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Motivation.
Study hadron structure to shed new light on nonperturbative QCD.

Reverse engineering

Reverse engineering is the process of discovering the techno-
logical principles of a device, object, or system through ana-
lysis of its structure , function, and operation.

Eilam and Chikofsky, Reversing: secrets of reverse engineering,
John Wiley & Sons, 2007.
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m Interplay between perturbative and
non-perturbative QCD.

m Interacting colored degrees of freedom
confined in colorless hadrons.

m Emergence of hadron characteristics
from fundamental building blocks.
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Anatomy of hadrons.

GPDs, 3D hadron imaging, and beyond (1/4).
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Anatomy of hadrons.

GPDs, 3D hadron imaging, and beyond (2/4).

m Probabilistic interpretation of Fourier transform of
GPD(x,& = 0, t) in transverse plane.

p(X7 bLa )‘7 AN)

1 ‘
5 H(X,O, bi) +

bjL eJ-,-S"l ﬁ

M b2 (x,0,b%)
i

FAMH(x, 0, bi)}

m Notations : quark helicity A, nucleon longitudinal
polarization Ay and nucleon transverse spin S .
Burkardt, Phys. Rev. D62, 071503 (2000)

Can we obtain this picture from exclusive measurements?

Tongitud.

(@)

singlel
quarks, gluons

® x<001

pion
cloud
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valence
quarks

. Weiss, AIP Conf.
Proc. 1149,
- 150 (2009

©)
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Anatomy of hadrons.
GPDs, 3D hadron imaging, and beyond (3/4).

m Most general structure of matrix element of energy
momentum tensor between nucleon states:

</v P+5 A g N, P — §> = u<P+§> {A(t)%ﬂpv)
A C(t) A
(hjgA A N ABAY A2 _ =
+B(t)P i 2M M(AA A*ny )}u(P 2)
with t = A2

m Key observation: link between GPDs and gravitational
form factors

/dxxHq(x,g,t) = A9(t) +4E2C(¢)

/dxxEq(x,§, ) = BI(t)— 42C(D)
! Ji, Phys. Rev. Lett. 78, 610 (1997)
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Anatomy of hadrons.
GPDs, 3D hadron imaging, and beyond (4/4).

m Spin sum rule:

/ dxx(H9(x,&,0) + E¥(x,£,0)) = AY(0) + BI(0) =2
Ji, Phys. Rev. Lett. 78, 610 (1997)

m Shear and pressure of a hadron considered as a
continuous medium:

P

(N| T3 N) N = () <?2 - ;(w) + p(r)o?

Polyakov and Shuvaev, hep-ph/0207153
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Anatomy of hadrons.

Different questions and different tools to answer them.
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Study of exclusive processes.

Metrology of Generalized Parton Distributions.

Understanding of QCD mechanisms and modeling of
Generalized Parton Distributions.

What do we learn from this picture?

q(x.by)

0.05

0.1 0.3
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Exclusive processes of present interest (2/2).

Factorization and universality.

m Partonic interpretation relies on factorization theorems.
m All-order proofs for DVCS, TCS and some DVMP.

m GPDs depend on a (arbitrary) factorization scale pur.

Consistency requires the study of different channels.

GPDs enter DVCS through Compton Form Factors :
, L Q
]:(5~ t, Q2> = / dxC <Xa £, QS(:U’F) ) F(Xv &t /LF)

-
—1 KF

for a given GPD F.

m CFF F is a complex function.
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Typical DVCS kinematics.
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Goloskokov-Kroll (GK) model on DVCS.

No parameter of the GK model was tuned to analyse DVCS.

Asymmetry, HERMES

’ cos 0¢
02— AC

e
02—
03 " " " "
0 0.1 0.2 0.3 0.4 0.5
—t  [GeV?]

Kroll et al., Eur. Phys. J. C73, 2278 (2013)
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Goloskokov-Kroll (GK) model on DVCS.

No parameter of the GK model was tuned to analyse DVCS.
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Goloskokov-Kroll (GK) model on DVCS.

No parameter of the GK model was tuned to analyse DVCS.
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Summary of first extractions.

Feasibility of twist-2 analysis of existing data.

m Dominance of twist 2 and validity of a GPD analysis of
DVCS data.

m /mH best determined. Large uncertainties on ReH.

m However sizable higher twist contamination for DVCS
measurements.

m Already some indications about the invalidity of the
H-dominance hypothesis with unpolarized data.
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Kinematics of existing DVCS measurements.
Precision studies of the DVCS process at JLab.
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Kinematics of existing DVCS measurements.
Precision studies of the DVCS process at JLab.

What is large @Q* ?

|t/ @
L0 - JLab Hall A
0.8 . : - JLab Hall B
- HERMES

0.6 * HERA
0.4 ,
0.2 - N -

] PSR .. v o <

01 0.2 03 0.4 05 xg

m @ is not so large for most of the data.
m Higher twists, finite-t and target mass corrections?

