

DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

From 3D Hadron Structure to QCD Dynamics | Hervé MOUTARDE

May. 12th, 2015

Motivation.

Study hadron structure to shed new light on nonperturbative QCD.

Hadron Reverse Engineering

Reverse engineering

Introduction

Needs assessment

assessmer

Experimental access
DVCS Kinematics
First universality
tests
Towards precision

PARTONS Project

Computing chain Example

Team

GPD modeling

Formalism

About Polynomiality

Survey of models

Dyson-Schwinger

Conclusion

Reverse engineering is the process of discovering the technological principles of a device, object, or system through analysis of its structure, function, and operation.

Eilam and Chikofsky, Reversing: secrets of reverse engineering, John Wiley & Sons, 2007.

${\sf Motivation}$.

Study hadron structure to shed new light on nonperturbative QCD.

Hadron Reverse Engineering

Reverse engineering

Reverse engineering is the process of discovering the technological **principles** of a device, object, or system through **ana**lysis of its structure, function, and operation.

Needs assessment

Eilam and Chikofsky, Reversing: secrets of reverse engineering, John Wiley & Sons, 2007.

Experimental access **DVCS Kinematics** First universality tests Towards precision studies

PARTONS Project

Computing chain Example Automation Team

GPD modeling

Formalism About Polynomiality Survey of models Dyson-Schwinger

Motivation.

Study hadron structure to shed new light on nonperturbative QCD.

Hadron Reverse Engineering

Needs assessment

Experimental access **DVCS Kinematics** First universality

Towards precision

studies

PARTONS Project

Computing chain Example Automation Team

GPD modeling

Formalism About Polynomiality Survey of models Dyson-Schwinger

Conclusion

Reverse engineering

Reverse engineering is the process of discovering the technological principles of a device, object, or system through analysis of its structure, function, and operation.

Eilam and Chikofsky, Reversing: secrets of reverse engineering, John Wiley & Sons, 2007.

- Interplay between perturbative and non-perturbative QCD.
- Interacting colored degrees of freedom confined in colorless hadrons.
- **Emergence** of hadron characteristics from fundamental building blocks.

Hadron Reverse Engineering

- Correlation of the longitudinal momentum and the transverse position of a parton in a hadron.
- DVCS recognized as the cleanest channel to access GPDs.

Needs assessment

Experimental access **DVCS Kinematics** First universality

tests Towards precision

studies

PARTONS Project

Computing chain Example

Automation Team

GPD modeling Formalism

About Polynomiality Survey of models Dyson-Schwinger

Hadron Reverse Engineering

- Correlation of the longitudinal momentum and the transverse position of a parton in a hadron.
- DVCS recognized as the cleanest channel to access GPDs.

Needs assessment

Experimental access **DVCS Kinematics** First universality tests

Towards precision studies

PARTONS Project

Computing chain

Example

Automation Team

GPD modeling Formalism

About Polynomiality Survey of models Dyson-Schwinger

Conclusion

Deeply Virtual Compton Scattering (DVCS) **DVCS** Transverse center of momentum R_{\perp} $R_{\perp} = \sum_{i} x_{i} r_{\perp i}$ **Impact** parameter b_{\perp}

Hadron Reverse Engineering

- Correlation of the longitudinal momentum and the transverse position of a parton in a hadron.
- DVCS recognized as the cleanest channel to access GPDs.

Needs assessment

Experimental access **DVCS Kinematics** First universality

tests Towards precision

studies

PARTONS Project

Computing chain Example

Automation Team

GPD modeling Formalism

About Polynomiality Survey of models Dyson-Schwinger

Hadron Reverse Engineering

- Correlation of the longitudinal momentum and the transverse position of a parton in a hadron.
- DVCS recognized as the cleanest channel to access GPDs.

Needs

Experimental access

DVCS Kinematics First universality

tests

Towards precision studies

PARTONS Project

Computing chain

Example

Automation Team

GPD modeling

About Polynomiality Survey of models Dyson-Schwinger

Conclusion

■ 24 GPDs $F^i(x, \xi, t, \mu_F)$ for each parton type i = g, u, d, ... for leading and sub-leading twists.

