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Motivation.
Study nucleon structure to shed new light on nonperturbative QCD.

Perturbative
QCD

Asymptotic
freedom

Nonperturbative
QCD

Perturbative AND nonperturbative QCD at work
Define universal objects describing 3D nucleon structure:

Generalized Parton Distributions (GPD).
Relate GPDs to measurements using factorization:

Virtual Compton Scattering (DVCS, TCS),
Deeply Virtual Meson production (DVMP).

Get experimental knowledge of nucleon structure.
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Motivation.
QCD large distance dynamics from the hadron structure viewpoint.

Lattice QCD clearly shows that the mass of hadrons is
generated by the interaction, not by the quark masses.

Durr et al., Science 322, 1224 (2008)
Can we map the location of mass inside a hadron?
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Imaging the origin of mass.
Identification of underlying mechanisms from parton distributions.

How can we recover the well-
known characterics of the
nucleon from the properties of
its colored building blocks?

Mass?
Spin?
Charge?
…

What are the relevant effec-
tive degrees of freedom and
effective interaction at large
distance?
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Anatomy of hadrons.
GPDs, 3D hadron imaging, and beyond (1/4).

Correlation of the longitudinal momentum and the
transverse position of a parton in a hadron.
DVCS recognized as the cleanest channel to access GPDs.

Deeply Virtual Compton Scattering (DVCS)

e−
DVCS e−

γ∗, Q2

p p

γ

x + ξ x− ξ
factorization µF

t

R⊥

Transverse center
of momentum R⊥
R⊥ =

∑
i xir⊥i

24 GPDs Fi(x, ξ, t, µF) for each parton type i = g, u, d, . . .
for leading and sub-leading twists.
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Anatomy of hadrons.
GPDs, 3D hadron imaging, and beyond (1/4).

Correlation of the longitudinal momentum and the
transverse position of a parton in a hadron.
DVCS recognized as the cleanest channel to access GPDs.

Deeply Virtual Compton Scattering (DVCS)

e−
DVCS e−

γ∗, Q2

p p

γ

x + ξ x− ξ
factorization µF

t

R⊥

Transverse center
of momentum R⊥
R⊥ =

∑
i xir⊥ib⊥

Impact
parameter b⊥

24 GPDs Fi(x, ξ, t, µF) for each parton type i = g, u, d, . . .
for leading and sub-leading twists.
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Anatomy of hadrons.
GPDs, 3D hadron imaging, and beyond (1/4).

Correlation of the longitudinal momentum and the
transverse position of a parton in a hadron.
DVCS recognized as the cleanest channel to access GPDs.

Deeply Virtual Compton Scattering (DVCS)

e−
DVCS e−

γ∗, Q2

p p

γ

x + ξ x− ξ
factorization µF

t

R⊥

Transverse center
of momentum R⊥
R⊥ =

∑
i xir⊥ib⊥

Impact
parameter b⊥

xP+

Longitudinal
momentum xP+

24 GPDs Fi(x, ξ, t, µF) for each parton type i = g, u, d, . . .
for leading and sub-leading twists.
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Anatomy of hadrons.
GPDs, 3D hadron imaging, and beyond (1/4).

Correlation of the longitudinal momentum and the
transverse position of a parton in a hadron.
DVCS recognized as the cleanest channel to access GPDs.

Deeply Virtual Compton Scattering (DVCS)

e−
DVCS e−

γ∗, Q2

p p

γ

x + ξ x− ξ
factorization µF

t

R⊥

Transverse center
of momentum R⊥
R⊥ =

∑
i xir⊥ib⊥

Impact
parameter b⊥

xP+

Longitudinal
momentum xP+

−1 < x < +1
−1 < ξ < +1

24 GPDs Fi(x, ξ, t, µF) for each parton type i = g, u, d, . . .
for leading and sub-leading twists.
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Anatomy of hadrons.
GPDs, 3D hadron imaging, and beyond (2/4).

Probabilistic interpretation of Fourier transform of
GPD(x, ξ = 0, t) in transverse plane.

