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o Bethe-Salpeter framework to hadron structure studies.
s m Here develop pion GPD model for simplicity.

erD modeing m No planned experiment on pion GPDs but existing

Nectrac el proposal of DVCS on a virtual pion.
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GPDs: Theoretical Framework
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~-- Pjon Generalized Parton Distribution.
Cea

Definition and symmetry relations.

Representations ng (X7 g./ t) =

of Generalized

Parton 1 d Z

i - A z z A
Distributions - ixPtz P = A (_7> + ( ) P— =
2) 2nm ) <7T’ N Q‘q 2 T 2 T 2/ =0
Introduction z; =0
Theoretical Wlth t= AQ and E - _A+/(2P+)
framework

Definition

References
Miller et al., Fortschr. Phys. 42, 101 (1994)
erD modeing Ji, Phys. Rev. Lett. 78, 610 (1997)
F:'g*h'l“'”""e' Radyushkin, Phys. Lett. B380, 417 (1996)
S m From isospin symmetry, all the information about pion
Conclusions GPD is encoded in H-, and Hg+.

m Further constraint from charge conjugation:
H7L1]—+ (X7 57 t) - _H7d1—+ (_Xv 57 t)'
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Overlal
remesntation m H9 has support x € [—1,+1].
GPD deli - .
e ocene m Soft pion theorem (pion target)
Algebraic model
Fesults Numerous theoretical constraints on GPDs.
o m There is no known GPD parameterization relying only on
Conclusions fiI’St princip'es

m Modeling becomes a key issue.
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Polynomiality.

Cea Mixed constraint from Lorentz invariance and discrete symmetries.

Representations m Introduce isovector and isoscalar GPDs:

DiStP:Lt"Ot?O“S Hl:o (X-/ 57 t) - ;-F (X7 57 t) + H;,+ (X7 €7 t)
_ HZ (&1 = HL (&) — HI (x & 1)
Theoretical m Compute Mellin moments of GPDs:

framework

inition 1
:o:ynomizlity / dxx™ HI:O (X7 f) = 0 (m even)
Double Distributions l

Overlap
rortis [ domiO(xg) = D o(20/Ch? + (2™ Cty (m odd)
Algebraic model -1 i=0
Results 1 e‘;;n
Checks .
i / 1dxx’"H’*1(x,£) = > (20)'C' (meven)
Conclusions - ez?,
-1
/ dxx"H=1(x,&) = 0 (m odd)
-1
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Double Distributions.

Cea A convenient tool to encode GPD properties.

Representations m Define Double Distributions F? and G9 as matrix elements
0! eneralize .
Parton of twist-2 quark operators:

Distributions

A RS Ad A N m
2 {1 Yy Hm} [ =
o <P+2’q(0)7/,D/1,..1D/ q(O)'P 2> = ;}(J

Theoretical
frar.nework Fq { { A Hm—k+1 A Hm}
opin _ Al pm e (2 (=
i D21 = Gy (DAT] (-2) (-3)

Q@ with
GPD modeling
Diagrams

Algebraic model F?nk e / d[)}d(y Q{kﬂm_qu(f))7 (Y)
Q

Results
Checks
Form factor

Pion PDF

Gl = [ dBdaa*s™tG(5.0)

Miller et al., Fortschr. Phys. 42, 101 (1994)
Radyushkin, Phys. Rev. D59, 014030 (1999)
Radysuhkin, Phys.-Lett: B449, 81 (1999)
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Double Distributions.

Cea Relation to Generalized Parton Distributions.

Representations
of Generalized
Parton
Distributions

Introduction

Theoretical m Representation of GPD:

framework

v 10685 1) = / dfdad(x— B — af) (FI(B, o, t) + £GU(B, a, t))
Overlap JQ

GPD modeling

m Support property: x € [—1,+1].

Diagrams

Aletraic model m Discrete symmetries: F? is a-even and GY9 is a-odd.
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Overlap representation.

Cea A first-principle connection with Light Front Wave Functions.

Representations

of Generalized m Decompose an hadronic state |H; P, \) in a Fock basis:

Parton
Distributions

A
HPX) =Y /[dxdkmw%j Yt kL, xn k) B k- k)

Introduction N3 *
Theoretical
framework m Derive an expression for the pion GPD in the DGLAP

Definition

region £ < x < 1:

tributions

Overlap
representation

e €0 o Yl b x-30) (04) (K (oK)
B

Diagrams

Algebraic model

Results with X, k| (resp. %Rl) generically denoting incoming
Fom (resp. outgoing) parton kinematics.
S Diehl et al., Nucl. Phys. B596, 33 (2001)

m Similar expression in the ERBL region —¢ < x < ¢, but
with overlap of N- and (N + 2)-body LFWF.
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Overlap representation.