H. Moutarde | ANL Theory Seminar | 15 / 50



Cea

Hadron
Reverse
Engineering

Introduction

Needs
assessment
Experimental access
DVCS Kinematics

First universality
tests

Towards precision

studies
PARTONS
Project

ing chain

ion

GPD modeling
Formalism

About Polynomiality
Survey of models

Dyson-Schwinger

Conclusion

Kinematics of existing DVCS measurements.
Precision studies of the DVCS process at JLab.

What is large @Q* ?
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m @ is not so large for most of the data.
m Higher twists, finite-t and target mass corrections?
m Consistent modeling of GPDs beyond Jeading twist?
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The challenges brought by JLab.

Hints of target mass corrections from recent DVCS analysis.
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The challenges brought by JLab.

Widest phase space ever explored in the valence region.
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The challenges brought by JLab.

Widest phase space ever explored in the valence region.

Final analysis of 2005 Hall B data (unpolarized target)
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Timelike and spacelike Compton Scattering.

Scattering amplitudes and their partonic interpretation.
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Compton Form Factors (CFF)

m Parametrize amplitudes.
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Timelike and spacelike Compton Scattering.

Scattering amplitudes and their partonic interpretation.

factorization g

Compton Form Factors (CFF)
m Parametrize amplitudes.

m Evaluation at LO.
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Compton Form Factors (CFF)

Parametrize amplitudes.
Evaluation at LO.
Evaluation at NLO.

Other diagrams at NLO,
including gluon GPDs.
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.
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Explicit expressions.

Cea Quark and gluon contributions to the CFF # at LO and NLO.

Hadron m Convolution of singlet GPD H; (x) = Hq(x) — Hq(—x) :

Reverse

Engineering 5 +1 Q
,HQ(& Q ) - / dXH:;(Xv 3 /LF) Tq <X7 3 (15(/1,[:), )

Introduction -1 'LLF

Needs

+1 Q
assessment + / dx Hg(X7 57 MF) Tg <X7 57 (ks(,lLF)./ MF)
Experimental access J-1

tests

——— Belistky and Miiller, Phys. Lett. B417, 129 (1998)

studies

Pire et al, Phys. Rev. D83, 034009 (2011)
PARTONS
Project

Team

GPD modeling
Formalism

About Polynomiality
Survey of models

Dyson-Schwinger

Conclusion

H. Moutarde | ANL Theory Seminar | 19 / 50



Explicit expressions.

Cea Quark and gluon contributions to the CFF # at LO and NLO.

Hadron = Convolution of singlet GPD Hy (x) = Hq(x) — Hq(—x) :
En’;?:::?ng 9 LO +1
6. @) 2 [ ok ClxE)

Introduction -1

Needs +1

assessment =+ / dX Hg(X, 5./ /,LF) 0

Experimental access J—1

E— Belistky and Miiller, Phys. Lett. B417, 129 (1998)
e Pire et al, Phys. Rev. D83, 034009 (2011)
PARTONS
Project

- m Integration yields imaginary parts to H :

Automation 5 LO

Team /m?-[q(f Qz) - 7TH:;(£./ E ILLF)
GPD modeling

About Polynomiality
Survey of models

Dyson-Schwinger

Conclusion

H. Moutarde | ANL Theory Seminar | 19 / 50



Explicit expressions.

Cea Quark and gluon contributions to the CFF # at LO and NLO.

Hadron m Convolution of singlet GPD H; (x) = Hq(x) — Hq(—x) :

Reverse
Engineering +1 2

NLO 1, |Q
%Q(gv QQ) - / dXH;(nga/LF) |:Cg+ CC{‘F 5 In HC%OH:|

Introduction -1 /J'F
Needs +1 1 QQ
asses‘sment =+ / dX Hg(X’ 5-/ /,LF) (O -+ C% —+ 5 |n % C%oll)
- sl HF
i Belistky and Miiller, Phys. Lett. B417, 129 (1998)
- Pire et al, Phys. Rev. D83, 034009 (2011)
PARTONS
Project
omputing e m Integration yields imaginary parts to H :

NLO

It (€., Q) T(O)H (6,6, 1p)

«f " T (M (€ ) — HE(E o)

-1
+ gluon contributions.

Conclusion

H. Moutarde | ANL Theory Seminar | 19 / 50



Cea

Hadron
Reverse
Engineering

Introduction

Needs
assessment
Experimental access
DVCS Kinematics

First universality
tests

Towards precision
studies
PARTONS
Project
Computing chain
Example
Automation

Team

GPD modeling
Formalism

About Polynomiality
Survey of models

Dyson-Schwinger

Conclusion

Large NLO corrections.
Mostly due to gluons, maximum in HERMES / COMPASS region.
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Status.

Currently: integration, tests, validation.

m 3 stages:
Design.