ρ(x, b⊥, λ, λN) =
1

2

[
H(x, 0, b2⊥) +

bj
⊥ϵjiSi

⊥
M

∂E
∂b2⊥

(x, 0, b2⊥)

+λλNH̃(x, 0, b2⊥)
]

Notations : quark helicity λ, nucleon longitudinal
polarization λN and nucleon transverse spin S⊥.

Burkardt, Phys. Rev. D62, 071503 (2000)
Can we obtain this picture from exclusive measurements?

x ~ 0.3xx < 0.01 ~ 0.1

spin
transverse

(c)

b

xP

longitud.

(a)

transverse

pion
cloud quarks

valence

(b)

quarks, gluons
singlet

quarks move
faster

slower Weiss, AIP Conf.
Proc. 1149,
150 (2009)
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Anatomy of hadrons.
GPDs, 3D hadron imaging, and beyond (3/4).

Most general structure of matrix element of energy
momentum tensor between nucleon states:⟨

N,P +
∆

2

∣∣∣∣Tµν

∣∣∣∣N,P− ∆

2

⟩
= ū

(
P +

∆

2

)[
A(t)γ(µPν)∆

2

+B(t)P(µiσν)λ∆λ

2M +
C(t)
M (∆µ∆ν −∆2ηµν)

]
u
(

P− ∆

2

)
with t = ∆2.
Key observation: link between GPDs and gravitational
form factors∫

dx xHq(x, ξ, t) = Aq(t) + 4ξ2Cq(t)∫
dx xEq(x, ξ, t) = Bq(t)− 4ξ2Cq(t)

Ji, Phys. Rev. Lett. 78, 610 (1997)
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Anatomy of hadrons.
GPDs, 3D hadron imaging, and beyond (4/4).

Spin sum rule:∫
dx x

(
Hq(x, ξ, 0) + Eq(x, ξ, 0)

)
= Aq(0) + Bq(0) = 2Jq

Ji, Phys. Rev. Lett. 78, 610 (1997)

Shear and pressure of a hadron considered as a
continuous medium:⟨

N
∣∣Tij(⃗r)

∣∣N
⟩

N = s(r)
(

rirj

r⃗2 −
1

3
δij
)
+ p(r)δij

Polyakov and Shuvaev, hep-ph/0207153
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Towards hadron tomography.
GPDs as a scalpel-like probe of hadron structure.

1 Phenomenology status: relevance and need for
parameterizations.

2 Theoretical framework: definition and existing
constraints.

3 GPDs from Light Front Wave Functions: a promising
computing strategy.

How can we make this picture? What do we learn from it?
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Exclusive processes of current interest (1/2).
Factorization and universality.

e−
DVCS e−

γ∗ Q2

p p
t

x + ξ x− ξ

γ

factorization

nucleon

Generalized
Parton

Distributions
γ∗

Q2

by

bx

e−
DVMP e−

γ∗ Q2

p p
t

x + ξ x− ξ
factorization

π, ρ, . . .

TCS

e−

e+

γ∗ Q2

pp
t

x + ξ x− ξ

γ

factorization
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Exclusive processes of present interest (2/2).
Factorization and universality.

Bjorken regime : large Q2 and fixed xB ≃ 2ξ/(1 + ξ)

Partonic interpretation relies on factorization theorems.
All-order proofs for DVCS, TCS and some DVMP.
GPDs depend on a (arbitrary) factorization scale µF.
Consistency requires the study of different channels.

GPDs enter DVCS through Compton Form Factors :

F(ξ, t,Q2) =

∫ 1

−1
dx C

(
x, ξ, αS(µF),

Q
µF

)
F(x, ξ, t, µF)

for a given GPD F.
CFF F is a complex function.
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Need for global fits of world data.
Different facilities will probe different kinematic domains.

Thomas
Jefferson
National

Laboratory

DESY

CERN

Experimental data collected at
3 facilities, soon 4:EIC !
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Need for global fits of world data.
Different facilities will probe different kinematic domains.

Thomas
Jefferson
National

Laboratory

DESY

CERN

Experimental data collected at
3 facilities, soon 4:EIC !