Cea Advantages and drawbacks.

Representations . .
of Generalized m Physical picture.
Parton

Distributions m Positivity relations are fulfilled by construction.
m Implementation of symmetries of N-body problems.

Introduction

Theoretical What is not obvious anymore
e What is not obvious to see from the wave function
oo ommuios TEPresentation is however the continuity of GPDs at x = +¢
et and the polynomiality condition. In these cases both the
GPD modeling  DGLAP and the ERBL regions must cooperate to lead to the
A i required properties, and this implies nontrivial relations
Results between the wave functions for the different Fock states
o relevant in the two regions. An ad hoc Ansatz for the wave
CP:;;Z;O”S functions would almost certainly lead to GPDs that violate
the above requirements.
Diehl, Phys. Rept. 388, 41 (2003)
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GPDs in the Dyson-Schwinger
and Bethe-Salpeter Approach
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GPDs in the rainbow ladder approximation.

Cea Evaluation of triangle diagrams.
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= GPDs in the rainbow ladder approximation.
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. GPDs in the rainbow ladder approximation.
Cea

Evaluation of triangle diagrams.

Representations

1 A — A
] q _ = +(i'pHym .
ofG::retr:rlllzed <Xrn> = 2( )n+1 <7T./ P+ 9 ‘q(O)’y (I D ) q(O)' ™, P >

Distributions

Introduction

m Compute Mellin moments

Theoretical Of the pion GPD H
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Defiition m Triangle diagram approx.
Polynomiality

Double Distributions

Overlap
representation

m Resum infinitely many
contributions.

GPD modeling - .
e m Nonperturbative modeling.
Algebraic model

Results m Most GPD properties satisfied by construction.

Checks

Form factor m Also compute crossed triangle diagram.

Pion PDF

Conclusions

Mezrag et al., arXiv:1406.7425 [hep-ph]
and Phys. Lett. B741, 190 (2015)
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Algebraic model.

Cea Intermediate step before using numerical solutions of Dyson-

Schwinger and Bethe-Salpeter equations.

Representations m Expression for GPD Mellin moments:
of Generalized
Parton d4k A A
Distributions 2 P+ m+1 myu- t / k+ m T k I Pi _
( ) <X > I‘CFD (27T)4( ) / m 2 9 2
Introduction A A _ A A
Theoretical Xs(k_ §)I’y+ 5(k+ E)ITW <k+ §7P+ 2> S(k_ P)
framework
oty m Expressions for vertices and propagators:
Sp) = [—iv p+MAuP)
GPD modeling A 1
. M) =
Results M 9 +1 »
. Pxllop) = s M / dzp,(2) [Am(K.,)]
Pion PDF ™ —1
Conclusions /)I/ (Z) — Ry(l — 22)1/

with R, a normalization factor and ki, = k— p(1 — z)/2.
Chang et al., Phys. Rev. Lett. 110, 132001 (2013)
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Algebraic model.

Cea Intermediate step before using numerical solutions of Dyson-

Schwinger and Bethe-Salpeter equations.

Rfezresentle.xtizns | Expressions for vertices and propagators:
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Distributions 5(p) = [ — Iy - p + M]AM(p )
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Introduction AM(S) — P
Theoretical s + M2
framework ) M o +1 . v
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Double Distributions T -1
p(z2) = R,(1-2)
GPD modeling
O with R, a normalization factor and k;, = k— p(1 — z)/2.
Results Chang et al., Phys. Rev. Lett. 110, 132001 (2013)
o m Only two parameters:

Pion PDF

m Dimensionful parameter M.
m Dimensionless parameter v. Fixed to 1 to recover
asymptotic pion DA.

Conclusions
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Results: Theoretical Constraints
and Phenomenology
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Verification of theoretical constraints.

Cea Analytic expressions for the GPD H.

Representations m Analytic expression in DGLAP and ERBL regions.
of Generalized

Parton ol 4 (22 _ 52 B
Distributions 10___ (x,¢,0) = {3( 20x— 1) gzx(£2 (al)::s) log(1 — x) )

