERBL} \iff s \le $	
$\beta = (x+\xi)/(1+\xi)$ $\Omega_{\rm DD} (\alpha + \beta \leq 1)$	Each point (β, α) with $\beta \neq 0$ contributes to both DGLAP and ERBL regions.

Bound-State Problem, Wuhan

Implementing Lorentz covariance. Extend an overlap in the DGLAP region to the whole GPD domain.

Covariant and Positive GPD Models

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

Definition

Polynomiality

Double Distributions Positivity

Overlan

GPDs from LFWFs

Radon transform

Covariant extension

Inverse Radon Example

Conclusion

For **any model of LFWF**, one has to address the following three questions:

1 Does the extension exist?

2 If it exists, is it unique?

3 How can we compute this extension?

イロト イヨト イモト イモト

DE LA RECAERCAE À CIMENSTRA

Implementing Lorentz covariance. Unicity of the extension.

34 / 41

Covariant and Positive GPD Models

Theorem

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

- Definition Polynomiality
- Double Distributions
- Positivity
- Overlap

GPDs from LFWFs

Radon transform Covariant extension

Inverse Radon Example

Conclusion

Let f be a compactly-supported locally summable function defined on \mathbb{R}^2 and \mathcal{R} f its Radon transform. Let $(s_0, \omega_0) \in \mathbb{R} \times S^1$ and U_0 an open neighborhood of ω_0 such that:

for all $s > s_0$ and $\omega \in U_0$ $\mathcal{R}f(s, \omega) = 0$.

Then $f(\aleph) = 0$ on the half-plane $\langle \aleph | \omega_0 \rangle > s_0$ of \mathbb{R}^2 .

Consider a GPD H being zero on the DGLAP region.

- Take ϕ_0 and $s_0 \ s.t. \cos \phi_0 \neq 0$ and $|s_0| > |\sin \phi_0|$.
- Neighborhood U_0 of ϕ_0 s.t. $\forall \phi \in U_0 | \sin \phi | < |s_0|$.
- The underlying DD f has a zero Radon transform for all $\phi \in U_0$ and $s > s_0$ (DGLAP).
- Then $f(\beta, \alpha) = 0$ for all $(\beta, \alpha) \in \Omega_{DD}$ with $\beta \neq 0$.
 - Extension **unique** up to adding a **D-term**: $\delta(\beta)D(\alpha)$.

H. Moutarde Bound-State Problem, Wuhan

Computation of the extension. Numerical evaluation of the inverse Radon transform (1/3).

Covariant and Positive GPD Models

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

Definition Polynomiality

Polynomiality Double Distributions

Positivity

Overlap

GPDs from LFWFs

Radon transform Covariant extension

Inverse Radon Example

Conclusion

A discretized problem

Consider N + 1 Hilbert spaces H, H_1 , ..., H_N , and a family of continuous surjective operators $R_n : H \to H_n$ for $1 \le n \le N$. Being given $g_1 \in H_1$, ..., $g_n \in H_n$, we search f solving the following system of equations:

$$R_n f = g_n \quad \text{for } 1 \le n \le N$$

Fully discrete case

Assume f piecewise-constant with values f_m for $1 \le m \le M$. For a collection of lines $(L_n)_{1 \le n \le N}$ crossing Ω_{DD} , the Radon transform writes:

$$g_n = \mathcal{R}f = \int_{L_n} f = \sum_{m=1}^M f_m \times \text{Measure}(L_n \cap C_m) \quad \text{ for } 1 \le n \le N$$

Computation of the extension. Numerical evaluation of the inverse Radon transform (2/3).

Kaczmarz algorithm

Covariant and Positive GPD Models

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

- Definition Polynomiality Double Distributions Positivity
- Overlap

GPDs from LFWFs

Radon transform Covariant extension

Inverse Radon

Example

Conclusion

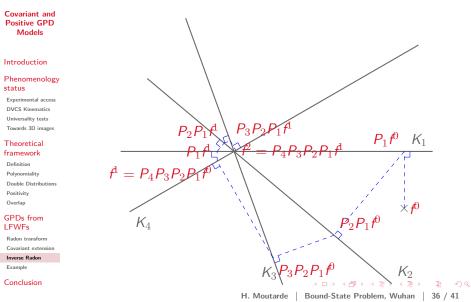
Denote P_n the orthogonal projection on the *affine* subspace $R_n f = g_n$. Starting from $f^0 \in H$, the sequence defined iteratively by: $f^{k+1} = P_N P_{N-1} \dots P_1 f^k$

converges to the solution of the system. The convergence is exponential if the projections are randomly ordered.

Strohmer and Vershynin, Jour. Four. Analysis and Appl. **15**, 437 (2009)

イロト 不得下 イヨト イヨト

Computation of the extension. Numerical evaluation of the inverse Radon transform (2/3).