Valence quarks
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Need for global fits of world data.
Different facilities will probe different kinematic domains.
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National

Laboratory

DESY

CERN
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Need for global fits of world data.
Different facilities will probe different kinematic domains.

Thomas
Jefferson
National

Laboratory

DESY

CERN

Experimental data collected at
3 facilities, soon 4:EIC !

Valence quarks

Sea quarks

Gluons
NSAC, Long Range Plan 2015:
”We recommend [...] EIC as the highest
priority for new facility construction”
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Typical DVCS kinematics.
Probing gluons, sea and valence quarks through DVCS.

e− e−

γ∗

S⃗

γ

ϕS

ϕ

Study the harmonic structure
of ep→ epγ amplitude.

Diehl et al.,
Phys. Lett. B411, 193 (1997)

Kinematics
Experiment xB Q2 [GeV2] t [GeV2]

HERA 0.001 8.00 -0.30
COMPASS 0.05 2.00 -0.20
HERMES 0.09 2.50 -0.12

CLAS 0.19 1.25 -0.19
HALL A 0.36 2.30 -0.23
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Goloskokov-Kroll (GK) model on DVCS.
No parameter of the GK model was tuned to analyse DVCS.

Beam Charge Asymmetry, HERMES

Kroll et al., Eur. Phys. J. C73, 2278 (2013)
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Goloskokov-Kroll (GK) model on DVCS.
No parameter of the GK model was tuned to analyse DVCS.

Beam Spin Asymmetry, CLAS

Kroll et al., Eur. Phys. J. C73, 2278 (2013)
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Summary of first extractions.
Feasibility of twist-2 analysis of existing data.

Dominance of twist-2 and validity of a GPD analysis of
DVCS data.

ImH best determined. Large uncertainties on ReH.

However sizable higher twist contamination for DVCS
measurements.

Already some indications about the invalidity of the
H-dominance hypothesis with unpolarized data.
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Imaging the nucleon. How?
Extracting GPDs is not enough…Need to extrapolate!

1. Experimental data fits 2. GPD extraction

3. Nucleon imaging
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Imaging the nucleon. How?
Extracting GPDs is not enough…Need to extrapolate!

1 Extract H(x, ξ, t, µref
F ) from experimental data.

2 Extrapolate to vanishing skewness H(x, 0, t, µref
F ).

3 Extrapolate H(x, 0, t, µref
F ) up to infinite t.

4 Compute 2D Fourier transform in transverse plane:

H(x, b⊥) =
∫ +∞

0

d∆⊥
2π

∆⊥ J0(b⊥∆⊥)H(x, 0,−∆2
⊥)

5 Propagate uncertainties.

6 Control extrapolations with an accuracy matching that of
experimental data with sound GPD models.
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Spin-0 Generalized Parton Distribution.
Definition and simple properties.

Hq
π(x, ξ, t) =

1

2

∫ dz−
2π

eixP+z−
⟨
π,P +

∆

2

∣∣∣∣ q̄
(
− z
2

)
γ+q

( z
2

) ∣∣∣∣π,P− ∆

2

⟩
z+=0
z⊥=0

with t = ∆2 and ξ = −∆+/(2P+).

⊥

z0

z3

n+n− References
Müller et al., Fortschr. Phys. 42, 101 (1994)

Ji, Phys. Rev. Lett. 78, 610 (1997)
Radyushkin, Phys. Lett. B380, 417 (1996)

PDF forward limit
Hq(x, 0, 0) = q(x)

Form factor sum rule
Hq is an even function of ξ from time-reversal invariance.
Hq is real from hermiticity and time-reversal invariance.
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Spin-0 Generalized Parton Distribution.
Not so simple properties.

Polynomiality∫ +1

−1
dx xnHq(x, ξ, t) = polynomial in ξ

Lorentz covariance

Positivity
Hq has support x ∈ [−1,+1].
Soft pion theorem (pion target)

How can we implement a priori these theoretical constraints?
There is no known GPD parameterization relying only on
first principles.
In the following, focus on polynomiality and positivity.
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How can we implement a priori these theoretical constraints?
There is no known GPD parameterization relying only on
first principles.
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Spin-0 Generalized Parton Distribution.
Not so simple properties.