Integration and validation.
Production.

m Flexible software architecture.

m 1 new physical development = 1 new module.
m What can be automated will be automated.

m Get ready for 12 GeV!
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GPD computing made simple.

Cea Each line of code corresponds to a physical hypothesis.

Hadron gpdEvolutionExample()
ER‘?"e'S_E 1 // Load QCD evolution module
neineering — » EvolQCDModule* pEvolQCDModule = pModuleObjectFactory—>
3 getEvolQCDModule( VinnikovEvolQCDModel::modulelD ) ;
Introduction 4
Needs 5 // Configure QCD evolution module
assessment 6 pEvolQCDModule—>setQcdOrderType( QCDOrderType::LO ) ;
Experimental access 7
FD"CS K'"emla““ 8 // Load GPD module
o™ 9 GPDModule* pGK11Module =
Towards precision 10 pModuleObjectFactory—>getGPDModule( GK11Model::modulelD ) ;
11
E/;\O?STC?NS 12 // Create kinematic configuration ( x, xi, t, MuF, MuR)

computing chain 13 GPDKinematic gpdKinematic( 0.25, 0.29, —0.28, 1.82, 1.82 ) ;
Example 14
putemasen 15 // Compute GPD and store results
16 GPDOutputData results = pGPDService—>
GPD modeling

-
J

computeGPDModelWithEvolution( gpdKinematic, pGK11Module,
pEvolQCDModule, GPDComputeType::H ) ;

Formalism

=
oo

About Polynomiality

=
©

Survey of models

Dyson-schwinger 20/ / Print results
std:: cout << results.toString() << std::endl ;

N
=

Conclusion
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17
18
19
20
21

6 GPDOutputData results = pGPDService—>

GPD computing made simple.

Each line of code corresponds to a physical hypothesis.

gpdEvolutionExample()

// Load QCD evolution module
EvolQCDModule* pEvolQCDModule = pModul
getEvolQCDModule( VinnikovEvolQCDModel::n

// Configure QCD evolution module
pEvolQCDModule—>setQcdOrderType( QCDO

// Load GPD module
GPDModule* pGK11Module =
pModuleObjectFactory—>getGPDModule( GK1,

// Create kinematic configuration ( x, xi, t,

GPDKinematic gpdKinematic( 0.25, 0.29, —0.2
// Compute GPD and store results

computeGPDModelWithEvolution( gpdKinemat
pEvolQCDModule, GPDComputeType::H ) ;

// Print results
std :: cout << results.toString() << std::endl ;

Preliminary

Hu = 1.5435
Hu(-) = 2.04736
Hu(+) = 1.03964

Hd = 0.524068
Hd(-) = 1.00457
Hd(+) = 0.0435651

Hs = -0.539675
Hs(-) =0

Hs(+) = -1.07935
Hg = -0.3086
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GPD computing made systematic.

What can be automated is automated.

AW N =

scenario_01.xml

<7?xml version="1.0" encoding="UTF-8" standalone="yes" 7>
<scenario id="01" date="" description="Test using GPD service">
<!—— Select type of computation ——>

<operation service="GPDService" method="computeGPDModel" >
<!—— Specify kinematics ——>
<GPDKinematic x="-0.99" xB="0.33" t="-0.1" MuF2="2"
MuR2="2">

< /GPDKinematic>
<!—— Choose GPD model and set parameters ——>
<GPDModule id="GK11Model" >
<param name="" value="" />
<param name="" value="" />
</GPDModule>
< /operation>

< /scenario>

void playScenarioExample()
ScenarioManager* pScenarioManager = ScenarioManager::getlnstance();
// Compute without compiling
pScenarioManager—>playScenario(PropertiesManager::getInstance()
—>getString("scenario.directory") + "scenario_01.xml");
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GPD computing made systematic.

What can be automated is automated.

1
2
3
4
5
6

~

scenario_01.xml

- Saclay

Work in progress: database storage

Fichier Edition Affichage Rechercher Terminal
200 rows in set (0.00 sec)

3
3
3
3
3

qmysgl> select * from gpd_kinematic;

bryan@phnpcgd6: ~ x
Aide

e 4o oo 4o oo +
| x | =i | t | MuF | MuR |
o Hoooo- oo 4o oo +
| 1] 8.2 | -e.1 2| 2
| -9.99 | 6.2 ] 0.1 2] 2]
| -0.98 | 8.2 | -0.1 | 2| 2
| -8.97 | 6.2 ] -0.1] 2| 2]
| 6.95 | 6.2 ] 0.1 2| 2]
| -6.95 | 6.2 ] -0.1] 2| 2]

</GPDModule>
< /operation>
< /scenario>

void playScenarioExample()

ScenarioManager* pScenarioManager = ScenarioManager::getInstance();

// Compute without compiling

pScenarioManager—>playScenario(PropertiesManager::getInstance()
—>getString("scenario.directory") + "scenario_01.xml");

H. Moutarde | ANL Theory Seminar | 25 / 50



Hadron
Reverse
Engineering

Introduction

Needs
assessment
Experimental access
DVCS Kinematics

First universality
tests

Towards precision
studies

PARTONS
Project
Computing chain
Example
Automation

Team

GPD modeling
Formalism

About Polynomiality
Survey of models

Dyson-Schwinger

Conclusion

GPD computing made systematic.