Hadron Reverse Engineering

■ **Probabilistic interpretation** of Fourier transform of $GPD(x, \xi = 0, t)$ in **transverse plane**.

Introduction

Needs

Experimental access

DVCS Kinematics
First universality
tests
Towards precision

studies

PARTONS Project

Computing chain Example

Automation

GPD modeling

About Polynomiality
Survey of models
Dyson-Schwinger

Conclusion

$$\rho(\mathbf{x}, b_{\perp}, \lambda, \lambda_{N}) = \frac{1}{2} \left[\mathbf{H}(\mathbf{x}, 0, b_{\perp}^{2}) + \frac{b_{\perp}^{j} \epsilon_{ji} S_{\perp}^{i}}{M} \frac{\partial \mathbf{E}}{\partial b_{\perp}^{2}} (\mathbf{x}, 0, b_{\perp}^{2}) + \lambda \lambda_{N} \tilde{\mathbf{H}}(\mathbf{x}, 0, b_{\perp}^{2}) \right]$$

■ Notations : quark helicity λ , nucleon longitudinal polarization λ_N and nucleon transverse spin S_\perp .

Burkardt, Phys. Rev. **D62**, 071503 (2000)

Can we obtain this picture from exclusive measurements?

Weiss, AIP Conf. Proc. **1149**, 150 (2009)

Hadron Reverse Engineering Most general structure of matrix element of energy momentum tensor between nucleon states:

Needs assessment

Experimental access

DVCS Kinematics First universality

tests Towards precision studies

PARTONS Project

Computing chain Example Automation Team

GPD modeling

Formalism About Polynomiality Survey of models Dyson-Schwinger

Conclusion

$$\left\langle N, P + \frac{\Delta}{2} \middle| T^{\mu\nu} \middle| N, P - \frac{\Delta}{2} \right\rangle = \bar{u} \left(P + \frac{\Delta}{2} \right) \left[A(t) \gamma^{(\mu} P^{\nu)} + B(t) P^{(\mu} i \sigma^{\nu) \lambda} \frac{\Delta_{\lambda}}{2M} + \frac{C(t)}{M} (\Delta^{\mu} \Delta^{\nu} - \Delta^{2} \eta^{\mu\nu}) \right] u \left(P - \frac{\Delta}{2} \right)$$
 with $t = \Delta^{2}$.

Key observation: link between GPDs and gravitational

form factors $\int dx x \mathbf{H}^{q}(x, \xi, t) = \mathbf{A}^{q}(t) + 4\xi^{2} \mathbf{C}^{q}(t)$

$$\int dx x \mathbf{E}^{q}(x, \xi, t) = \mathbf{B}^{q}(t) - 4\xi^{2} \mathbf{C}^{q}(t)$$

Ji, Phys. Rev. Lett. **78**, 610 (1997)

Hadron Reverse Engineering

Spin sum rule:

$\int dx x (H^{q}(x,\xi,0) + E^{q}(x,\xi,0)) = A^{q}(0) + B^{q}(0) = 2J^{q}$

Ji, Phys. Rev. Lett. **78**, 610 (1997)

Shear and **pressure** of a hadron considered as a continuous medium:

$$\langle N | T^{ij}(\vec{r}) | N \rangle N = s(r) \left(\frac{r^{i}r^{j}}{\vec{r}^{2}} - \frac{1}{3}\delta^{ij} \right) + p(r)\delta^{ij}$$

Polyakov and Shuvaev, hep-ph/0207153

Needs assessment

Experimental access

DVCS Kinematics First universality tests

Towards precision studies

PARTONS Project

Computing chain Example

Automation Team

GPD modeling Formalism

About Polynomiality Survey of models Dyson-Schwinger

Anatomy of hadrons. Different questions and different tools to answer them.

Hadron Reverse Engineering

- 1 Study of exclusive processes.
- 2 Metrology of Generalized Parton Distributions.
- 3 Understanding of QCD mechanisms and modeling of Generalized Parton Distributions.

Introduction

Needs

Experimental access

First universality tests

Towards precision studies

PARTONS Project

Computing chain Example

Team

GPD modeling

About Polynomiality Survey of models Dyson-Schwinger

Anatomy of hadrons.

Different questions and different tools to answer them.