Polynomiality
Lorentz covariance

Positivity

Hq(x, ξ, t) ≤
√

q
(

x + ξ

1 + ξ

)
q
(

x− ξ
1− ξ

)
Positivity of Hilbert space norm

Hq has support x ∈ [−1,+1].
Soft pion theorem (pion target)

How can we implement a priori these theoretical constraints?
There is no known GPD parameterization relying only on
first principles.
In the following, focus on polynomiality and positivity.
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Spin-0 Generalized Parton Distribution.
Not so simple properties.

Polynomiality
Lorentz covariance

Positivity
Positivity of Hilbert space norm

Hq has support x ∈ [−1,+1].
Soft pion theorem (pion target)

How can we implement a priori these theoretical constraints?
There is no known GPD parameterization relying only on
first principles.
In the following, focus on polynomiality and positivity.
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Polynomiality
Lorentz covariance

Positivity
Positivity of Hilbert space norm

Hq has support x ∈ [−1,+1].
Relativistic quantum mechanics

Soft pion theorem (pion target)

Hq(x, ξ = 1, t = 0) =
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2
ϕq
π

(
1 + x
2

)
Dynamical chiral symmetry breaking

How can we implement a priori these theoretical constraints?
There is no known GPD parameterization relying only on
first principles.
In the following, focus on polynomiality and positivity.
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Polynomiality.
Mixed constraint from Lorentz invariance and discrete symmetries.

Express Mellin moments of GPDs as matrix elements:∫ +1

−1
dx xmHq(x, ξ, t)

=
1

2(P+)m+1

⟨
P +

∆

2

∣∣∣∣ q̄(0)γ+(i←→D +)mq(0)
∣∣∣∣P− ∆

2

⟩
Identify the Lorentz structure of the matrix element:
linear combination of (P+)m+1−k(∆+)k for 0 ≤ k ≤ m+1

Remember definition of skewness ∆+ = −2ξP+.
Select even powers to implement time reversal.
Obtain polynomiality condition:∫ 1

−1
dx xmHq(x, ξ, t) =

m∑
i=0

even

(2ξ)iCq
mi(t)+(2ξ)m+1Cq

mm+1(t) .
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Double Distributions.
A convenient tool to encode GPD properties.

Define Double Distributions Fq and Gq as matrix elements
of twist-2 quark operators:⟨

P +
∆

2

∣∣∣∣ q̄(0)γ{µi
↔
Dµ1 . . . i

↔
Dµm}q(0)

∣∣∣∣P− ∆

2

⟩
=

m∑
k=0

(
m
k

)
[
Fq

mk(t)2P{µ − Gq
mk(t)∆

{µ]Pµ1 . . .Pµm−k

(
−∆

2

)µm−k+1

. . .

(
−∆

2

)µm}

ΩDD

α

β

with

Fq
mk =

∫
ΩDD

dβdααkβm−kFq(β, α)

Gq
mk =

∫
ΩDD

dβdααkβm−kGq(β, α)

Müller et al., Fortschr. Phys. 42, 101 (1994)
Radyushkin, Phys. Rev. D59, 014030 (1999)

Radyushkin, Phys. Lett. B449, 81 (1999)
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Double Distributions.
Relation to Generalized Parton Distributions.

Representation of GPD:

Hq(x, ξ, t) =
∫
ΩDD

dβdα δ(x−β−αξ)
(
Fq(β, α, t)+ ξGq(β, α, t)

)
Support property: x ∈ [−1,+1].
Discrete symmetries: Fq is α-even and Gq is α-odd.
Pobylitsa gauge: any representation (Fq,Gq) can be
recast in one representation with a single DD fq:

Hq(x, ξ, t) = (1− x)
∫
ΩDD

dβdα fq(β, α, t)δ(x− β − αξ)

Pobylitsa, Phys. Rev. D67, 034009 (2003)
Müller, Few Body Syst. 55, 317 (2014)
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Double Distributions.
Lorentz covariance by example.