What can be automated is automated.

o U R W N =

~

10
11
12
13
14

E N

scenario_01.xml

rk in progress: Visualizatio

parton distribution

PARTONS_Visualization x

-0,9
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- Members and areas of expertise.
Cea

Collaborations at the national and international levels.

o Development team

Engineering

vy <
Introduction 5 ﬂ
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| _ e /

assessment / NUCIear(
. » B. Berthou C. Mezrag H. Moutarde F. Sabatié J. Wagner ~J
xperimental access

G
Research
DVCS Kinematics _ar 7

P

First universality
tests

Towards precision

Johannes Gutenbe'r@j

. _—'Thomas Universitat
PARTONS : LS
Project National « Jefferson

Computing chain @hératory

studies Argon né 2 /\\
2

National

Example

Automation

o Y, Laboratory

\ ; 1 A & B
GPD modeling

Formalism

o IPN and LPT (Orsay), Irfu (Saclay) and CPhT (Polytechnique)
Suoyof ot R Experimental data analysis Perturbative QCD
e World data fits GPD modeling

Conclusion
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Nucleon Generalized Parton Distributions.

Matrix elements of twist-2 bilocal operators.

F9 % / %eixﬁz* <p/ q (_g> 7" q (g) ’ p>Z+1072L:0
— gpr | OB ule) + EValp) T )
Fi = % / %e"xp”_ (r'|a (—g) Y59 (g) ‘ P)z+=0,7, =0

b Hu(p )y ysu(p) + Eu( /)W/5A+ u(p)
SpF p )y ysu(p Py ulp

References

Miller et al., Fortschr. Phys. 42, 101 (1994)
Ji, Phys. Rev. Lett. 78, 610 (1997)
Radyushkin, Phys. Lett. B380, 417 (1996)
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Nucleon Generalized Parton Distributions.

Matrix elements of twist-2 bilocal operators.

El

:/

(=)0 (2)] o
(B ) ulp) + Ea(p) )
dz;eixwz_ q (—9 Y59 (g) ‘ P) 7+ =0,2, =0

2w
B B 5A+
HYu(p' )y ysu(p) + E7 D(p/)v2 Y U(p)}

2

/

(p

8 GPDs per parton type at twist 2

m Partons with a light-like separation.
m Quarks, gluon and transversity GPDs.
m GPD%& = GPD%&(x, &, t, uF).
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Nucleon Generalized Parton Distributions.

Matrix elements of twist-2 bilocal operators.

Interpretation

m x € [£,1] : g emitted + g absorbed.
m x € [—¢& +£] . g emitted + g absorbed.
m x € [—1,—¢] : g emitted + g absorbed.
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Pion Generalized Parton Distribution.

Definition and symmetry relations.
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Hi(x & 1) =

1 [dzm . pr,- A
+ z e/xP“'z < T p—=

/ 2 zt=0
z] =0

A
P _
2 | on ™t

2

1(=3)7"9(3)

with t = A% and &€ = —A1/(2PF).

m From isospin symmetry, all the information about pion
GPDs is encoded in H, and H?, .

m Further constraint from charge conjugation:
;Jr (X: 57 t) - _H7dT+(_X7 €7 t)
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Properties.

Generalization of form factors and Parton Distribution Functions.

m PDF forward limit

H9(x,0,0) = q(x)
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Properties.

Generalization of form factors and Parton Distribution Functions.
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Form factor sum rule

Polynomiality

Positivity

HY is an even function of £ from time-reversal invariance.

HY is real from hermiticity and time-reversal invariance.
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Properties.

Generalization of form factors and Parton Distribution Functions.

PDF forward limit

Form factor sum rule

Polynomiality

Positivity

H9 is an even function of £ from time-reversal invariance.
H9 is real from hermiticity and time-reversal invariance.
H9 has support x € [—1, +1].

Soft pion theorem (pion target)

H=1(x ¢ = 1,t = 0) = ¢» <HX>

2
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Conclusion

Properties.

Generalization of form factors and Parton Distribution Functions.

PDF forward limit

Form factor sum rule

Polynomiality

Positivity

HY is an even function of £ from time-reversal invariance.
HY is real from hermiticity and time-reversal invariance.
H9 has support x € [—1,+1].

Soft pion theorem (pion target)

Numerous theoretical constraints on GPDs.

m There is no known GPD parameterization relying only on
first principles.

m Modeling becomes a key issue.
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Polynomiality.