Introduction

3 (+45 <l5x2(x+ 3) + (19x + 29)€% + 5(x(x(x + 11) + 21) + 3)&2) tanh—1 (@

x—€2
Theoretical 20 (¢2 — 1)3
framework (5 )
Definition 3 (x3(x(2(x — 4)x+ 15) — 30) — 15(2x(x + 5) + 5)54) log (x2 . 52)
Polynomiality + - 5 3
Double Distributions 20 (§ - 1)
revesntation e (—5x(x(x(x + 2) + 36) + 18)¢? — 15¢°) log (x* — €?)
GPD modeling 20 (52 - 1)3
Zghm . 3 (2()( —1) ((23><+ 58)% + (x(x(x 4 67) + 112) + 6)&2 + x(x((5 — 2x)x + 15) +
gebraic mode +
2 _ 3
Results 20 (E 1)
Checks 3 ((15(2x(0xc+ 5) + 5)€* + 10x(3x(x + 5) + 11)¢?) log (1 — £2))
Form factor + :
Pion PDF 20 (¢2 —1)°
Conclusions 3 <2X(5X<X +2) —6) + 1565 — 5¢2 + 3) log (l — £2>
+
20 (62 —1)°

H. Moutarde | Few-Body Problems | 16 / 21



Verification of theoretical constraints.

Cea Analytic expressions for the GPD H.

Representations m Analytic expression in DGLAP and ERBL regions.

of Generalized

| Fparton m Explicit check of support property and polynomiality
istributions
with correct powers of &.

Introduction

Theoretical

framework
Definition
Polynomiality
Double Distributions
Overlap
representation
GPD modeling
Diagrams

Algebraic model

Results
Checks
Form factor

Pion PDF

Conclusions

H. Moutarde | Few-Body Problems | 16 / 21



Verification of theoretical constraints.

Cea Analytic expressions for the GPD H.

Representations m Analytic expression in DGLAP and ERBL regions.

of Generalized

| Fparton m Explicit check of support property and polynomiality
istributions )
with correct powers of &.
Introduction m Also direct verification using Mellin moments of H.
Theoretical
framework
Definition
Polynomiality

Double Distributions
Overlap
representation
GPD modeling
Diagrams

Algebraic model

Results
Checks
Form factor

Pion PDF

Conclusions

H. Moutarde | Few-Body Problems | 16 / 21



= Vlerification of theoretical constraints.
Cea

Analytic expressions for the GPD H.

Representations
of Generalized
Parton
Distributions

Analytic expression in DGLAP and ERBL regions.

Explicit check of support property and polynomiality
with correct powers of &.

Also direct verification using Mellin moments of H.

Introduction

Theoretical m Soft pion theorem obtained by construction in a
e symmetry-preserving treatment.
e Mezrag et al., Phys. Lett. B741, 190 (2015)

Overlap
representation

GPD modeling
Diagrams

Algebraic model
Results

Checks

Form factor

Pion PDF

Conclusions

H. Moutarde | Few-Body Problems | 16 / 21



= Vlerification of theoretical constraints.
Cea

Analytic expressions for the GPD H.

Representations

of Generalized m Analytic expression in DGLAP and ERBL regions.
Dierarton m Explicit check of support property and polynomiality

with correct powers of &.
m Also direct verification using Mellin moments of H.

Introduction

heoretical m Soft pion theorem obtained by construction in a
petnien symmetry-preserving treatment.
Double Distibuions Mezrag et al., Phys. Lett. B741, 190 (2015)
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Pion form factor.

Cea Determination of the model dimensionful parameter M.

Representations

of Generalized m Pion form factor obtained from isovector GPD:
Parton
Distributions +1 =1
dxH= (x, €, 1) = 2F, (1)

Introduction J—1
Theoretical m Single dimensionful parameter M ~ 350 MeV.
framework
Definition T T T T T
Polynomiality ! i ]

X | — Model (M=0.35 GeV)
Double Distributions \, i «  Amendolia et al (1986)
representation i AN T Moda :M;1 45 g:v:
GPD modeling |

) =
Diagrams 5 peeed B
Algebraic model 5%
Results
Checks
Form factor S
Pion PDF [
o I I I | I

Conclusions 0 0.5 1 1.5 2 25 3

t[GeV’]
Mezrag et al., arXiv:1406.7425 [hep-ph]
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Pion form factor.

Determination of the model dimensionful parameter M.
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Conclusions and prospects.

Cea First steps in a GPD modeling program.
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of Generalized m Computation of GPDs, DDs, PDFs, LFWFs and form

Parton

Distributions factors in the nonperturbative framework of
Dyson-Schwinger and Bethe-Salpeter equations.

Introduction

Theoreticl m Explicit check of several theoretical constraints, including
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Defintion polynomiality, support property and soft pion theorem.
Polynomiality
Double Distributions . . e
- m Simple algebraic model exhibits most features of the
representation . . .

. numerical solutions of the Dyson-Schwinger and
GPD modeling .
Diagrams Bethe-Salpeter equations.
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Results m Very good agreement with existing pion form factor and
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Form factor PDF data.

Pion PDF

Conclusions m Clear limits of impulse approximation in the evaluation of
p pp
quark twist-2 matrix elements.
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