Choose Fq(β, α) = 3βθ(β) ad Gq(β, α) = 3αθ(β):

Hq(x, ξ) = 3x
∫
Ω

dβdα δ(x− β − αξ)

Simple analytic expressions for the GPD:

H(x, ξ) =
6x(1− x)
1− ξ2

if 0 < |ξ| < x < 1,

H(x, ξ) =
3x(x + |ξ|)
|ξ|(1 + |ξ|)

if − |ξ| < x < |ξ| < 1.

H. Moutarde Bound-State Problem, Wuhan 24 / 41



Covariant and
Positive GPD

Models

Introduction

Phenomenology
status
Experimental access

DVCS Kinematics

Universality tests

Towards 3D images

Theoretical
framework
Definition

Polynomiality

Double Distributions

Positivity

Overlap

GPDs from
LFWFs
Radon transform

Covariant extension

Inverse Radon

Example

Conclusion
.

.

.
.
.

.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Double Distributions.
Lorentz covariance by example.

Compute first Mellin moments.
n

∫ +ξ
−ξ dx xnH(x, ξ)

∫ +1
+ξ dx xnH(x, ξ)

∫ +1
−ξ dx xnH(x, ξ)

0 1+ξ−2ξ2

1+ξ
2ξ2

1+ξ 1

1 1+ξ+ξ2−3ξ3

2(1+ξ)
2ξ3

1+ξ
1+ξ2

2

2 3(1−ξ)(1+2ξ+3ξ2+4ξ3)
10(1+ξ)

6ξ4

5(1+ξ)
3(1+ξ2)

10

3 1+ξ+ξ2+ξ3+ξ4−5ξ5

5(1+ξ)
6ξ5

5(1+ξ)
1+ξ2+ξ4

5

4 1+ξ+ξ2+ξ3+ξ4+ξ5−6ξ6

7(1+ξ)
6ξ6

7(1+ξ)
1+ξ2+ξ4

7

Expressions get more complicated as n increases... But
they always yield polynomials!
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Positivity.
A consequence of the positivity of the nom in a Hilbert space.

Identify the matrix element defining a GPD as an inner
product of two different states.
Apply Cauchy-Schwartz inequality, and identify PDFs at
specific kinematic points, e.g.:

|Hq(x, ξ, t)| ≤
√

1

1− ξ2
q
(

x + ξ

1 + ξ

)
q
(

x− ξ
1− ξ

)
This procedures yields infinitely many inequalities stable
under LO evolution.

Pobylitsa, Phys. Rev. D66, 094002 (2002)
The overlap representation guarantees a priori the
fulfillment of positivity constraints.
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Overlap representation.
A first-principle connection with Light Front Wave Functions.

Decompose an hadronic state |H;P, λ⟩ in a Fock basis:

|H;P, λ⟩ =
∑
N,β

∫
[dxdk⊥]Nψ

(β,λ)
N (x1,k⊥1, . . . , xN,k⊥N) |β, k1, . . . , kN⟩

Derive an expression for the pion GPD in the DGLAP
region ξ ≤ x ≤ 1:

Hq(x, ξ, t) ∝
∑
β,j

∫
[dx̄dk̄⊥]Nδj,qδ(x−x̄j)

(
ψ
(β,λ)
N

)∗
(x̂′, k̂′

⊥)ψ
(β,λ)
N (x̃, k̃⊥)

with x̃, k̃⊥ (resp. x̂′, k̂′
⊥) generically denoting incoming

(resp. outgoing) parton kinematics.
Diehl et al., Nucl. Phys. B596, 33 (2001)

Similar expression in the ERBL region −ξ ≤ x ≤ ξ, but
with overlap of N- and (N + 2)-body LFWFs.
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Overlap representation.
Positivity by example: GPD Hq in the Dyson-Schwinger approach.