Cea Mixed constraint from Lorentz invariance and discrete symmetries.

Hadron m Introduce isovector and isoscalar GPDs:
Engineering HIZO (X./ 57 t) — ;+ (X, f, t) + H7C1{+ (X7 67 t)
Introduction Hl:l (X-/ f t) - H7L;+ (X7 §7 t) - HZ+ (X, 57 t)
Needs m Compute Mellin moments of GPDs:

Experimental access

DVCS Kinematics

1
First universality / dXXm HIZO (X7 f) — 0 (m eVeIl)
-1

tests

Towards precision
studies

1 m
pARTONS / dxxX"H=0 (%, &) = > (20T + (2™ Crn i (m odd)
-1

Computing chain

i=0
Example even
S 2! m
GPD modeling / dxmeI:1(X7 5) - E (2£)lC{7TI1 (m eVGII)
ormalism -1 i—
;houtl Polynomiality e’:eon

Survey of models

Dyson-Schwinger 1 —1

Conclusion dXXmH (Xa 5) — 0 (m Odd)
-1
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Double Distributions.

Cea A convenient tool to encode GPD properties.

Formalism

Hadron m Define Double Distributions F? and G9 as matrix elements
Engineering of twist-2 quark operators:
A © o A " /m
Introduction P+ =130 {“iD’“ “.I'D;u’m} 0 lp—= _
e < 5 ’q( )y q(0) 5 2o,
assessment k:()
Experimental access A Mm—k+1 A ,U,m}
DVCS Kinematics N om— = =
[F2, (t)2P — GT (yAlH]pr . prm—k ( 2) =3
doipa precon o with
PARTONS
Project
e Fl = [ dBdaaks™Fi(5,0)
¢, = / dpda a*pm*GI(8, a)
Q

About Polynomiality

oy of ot Miller et al., Fortschr. Phys. 42, 101 (1994)
oo s Radyushkin, Phys. Rev. D59, 014030 (1999)
Radysuhkin, Phys.-Lett: B449, 81 (1999)
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Double Distributions.

Relation to Generalized Parton Distributions.

m Representation of GPD:

HI(x, &, t) = /sz dpdad(x— 5 — af)(Fq([ﬁ a,t) + G, a, t))

m Support property: x € [—1,+1].

m Discrete symmetries: F9 is a-even and GY9 is a-odd.
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Lorentz covariance by example.
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Needs
assessment

H(x,&) = SX/Qdﬂda d(x—p—af)

:uw_amswmn m Simple analytic expressions for the GPD:

PARTONS 6x(1 —

Ho) = O e ito < <x<

Automation (X + ‘5‘)

H(x, &) = if — ¢ <x<|é <1
GPD modeling ( ) |§’(1 + ‘5’) ‘ ‘ ’ ‘

About Polynomiality
Survey of models
Dyson-Schwinger

Conclusion
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Double Distributions.

Lorentz covariance by example.

m Compute first Mellin moments.

n| [FEAHxE) | [T dxxH(x €) | [T, dxxH(x,€)
1 +E—2€2 2¢2
0 T Tie !
1 1+e462-3¢% 28 1+€2
2(1+¢) 1+€ 2
o | 301-9(+2e+3¢2+4¢%) 64 3(1+€%)
10(1+¢) 5(1+¢) 10
3 | HEHEHEH -5 6¢° 1+€24¢1
5(1+€) 5(1+€) 5

m Expressions get more complicated as n increases... But

they always yield polynomials!
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Double Distribution models.

Cea VGG model (Vanderhaeghen, Guichon and Guidal).

Hadron m Factorized Ansatz.

everse H(X,ﬁ;t) _ / dﬁda5(5+€a—X)f(B,Oé» t)
la+[B]<1

Engineering

Introduction

1

(- fB,01) = (g "B)ma(8;0)

S r@n+2)  (1—|8)? - a2
m(B,a) = = +(1 ! ) (A—18]) : +1]
2rH2(n+1) (1)

;::;ONS m Expressions for h and n :

Project

S he(8) = |Bls(IB]) ng =1
ifﬂlw hg&‘d(ﬁ) - qsea(‘5‘>51gn(5> Nsea = 1

- ) hgal(ﬁ) - qval(ﬂ>6(ﬁ) Nyal = 1

GPD modeling

i m Add D-term at z= x/¢ :

orrsameen D(z) ~ (1 - 2) 5 —4.C(2) —1.2C8(2) — 04C/ 2(2)2
Conclusion Guidal et al., Phys. Rev. D72, 054013 (2005)
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Double Distribution models.