Computation of the extension. Numerical evaluation of the inverse Radon transform (3/3).

Covariant and Positive GPD Models

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

- Definition Polynomiality
- Double Distributions
- Positivity
- Overlap

GPDs from LFWFs

Radon transform Covariant extension

Inverse Radon

Example

Conclusion

And if the input data are inconsistent?

- Instead of solving $g = \mathcal{R}f$, find f such that $||g \mathcal{R}f||_2$ is **minimum**.
- The solution always exists.

• The input data are **inconsistent** if $||g - \mathcal{R}f||_2 > 0$.

イロト イボト イヨト イヨト

Computation of the extension. Numerical evaluation of the inverse Radon transform (3/3).

Covariant and Positive GPD Models

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

Definition Polynomiality

Double Distributions

Positivity

Overlap

GPDs from LFWFs

Radon transform

Covariant extension

Inverse Radon

Example

Conclusion

Relaxed Kaczmarz algorithm

Let $\omega \in]0,2[$ and:

$$P_n^{\omega} = (1 - \omega) \operatorname{Id}_H + \omega P_n \quad \text{for } 1 \le n \le N$$

Write:

$$RR^{\dagger} = (R_i R_i^{\dagger})_{1 \le i,j \le N} = D + L + L^{\dagger}$$

where D is diagonal, and L is lower-triangular with zeros on the diagonal.

Computation of the extension. Numerical evaluation of the inverse Radon transform (3/3).

Covariant and Positive GPD Models

Theorem

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

Definition Polynomiality Double Distributions Positivity

Overlap

GPDs from LFWFs

Radon transform Covariant extension

Inverse Radon Example

Conclusion

Let $0 < \omega < 2$. For $f^0 \in \text{Ran } R^{\dagger}$ (e.g. $f^0 = 0$), the Kaczmarz method with relaxation converges to the unique solution $f^{\omega} \in \text{Ran } R^{\dagger}$ of:

$$R^{\dagger}(D+\omega L)^{-1}(g-Rf^{\omega})=0,$$

where the matrix D and L appear in the decomposition of RR^{\dagger} . If $g = \mathcal{R}f$ has a solution, then f^{ω} is its solution of minimal norm. Otherwise: $f^{\omega} = f_{MP} + \mathcal{O}(\omega)$.

where f_{MP} is the minimizer in H of:

$$\langle g - \mathcal{R}f | g - \mathcal{R}f \rangle_D$$
,

the inner product being defined by:

$$\left\langle h\left|k\right\rangle_{D}=\left\langle D^{-1}h\left|k\right\rangle\right\rangle$$

H. Moutarde

Test on a 1D example. Recovering a PDF from the knowledge of its Mellin moments.

Covariant and Positive GPD Models

A pion valence PDF-like example

Aim: reconstruct the PDF $q(x) = 30x^2(1-x)^2$ from the knowledge of its first 30 Mellin moments.

Introduction Phenomenology

status

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

Definition Polynomiality Double Distributions Positivity Overlan

GPDs from LFWFs

- Radon transform Covariant extension Inverse Radon
- Example

Conclusion

- Reconstruction Target PDF
- Piecewise-constant PDF: 20 values.
- Input: 30 Mellin moments.
- Unrelaxed method $\omega = 1$
- 10000 iterations.
- Extensive testing in progress
 - Various inputs: PDFs and LFWFs.
 - Numerical noise.

H. Moutarde

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > Bound-State Problem, Wuhan

38 / 41

Conclusion

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

Conclusions and prospects. Positivity and polynomiality constraints consistently implemented.

40 / 41

Covariant and Positive GPD Models

Introduction

Phenomenology status

Experimental access DVCS Kinematics Universality tests Towards 3D images

Theoretical framework

- Definition
- Polynomiality
- Double Distributions
- Positivity
- Overlap

GPDs from LFWFs

Radon transform Covariant extension Inverse Radon Example

Conclusion

- Last decade demonstrated maturity of GPD phenomenology.
- Good theoretical control on the path between GPD models and experimental data.
- **Challenging constraints** expected from Jefferson Lab in the valence region.
- Building of **QCD-inspired models** to make progress.
- **Systematic** procedure to construct GPD models from any "reasonable" Ansatz of LFWFs.
- Characterization of the existence and unicity of the extension from the DGLAP to the ERBL region.
- Numerical tests in progress. Stay tuned!

H. Moutarde Bound-State Problem, Wuhan

Commissariat à l'énergie atomique et aux énergies alternatives DSM Centre de Saclay | 91191 Gif-sur-Yvette Cedex Irfu T, +330(19 60 67 38 | F, +330(1) 60 68 78 84 SPINI

Etablissement public à caractère industriel et commercial R.C.S. Paris B 775 685 01

####