Expressions for vertices and propagators:

S(p) =
[
− iγ· p + M

]
∆M(p2)

∆M(s) =
1

s + M2

Γπ(k, p) = iγ5
M
fπ

M2ν

∫ +1

−1
dz ρν(z)

[
∆M(k2+z)

]ν
ρν(z) = Rν(1− z2)ν

with Rν a normalization factor and k+z = k− p(1− z)/2.
Chang et al., Phys. Rev. Lett. 110, 132001 (2013)

Only two parameters:

Dimensionful parameter .
Dimensionless parameter

H. Moutarde Bound-State Problem, Wuhan 27 / 41



Covariant and
Positive GPD

Models

Introduction

Phenomenology
status
Experimental access

DVCS Kinematics

Universality tests

Towards 3D images

Theoretical
framework
Definition

Polynomiality

Double Distributions

Positivity

Overlap

GPDs from
LFWFs
Radon transform

Covariant extension

Inverse Radon

Example

Conclusion
.

.

.
.
.

.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Overlap representation.
Positivity by example: GPD Hq in the Dyson-Schwinger approach.

Expressions for vertices and propagators:

S(p) =
[
− iγ· p + M

]
∆M(p2)

∆M(s) =
1

s + M2

Γπ(k, p) = iγ5
M
fπ

M2ν

∫ +1

−1
dz ρν(z)

[
∆M(k2+z)

]ν
ρν(z) = Rν(1− z2)ν

with Rν a normalization factor and k+z = k− p(1− z)/2.
Chang et al., Phys. Rev. Lett. 110, 132001 (2013)

Only two parameters:
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Overlap representation.
Positivity by example: GPD Hq in the Dyson-Schwinger approach.

Expressions for vertices and propagators:

S(p) =
[
− iγ· p + M

]
∆M(p2)

∆M(s) =
1

s + M2

Γπ(k, p) = iγ5
M
fπ

M2ν

∫ +1

−1
dz ρν(z)

[
∆M(k2+z)

]ν
ρν(z) = Rν(1− z2)ν

with Rν a normalization factor and k+z = k− p(1− z)/2.
Chang et al., Phys. Rev. Lett. 110, 132001 (2013)

Only two parameters:
Dimensionful parameter M.
Dimensionless parameter ν
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Overlap representation.
Positivity by example: GPD Hq in the Dyson-Schwinger approach.

Expressions for vertices and propagators:

S(p) =
[
− iγ· p + M

]
∆M(p2)

∆M(s) =
1

s + M2

Γπ(k, p) = iγ5
M
fπ

M2ν

∫ +1

−1
dz ρν(z)

[
∆M(k2+z)

]ν
ρν(z) = Rν(1− z2)ν

with Rν a normalization factor and k+z = k− p(1− z)/2.
Chang et al., Phys. Rev. Lett. 110, 132001 (2013)

Only two parameters:
Dimensionful parameter M.
Dimensionless parameter ν. Fixed to 1 to recover
asymptotic pion DA.
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Overlap representation.
Positivity by example: GPD Hq in the Dyson-Schwinger approach.

Evaluate LFWF in algebraic model:

ψ(x,k⊥) ∝
x(1− x)

[(k⊥ − xP⊥)2 + M2]2

Expression for the GPD at t = 0:

H(x, ξ, 0) ∝ (1− x)2(x2 − ξ2)
(1− ξ2)2

Overlap Triangle diagram

0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

qHxL
Remember J. Rodríguez-Quintero’s

talk last Wednesday!
Manifest 2-body symmetry.
Expression for the PDF:

q(x) = 30x2(1− x)2

Off-forward case: in progress.
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Overlap representation.
Advantages and drawbacks.

Physical picture.
Positivity relations are fulfilled by construction.
Implementation of symmetries of N-body problems.

What is not obvious anymore
What is not obvious to see from the wave function
representation is however the continuity of GPDs at x = ±ξ
and the polynomiality condition. In these cases both the
DGLAP and the ERBL regions must cooperate to lead to the
required properties, and this implies nontrivial relations
between the wave functions for the different Fock states
relevant in the two regions. An ad hoc Ansatz for the wave
functions would almost certainly lead to GPDs that violate
the above requirements.

Diehl, Phys. Rept. 388, 41 (2003)
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The Radon transform.
Definition and properties.