GK model (Goloskokov and Kroll).
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m Factorized Ansatz. For i = g, sea or val :

Hi(x,&,t) = / dBdad(p + Ea — x)fi( B, a, t)
- \a\+|ﬁ\<1

ff(/j)vavt) - ebt|[);|,yt l( )71-’7;(67 )

o T@m+2) (18D -
T (B,0) = Smnrirars —(3N\2n+1
220102 (i + 1) (1 —[B])*"
m Expressions for h; and n; :

h(8) = 18g(8) e = 2
hge‘l (B> - qsea(‘BDSigH(5> Nsea = 2
hgll(ﬁ) - qval(ﬁ)(—)(ﬁ) Na = 1

m Designed to study DVMP. Expect better comparison to
data at small xg.

Goloskokov and Kroll, Eur. Phys. J. C42, 281 (2005)
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Quark - diquark model.

GGL model (Goldstein, Gonzalez Hernandez and Liuti).
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m DGLAP region (|x| > £): Reggeized quark-diquark model.

m ERBL region (|x| < £): Extension with polynomials of
degree 2 or 3.

m Chiral-even and odd GPDs.

Goldstein et al., Phys. Rev. D84, 034007 (2011)
and arXiv:1311.0483 [hep-ph]
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Mellin-Barnes representation.

KM model (Kumericki and Miiller) (1/2).

Hadron m Recently proved equivalent to dual models.
Ensmenting Miiller et al., JHEP 1503, 052 (2015)

m Start from t-channel partial-wave expansion:

Introduction

oo n+1 X2 2 s 1
aNsesZtsjzment =2 Z Z Bn/H <1 — > <1 — 2) Cn/ < > P/ < )
Experimental access n=1 |=0 f 5 g

DVCS Kinematics odd even

First universality

tests 3/2 . B

Towrs eciin m From C?,/ define rescaled polynomials c,(x,&) to recover
PARTONS Mellin moments when ¢ — 0.

Project 1 1 .
e m Define orthogonal polynomials p,(x, &) such that:

Example +1

Automation n

| decnlx pm(x6) = (~1)60m

GPD modeling -1

Formalism

m Write partial-wave expansion:

About Polynomiality

Sy o et 00
Hi (60 8) = D2 (-1)palx E)a(6)
Conclusion —0
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Mellin-Barnes representation.

KM model (Kumericki and Miiller) (2/2).

m Start from partial-wave expansion:
Hi(,6) = > (=1)"Pa(x, &) Ha(£)
n=0

Resum by means of Sommerfeld - Watson transform:

c+ioco
Hy(x,€) = L / dj— -pi(x, &) Hj(€)

20 Je—iso sin 7

Miiller and Schafer, Nucl. Phys. B739, 1 (2006)
m Express CFF H in terms of moments H;:

. ;i/cw djgjlﬂ [H— tan <7;f>} Qb JHE)

c—ico

Regge modeling of H;(£) moments.
Kumericki and Miiller, Nucl. Phys. B841, 1 (2009)
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GPDs in the rainbow ladder approximation.

Evaluation of triangle diagrams.

—

P+ 2 a0 (B0 . P~ 5

m Compute Mellin moments
of the pion GPD H.
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GPDs in the rainbow ladder approximation.

Evaluation of triangle diagrams.

0 = gt (P 5 [0 (B 7P 5

m Compute Mellin moments
of the pion GPD H.

m Triangle diagram approx.
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m Compute Mellin moments
of the pion GPD H.

m Triangle diagram approx.

m Resum infinitely many
contributions.

= Nonperturbative modeling.

m Most GPD properties satisfied by construction.
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m Compute Mellin moments
of the pion GPD H.

m Triangle diagram approx.

m Resum infinitely many
contributions.

m Nonperturbative modeling.

m Most GPD properties satisfied by construction.
m Also compute crossed triangle diagram.

Mezrag et al., arXiv:1406.7425 [hep-ph]
and Phys. Lett. B741, 190 (2015)
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Algebraic model.

Intermediate step before using numerical solutions of Dyson-

Schwinger and Bethe-Salpeter equations.

Hadron m Expression for GPD Mellin moments:
Reverse
Engineering d4 k A A
o(pHymtLl myu g /k*ml“ k— —,P— —
( ) <X > I‘CFD (27T)4( ) / m 2 9 2
Introduction
A A - A A
Needs ><5(k——)inyr Sk+ )Tz | k+ —=,P+ = | S(k— P)
s 2 2 2 2
e m Expressions for vertices and propagators:
Towrts rcion Sip) = [—iv- p+MAuP)
PARTONS A 1
Project —
omputing chain M(s) S+ MZ
M o [T y
L) = iy M [ dzp(@) [Am(K,)]
GPD modeling ™ —1
Z’:::“;::ylmmiality /)I/ (Z) — Ry(l - 22)1/

Survey of models

Dyson-Schwinger

with R, a normalization factor and ki, = k— p(1 — z)/2.
Chang et al., Phys. Rev. Lett. 110, 132001 (2013)
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Algebraic model.