Hadron Reverse Engineering

Introduction

Needs

Experimental access

DVCS Kinematics First universality tests

Towards precision studies

PARTONS Project

Computing chain

Example Automation

GPD modeling

Formalism

About Polynomiality

Survey of models

Dyson-Schwinger

Needs assessment

Needs assessment

Exclusive processes of current interest (1/2). Factorization and universality.

Hadron Reverse Engineering

Introduction

Needs

assessment

Experimental access
DVCS Kinematics
First universality
tests

Towards precision studies

Team

PARTONS Project

Computing chain
Example
Automation

GPD modeling

Formalism

About Polynomiality

Survey of models

Dyson-Schwinger

Exclusive processes of current interest (1/2). Factorization and universality.

Hadron Reverse Engineering

Introduction

Needs assessment

Experimental access

DVCS Kinematics First universality tests

Towards precision studies

PARTONS Project

Computing chain Example

Automation Team

GPD modeling

Formalism About Polynomiality Survey of models Dyson-Schwinger

Exclusive processes of current interest (1/2). Factorization and universality.

Introduction

Needs assessment

Experimental access

DVCS Kinematics First universality tests

Towards precision studies

PARTONS Project

Computing chain Example

Automation Team

GPD modeling

About Polynomiality Survey of models Dyson-Schwinger

Exclusive processes of current interest (1/2). Factorization and universality.

Introduction

Needs assessment

Experimental access

DVCS Kinematics First universality tests

Towards precision studies PARTONS

Project Computing chain

Example Automation Team

GPD modeling Formalism

About Polynomiality Survey of models Dyson-Schwinger

Exclusive processes of current interest (1/2). Factorization and universality.

Introduction

Needs

assessment

Experimental access

DVCS Kinematics First universality

Towards precision studies

PARTONS Project Computing chain

Example Automation

GPD modeling

About Polynomiality Survey of models Dyson-Schwinger

Exclusive processes of current interest (1/2). Factorization and universality.

Introduction

Needs assessment

assessment

Experimental access

DVCS Kinematics First universality

Towards precision studies

PARTONS

Project Computing chain

Example Automation

GPD modeling

About Polynomiality Survey of models Dyson-Schwinger

Exclusive processes of present interest (2/2). Factorization and universality.

Hadron Reverse Engineering

Introduction

Needs assessment

Experimental access

DVCS Kinematics First universality

Towards precision studies

PARTONS Project Computing chain

Example Automation Team

GPD modeling

Formalism About Polynomiality Survey of models Dyson-Schwinger

Conclusion

Bjorken regime : large Q^2 and fixed $xB \simeq 2\xi/(1+\xi)$

- Partonic interpretation relies on factorization theorems.
- All-order proofs for DVCS, TCS and some DVMP.
- GPDs depend on a (arbitrary) factorization scale μ_F .
- **Consistency** requires the study of **different channels**.
- GPDs enter DVCS through **Compton Form Factors**:

$$\mathcal{F}(\xi,t,\mathbf{Q}^2) = \int_{-1}^1 \mathrm{d}\mathbf{x} \, \mathcal{C}\left(\mathbf{x},\xi,\alpha_{\mathrm{S}}(\mu_{\mathrm{F}}),\frac{\mathbf{Q}}{\mu_{\mathrm{F}}}\right) \mathit{F}(\mathbf{x},\xi,t,\mu_{\mathrm{F}})$$

for a given GPD F.

 \blacksquare CFF \mathcal{F} is a complex function.