0 β1

α

1
s

ϕ

For s > 0 and ϕ ∈ [0, 2π]:

Rf(s, ϕ) =
∫ +∞

−∞
dβdα f(β, α)δ(s−β cosϕ−α sinϕ)

and:

Rf(−s, ϕ) = Rf(s, ϕ± π)

Relation to GPDs:

x =
s

cosϕ and ξ = tanϕ

Relation between GPD and DD in Pobylitsa gauge√
1 + ξ2

1− x H(x, ξ) = RfPobylitsa(s, ϕ) ,
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The range of the Radon transform.
The polynomiality property a.k.a. the Ludwig-Helgason condition.

The Mellin moments of a Radon transform are
homogeneous polynomials in ω = (sinϕ, cosϕ).
The converse is also true:

Theorem (Hertle, 1983)
Let g(s, ω) an even compactly-supported distribution. Then g
is itself the Radon transform of a compactly-supported
distribution if and only if the Ludwig-Helgason consistency
condition hold:
(i) g is C∞ in ω,
(ii)

∫
ds smg(s, ω) is a homogeneous polynomial of degree m for all

integer m ≥ 0.

Double Distributions and the Radon transform are the
natural solution of the polynomiality condition.

H. Moutarde Bound-State Problem, Wuhan 31 / 41



Covariant and
Positive GPD

Models

Introduction

Phenomenology
status
Experimental access

DVCS Kinematics

Universality tests

Towards 3D images

Theoretical
framework
Definition

Polynomiality

Double Distributions

Positivity

Overlap

GPDs from
LFWFs
Radon transform

Covariant extension

Inverse Radon

Example

Conclusion
.

.

.
.
.

.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Implementing Lorentz covariance.
Extend an overlap in the DGLAP region to the whole GPD domain.

DGLAP and ERBL regions
(x, ξ) ∈ DGLAP ⇔ |s| ≥ | sinϕ| ,
(x, ξ) ∈ ERBL ⇔ |s| ≤ | sinϕ| .

β

α

ΩDD (|α|+ |β| ≤ 1)

α = 1
ξ (x− β)

x/ξ
β = (x − ξ)/(1− ξ)

β = (x + ξ)/(1 + ξ)

β = (x − ξ)/(1 + ξ)

β = (x + ξ)/(1− ξ)

Each point (β, α)
with β ̸= 0
contributes
to both DGLAP and
ERBL regions.
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Implementing Lorentz covariance.
Extend an overlap in the DGLAP region to the whole GPD domain.

For any model of LFWF, one has to address the following
three questions:

1 Does the extension exist?

2 If it exists, is it unique?

3 How can we compute this extension?

H. Moutarde Bound-State Problem, Wuhan 33 / 41



Covariant and
Positive GPD

Models

Introduction

Phenomenology
status
Experimental access

DVCS Kinematics

Universality tests

Towards 3D images

Theoretical
framework
Definition

Polynomiality

Double Distributions

Positivity

Overlap

GPDs from
LFWFs
Radon transform

Covariant extension

Inverse Radon

Example

Conclusion
.

.

.
.
.

.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Implementing Lorentz covariance.
Unicity of the extension.

Theorem
Let f be a compactly-supported locally summable function
defined on R2 and Rf its Radon transform.
Let (s0, ω0) ∈ R× S1 and U0 an open neighborhood of ω0 such
that:

for all s > s0 and ω ∈ U0 Rf(s, ω) = 0 .

Then f(ℵ) = 0 on the half-plane ⟨ℵ |ω0 ⟩ > s0 of R2.

Consider a GPD H being zero on the DGLAP region.
Take ϕ0 and s0 s.t. cosϕ0 ̸= 0 and |s0| > | sinϕ0|.
Neighborhood U0 of ϕ0 s.t. ∀ϕ ∈ U0 | sin  ϕ| < |s0|.
The underlying DD f has a zero Radon transform for all
ϕ ∈ U0 and s > s0 (DGLAP).
Then f(β, α) = 0 for all (β, α) ∈ ΩDD with β ̸= 0.
Extension unique up to adding a D-term: δ(β)D(α).
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Computation of the extension.
Numerical evaluation of the inverse Radon transform (1/3).