Cea Intermediate step before using numerical solutions of Dyson-
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Algebraic model.
Intermediate step before using numerical solutions of Dyson-
Schwinger and Bethe-Salpeter equations.

m Expressions for vertices and propagators:

Sp) = [—#i - p+MAuP)
1
Amls) = g
/S 9 \1¥
Telkp) = Ag M [ dzp,(2) [Awlk)

p(d) = R(1-2)

with R, a normalization factor and ki, = k— p(1 — z)/2.
Chang et al., Phys. Rev. Lett. 110, 132001 (2013)
m Only two parameters:

m Dimensionful parameter M.
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Algebraic model.
Intermediate step before using numerical solutions of Dyson-
Schwinger and Bethe-Salpeter equations.

m Expressions for vertices and propagators:

Sp) = [—# - p+MAup)
1
Amls) = e
M . [ > v
Ir(k,p) = l'f\,/5fM2V/ dzp,(2) [AM(kizﬂ
™ —1

p(2) = R(1-2)

with R, a normalization factor and ki, = k— p(1 — z)/2.
Chang et al., Phys. Rev. Lett. 110, 132001 (2013)
m Only two parameters:

m Dimensionful parameter M.
m Dimensionless parameter v
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Algebraic model.

Cea Intermediate step before using numerical solutions of Dyson-

Schwinger and Bethe-Salpeter equations.

Hadron m Expressions for vertices and propagators:
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S(p) = [—i - p+ MAuP)

Introduction 1
Needs AM(S) - S + M2
assessment
Experimental access i M o +1 b v
e Trlkop) = M / d2p.(2) [Amli.)]
tests T -1
Towards prcison oy (Z) _ R,/(l o ZZ)V
PARTONS
Project

Computing chan with R, a normalization factor and ki, = k— p(1 — z)/2.
A Chang et al., Phys. Rev. Lett. 110, 132001 (2013)

Team

m Only two parameters:

GPD modeling
ol m Dimensionful parameter M.
ot Polynomiaiy : : .
Survey of modes m Dimensionless parameter v. Fixed to 1 to recover

Dyson Schwinger asymptotic pion DA.

Conclusion
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Realistic model.

Implementing vertices and propagators coming from the numerical

resolution of the Dyson-Schwinger and Bethe-Salpeter equations.
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m Numerical solutions of equations are taken into account by
a fit with the following Ansatze:

m Ansatz for quark propagator:

Jm *

S =3 (-2 +- 3

ip+m ip+m;

=1
m Ansatz for scalar functions in Bethe Salpeter amplitude:

1
F(k; P) = c/ dzp, (2)AK* A% (K2)+ other similar terms
J—1
Chang et al., Phys. Rev. Lett. 110, 132001 (2013)
m Use experience from algebraic model.

m In principle slightly more complex. In practice many more
terms. Work in progress.
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Conclusion

Verification of theoretical constraints.
Analytic expressions for the GPD H.

m Analytic expression in the DGLAP region.

48 3 (72(x — 1)t (2x2 —5¢2 4 3) log(1 — X))
5 20 (€2 —1)?

Hizg(x«, £,0)

5

3 (+45 <l5x2(x+ 3) + (19x + 29)€% + 5(x(x(x + 11) + 21) + 3)&2) tanh—1 (%

20 (62 —1)3
3 (x3(x(2(x — 4)x+ 15) — 30) — 15(2x(x + 5) + 5)54) log (x2 . 52)
+ 3
20 (€2 — 1)
3 (75x(x(x(x+ 2) + 36) + 18)¢2 — 155“) log (xQ - 52)
+ - 3
20 (€2 — 1)

3 (2()(7 1) ((23x+ 58)€% + (x(x(x+ 67) + 112) + 6)€2 + x(x((5 — 2x)x+ 15) + ¢
’ 20 (52 — 1)3

3 ((15(2x(0xc+ 5) + 5)€* + 10x(3x(x + 5) + 11)¢?) log (1 — £2))
i

20 (¢2 —1)°
3 (2x(5x(x+ 2) — 6) + 1565 — 5¢2 + :3) log (1 - g2)
+ 3
20 (62 — 1)
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Conclusion

Verification of theoretical constraints.
Analytic expressions for the GPD H.

m Analytic expression in the DGLAP region.
m Similar expression in the ERBL region.
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Conclusion

Verification of theoretical constraints.
Analytic expressions for the GPD H.

m Analytic expression in the DGLAP region.
m Similar expression in the ERBL region.

m Explicit check of support property and polynomiality
with correct powers of &.
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Conclusion

Verification of theoretical constraints.
Analytic expressions for the GPD H.

m Analytic expression in the DGLAP region.
m Similar expression in the ERBL region.

m Explicit check of support property and polynomiality
with correct powers of &.

m Also direct verification using Mellin moments of H.
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- Verification of theoretical constraints.
Cea

Analytic expressions for the GPD H.

