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The Fourier Transform
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ü Where f(k) are the Fourier coefficient of the function f(x)
ü The analysing function is 
ü k is the frequence parameter

e�2⇡ikx

The Fourier Transform is the best for representing 
harmonic components of a signal

The Fourier Transform provides a poor representation of 
non stationary signals and discontinuities.

f(k) =
� +⇥

�⇥
f(x)e�2�ikxdx



The Wavelet Transform
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ü Where W(a,b) are the Wavelet coefficients of the function f(x)
ü The analysing function is 
ü a (>0) is the scale parameter and b is the position parameter
When the scale a varies the filter          is only reduced or dilated 
while keeping the same pattern.
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The inverse transform is:

The Wavelet Transform is the best for representing 
piecewise smooth images
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Orthogonal Wavelet Transform
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Orthogonal Wavelet Transform



Undecimated Isotropic Wavelet Transform
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WAVELET TUTORIAL
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Other representations
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Wavelet representation Anisotropic representation



Other transformations : Ridgelet transform
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Other transformations : Curvelet transform
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WT



basis, framecoefficients

What is a good representation for data?
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ü We seek representations of the signal (f) as linear combination of: 
ü basis elements
ü frames 
ü dictionary elements

ü The analyzing functions should extract the features of interest:
ü Harmonic features
ü Isotropic features
ü Anisotropic feature

ü Recent methods exploit the sparsity of the coefficients



What is sparsity ?
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Considering a transform : � = �T X
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ü Why do you need sparsity:
ü Data compression
ü Feature extraction, detection
ü Image restoration
ü ….



Signal and image representations
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ü Local DCT :
ü Stationary textures
ü Locally oscillatory

ü Wavelet Transform
ü Piecewise smooth
ü Isotropic structures

ü Curvelet Transform
ü Piecewise smooth
ü Edge structures 
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Dictionary Learning
(by Simon Beckouche)
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Data
Learned Dictionary



SPARSE TUTORIAL
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How to reduce the observational noise ?
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Standard methods based on a linear filter
(i.e. Gaussian filtering)
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Image bruitée Gaussienne Image filtrée

Ä =

Signal

Signal + noise Gaussian function (σ) Filtered signal
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Standard methods based on a linear filter
(i.e. Gaussian filtering)
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Signal + noiseSignal

Gaussian filtered (σ =0.6 arcmin)
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Wiener filter



Basic Example
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Original signalNoisy signal

Fourier Transform

Filtered Signal
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Adapted Representations
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Test image 1 Image test 1 + noise

Wavelet filtering Ridgelet filtering Curvelet filtering
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Adapted Representations

20Wavelet filtering Ridgelet filtering Curvelet filtering

Image test 2 Image test 2 + noise
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Dark matter Map 
- HST observations -
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