œ

AIM-CEA Saclay, France

Sparse representations and Filtering

Sandrine Pires sandrine.pires@cea.fr

The Fourier Transform

$$f(k) = \int_{-\infty}^{+\infty} f(x)e^{-2\pi ikx}dx$$

- ✓ Where f(k) are the Fourier coefficient of the function f(x)✓ The analysing function is $e^{-2\pi i k x}$
- \checkmark *k* is the frequence parameter

The Fourier Transform is the best for representing harmonic components of a signal

The Fourier Transform provides a poor representation of non stationary signals and discontinuities.

The Wavelet Transform

$$W(a,b) = K \int_{-\infty}^{+\infty} \psi^*\left(\frac{x-b}{a}\right) f(x) dx$$

✓ Where W(a,b) are the Wavelet coefficients of the function f(x)
 ✓ The analysing function is ψ(x)
 ✓ a (>0) is the scale parameter and b is the position parameter

When the scale *a* varies the filter $\psi(x)$ is only reduced or dilated while keeping the same pattern.

The inverse transform is:

$$f(x) = \frac{1}{C_{\psi}} \int_{-\infty}^{+\infty} \int_{0}^{+\infty} \frac{1}{\sqrt{a}} W(a,b) \psi(\frac{x-b}{a}) \frac{dadb}{a^2}$$

where: $C_{\psi} = \int_{-\infty}^{+\infty} |\hat{\psi}(t)|^2 \frac{dt}{t} < +\infty$

The Wavelet Transform is the best for representing piecewise smooth images

Orthogonal Wavelet Transform

Orthogonal Wavelet Transform

Undecimated Isotropic Wavelet Transform

WAVELET TUTORIAL

Other representations

Wavelet representation

Anisotropic representation

Other transformations : Ridgelet transform

Frequency

Other transformations : Curvelet transform

What is a good representation for data?

 \checkmark We seek representations of the signal (f) as linear combination of:

- ✓ basis elements
- ✓ frames
- ✓ dictionary elements

$$f = \sum_{k} a_{k} \mathbf{b}_{k}$$

$$\uparrow \uparrow$$
coefficients basis, frame

✓ The analyzing functions should extract the features of interest:

- ✓ Harmonic features
- ✓ Isotropic features
- ✓ Anisotropic feature

✓ Recent methods exploit the sparsity of the coefficients

- ✓ Why do you need sparsity:
 - ✓ Data compression
 - \checkmark Feature extraction, detection
 - ✓ Image restoration
 - …

Signal and image representations

✓ Local DCT :
 ✓ Stationary textures
 ✓ Locally oscillatory

✓ Wavelet Transform

- ✓ Piecewise smooth
- ✓ Isotropic structures

✓ Curvelet Transform

- ✓ Piecewise smooth
- ✓ Edge structures

Dictionary Learning (by Simon Beckouche)

Learned Dictionary

SPARSE TUTORIAL

How to reduce the observational noise ?

Standard methods based on a linear filter (*i.e. Gaussian filtering*)

Signal

Signal + noise

Gaussian function (σ)

Filtered signal

Standard methods based on a linear filter (*i.e. Gaussian filtering*)

Signal

Gaussian filtered (σ =0.6 *arcmin)*

Signal + noise

Wiener filter

Basic Example

18

Adapted Representations

Test image 1

Image test 1 + noise

Wavelet filtering

Ridgelet filtering

Adapted Representations

Image test 2

Image test 2 + noise

Wavelet filtering

Ridgelet filtering

Dark matter Map

- HST observations -

FILTERING TUTORIAL