Had - - . .
Reverae m Analytic expression in the DGLAP region.
remesnne m Similar expression in the ERBL region.
Introduction m Explicit check of support property and polynomiality
Needs with correct powers of &.
e m Also direct verification using Mellin moments of H.
DVCS Kinematics 3 3 )
Fist niversaty Valence H"(x, &, t) as a function of x and & at vanishing t.

Towards precision
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20

Example

Automation

Team

GPD modeling
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L
Survey of models 10 05 00 -05

-10

Dyson-Schwinger

i Mezrag et al., arXiv:1406.7425 [hep-ph]
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Pion form factor.

Determination of the model dimensionful parameter M.
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Conclusion

m Pion form factor obtained from isovector GPD:

+1
[ axHT g 0 = 26,00
J—1

m Single dimensionful parameter M ~ 350 MeV.

\ErTT T

X ; — Model (M=0.35 GeV)

« Amendolia et al (1986)
= Huber etal. (2008)
v | -~ Model (M=0.25 GeV)
| -~ Model (M=0.45 GeV)
=
=
TRosp N
s 9
! 1 ! | !
0
q 05 1 15 2 25 3

t[GeV’]
Mezrag et al., arXiv:1406.7425 [hep-ph]

H. Moutarde | ANL Theory Seminar | 44 / 50



Pion form factor.

Determination of the model dimensionful parameter M.

Hadron
Reverse
Engineering

Introduction

Needs
assessment
Experimental access
DVCS Kinematics

First universality
tests

Towards precision
studies
PARTONS
Project
Computing chain
Example
Automation

Team

GPD modeling
Formalism

About Polynomiality
Survey of models

Dyson-Schwinger

Conclusion

m Pion form factor obtained from isovector GPD:

+1
/ dx H=Y (x, €, 1) = 2F, (1)
1

m Single dimensionful parameter M ~ 350 MeV.

— Model (M=0.35 GeV)
»  Amendolia et al (1986)
= Huberetal. (2008)
~- Model (M=0.25 GeV)

~- Model (M=0.45 GeV)

F.(0

05,

0.1 02 03 04

t[GeV?]

Mezrag et al., arXiv:1406.7425 [hep-ph]
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Pion form factor.

Determination of the model dimensionful parameter M.

m Pion form factor obtained from isovector GPD:

+1
dx H=Y (x, €, 1) = 2F, (1)

-1

m Single dimensionful parameter M ~ 350 MeV.

T

— Model (M=0.35 GeV)
©  Amendolia et al (1986)
= Huberetal. (2008)
-+ Model (M=0.25 GeV)

-~ Model (M=0.45 GeV)

F (0

— Model (M=0.35 GeV)

Amendolia et al (1986)
Huber et al. (2008)
Model (M=0.25 GeV)
Model (M=0.45 GeV)

\
0.1 02

+[GeV?]

Mezrag et al., arXiv:1406.7425 [hep-ph]
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Pion Parton Distribution Function.

Determination of the model initial scale.
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Conclusion

m Pion PDF obtained from forward limit of GPD:

q(x) = H(x,0,0)
m Use LO DGLAP equation and compare to PDF extraction.
Aicher et al., Phys. Rev. Lett. 105, 252003 (2010)

1

+Model (M=0.35 GeV)
-« Aicher et al. (Q=0.63 GeV)
-+ Aicher et al. (Q=0.40 GeV)
+ -+ Aicher et al. (Q=0.42 GeV)

]+

Mellin moment
o
T

10
n (moment order)

Mezrag et al., arXiv:1406.7425 [hep-ph]
m Find model initial scale ;1 ~ 400 MeV.
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Pion Parton Distribution Function.

Crossing and the two-body problem.

m In a symmetric 2-body problem, the PDF should be
symmetric with respect to x <> 1 — x.

2 . : . : - : . : .
1
Triangle contribution 1 Total result

1
1

L 1 .
1.5 |
1

L ! 4
1
1
1

~ I 1 !
o) 1
N— 1

ot 1 g
1
1

05 I —
Additional contribution 1
1
1

\
0 =<y e
C | | | | b

0 0.2 0.4 0.6 0.8 1

X
Chang et al., Phys. Lett. B737, 23 (2014)

m A triangle diagram calculation neglects part of the gluon

exchanges implementing this property.
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Conclusions and prospects.

Cea Learning about QCD from precision GPD studies.

Hadron
Reverse
Engineering

m Last decade demonstrated maturity of GPD

Introduction phenomenology.

Needs

aesessment m Good theoretical control on the path between GPD
xperimental access

oVES Kinematies models and experimental data.

First universality

s m Challenging constraints expected from JLab in the
PARTONS valence region.

Project

Computing chain

e m Building of QCD-inspired models to make progress.
Team

GPD modeling m Development of a platform dedicated to global GPD
Formalism . L. .

About Palmomiaity analysis to perform precision GPD studies.

Survey of models

Dyson-Schwinger
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