A discretized problem
Consider N + 1 Hilbert spaces H, H1, …, HN, and a family of
continuous surjective operators Rn : H→ Hn for 1 ≤ n ≤ N.
Being given g1 ∈ H1, …, gn ∈ Hn, we search f solving the
following system of equations:

Rnf = gn for 1 ≤ n ≤ N

Fully discrete case
Assume f piecewise-constant with values fm for 1 ≤ m ≤ M.
For a collection of lines (Ln)1≤n≤N crossing ΩDD, the Radon
transform writes:

gn = Rf =
∫

Ln
f =

M∑
m=1

fm×Measure(Ln∩Cm) for 1 ≤ n ≤ N
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Computation of the extension.
Numerical evaluation of the inverse Radon transform (2/3).

Kaczmarz algorithm
Denote Pn the orthogonal projection on the affine subspace
Rnf = gn. Starting from f0 ∈ H, the sequence defined
iteratively by: fk+1 = PNPN−1 . . .P1fk

converges to the solution of the system.
The convergence is exponential if the projections are randomly
ordered.

Strohmer and Vershynin, Jour. Four. Analysis and Appl. 15,
437 (2009)
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Computation of the extension.
Numerical evaluation of the inverse Radon transform (2/3).

K1

K2K3

K4

×f0

P1f0

P2P1f0

P3P2P1f0

f1 = P4P3P2P1f0
P1f1

P2P1f1 P3P2P1f1

f2 = P4P3P2P1f1
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Computation of the extension.
Numerical evaluation of the inverse Radon transform (3/3).

And if the input data are inconsistent?
Instead of solving g = Rf, find f such that ∥g−Rf∥2 is
minimum.
The solution always exists.
The input data are inconsistent if ∥g−Rf∥2 > 0.
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Computation of the extension.
Numerical evaluation of the inverse Radon transform (3/3).

Relaxed Kaczmarz algorithm
Let ω ∈]0, 2[ and:

Pω
n = (1− ω) IdH +ωPn for 1 ≤ n ≤ N

Write: RR† = (RiR†
j )1≤i,j≤N = D + L + L†

where D is diagonal, and L is lower-triangular with zeros on the
diagonal.
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Computation of the extension.
Numerical evaluation of the inverse Radon transform (3/3).

Theorem
Let 0 < ω < 2. For f0 ∈ Ran R† (e.g. f0 = 0), the Kaczmarz
method with relaxation converges to the unique solution
fω ∈ Ran R† of:

R†(D + ωL)−1(g− Rfω) = 0 ,

where the matrix D and L appear in the decomposition of RR†.
If g = Rf has a solution, then fω is its solution of minimal
norm. Otherwise: fω = fMP +O(ω) ,

where fMP is the minimizer in H of:
⟨g−Rf |g−Rf⟩D ,

the inner product being defined by:
⟨h |k⟩D =

⟨
D−1h |k

⟩
.
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Test on a 1D example.
Recovering a PDF from the knowledge of its Mellin moments.

A pion valence PDF-like example
Aim: reconstruct the PDF q(x) = 30x2(1− x)2 from the
knowledge of its first 30 Mellin moments.

Reconstruction Target PDF

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

Piecewise-constant PDF: 20
values.

Input: 30 Mellin moments.

Unrelaxed method ω = 1.

10000 iterations.

Extensive testing in progress
Various inputs: PDFs and LFWFs.
Numerical noise.
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Conclusions and prospects.
Positivity and polynomiality constraints consistently implemented.

Last decade demonstrated maturity of GPD
phenomenology.

Good theoretical control on the path between GPD
models and experimental data.

Challenging constraints expected from Jefferson Lab in
the valence region.

Building of QCD-inspired models to make progress.

Systematic procedure to construct GPD models from any
”reasonable” Ansatz of LFWFs.

Characterization of the existence and unicity of the
extension from the DGLAP to the ERBL region.

Numerical tests in progress. Stay tuned!
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