Hadron Reverse Engineering

Introduction

Needs

assessment

Experimental access DVCS Kinematics

First universality

Towards precision studies

PARTONS Project

Computing chain Example

Automation Team

GPD modeling

Formalism
About Polynomiality

Survey of models Dyson-Schwinger

Hadron Reverse Engineering

Introduction

Needs

assessment

Experimental access DVCS Kinematics

First universality tests

studies

PARTONS Project

Computing chain Example

Automation Team

GPD modeling

About Polynomiality Survey of models Dyson-Schwinger

Hadron Reverse Engineering

Introduction

Needs

assessment

Experimental access

DVCS Kinematics
First universality

tests

Towards precision studies

PARTONS Project

Computing chain

Example Automation Team

GPD modeling

Formalism
About Polynomiality

Survey of models Dyson-Schwinger

Dyson-Schwinge

Hadron Reverse Engineering

Introduction

Needs

assessment

Experimental access DVCS Kinematics

First universality tests

Towards precision studies

PARTONS Project

Team

Computing chain Example Automation

GPD modeling

Formalism

About Polynomiality

Survey of models Dyson-Schwinger

Introduction

Needs

assessment

Experimental access

DVCS Kinematics

First universality tests

Towards precision studies

PARTONS Project

Computing chain Example

Automation Team

GPD modeling

About Polynomiality Survey of models Dyson-Schwinger

Typical DVCS kinematics.

Probing gluons, sea and valence quarks through DVCS.

Introduction

Needs assessment

Experimental access

DVCS Kinematics

First universality

Towards precision studies

PARTONS Project Computing chain

Example Automation

Team

GPD modeling

Formalism

About Polynomiality

Survey of models

Dyson-Schwinger

Conclusion

Study the **harmonic structure** of $ep \rightarrow ep\gamma$ amplitude.

Diehl *et al.*, Phys. Lett. **B411**, 193 (1997)

Experiment	Kinematics		
	XB	Q^2 [GeV 2]	$t [\text{GeV}^2]$
HERA	0.001	8.00	-0.30
COMPASS	0.05	2.00	-0.20
HERMES	0.09	2.50	-0.12
CLAS	0.19	1.25	-0.19
HALL A	0.36	2.30	-0.23

Hadron Reverse Engineering

Introduction

Needs

assessment

tests

Experimental access

DVCS Kinematics First universality

Towards precision studies

PARTONS

Project
Computing chain
Example

Automation Team

GPD modeling

Formalism

About Polynomiality

Survey of models

Dyson-Schwinger

Hadron Reverse Engineering

Introduction

Needs

assessment

Experimental access

DVCS Kinematics

First universality tests

Towards precision studies

PARTONS

Project Computing chain

Example Automation Team

GPD modeling

Formalism

About Polynomiality

Survey of models

Dyson-Schwinger

Hadron Reverse Engineering

Introduction

Needs

assessment

DVCS Kinematics

First universality tests

Towards precision studies

PARTONS Project

Computing chain Example

Automation Team

GPD modeling

Formalism About Polynomiality Survey of models Dyson-Schwinger

Hadron Reverse Engineering

Introduction

Needs

assessment

Experimental access

DVCS Kinematics

First universality tests

Towards precision studies

PARTONS Project

Team

Computing chain Example Automation

GPD modeling

Formalism About Polynomiality Survey of models Dyson-Schwinger

Summary of first extractions. Feasibility of twist-2 analysis of existing data.

Hadron Reverse Engineering

Introduction

Needs

Experimental access

DVCS Kinematics First universality

tests

Towards precision

studies

PARTONS Project

Computing chain Example

Automation Team

GPD modeling

Formalism

About Polynomiality

Survey of models

Dyson-Schwinger

Conclusion

Dominance of twist 2 and validity of a GPD analysis of DVCS data.

- $Im\mathcal{H}$ best determined. Large uncertainties on $Re\mathcal{H}$.
- However sizable higher twist contamination for DVCS measurements.
- Already some indications about the invalidity of the H-dominance hypothesis with unpolarized data.

Kinematics of existing DVCS measurements. Precision studies of the DVCS process at JLab.

Introduction

Needs assessment

Experimental access

DVCS Kinematics First universality

Towards precision

studies

PARTONS Project

Team

Computing chain Example Automation

GPD modeling

Formalism

About Polynomiality Survey of models Dyson-Schwinger

Kinematics of existing DVCS measurements. Precision studies of the DVCS process at JLab.

Introduction

Needs assessment

Experimental access

DVCS Kinematics

First universality

Towards precision studies

PARTONS Project

Example Automation Team

Computing chain

GPD modeling

Formalism About Polynomiality Survey of models Dyson-Schwinger

 \blacksquare Q^2 is **not so large** for most of the data.

Kinematics of existing DVCS measurements. Precision studies of the DVCS process at JLab.

Introduction

Needs

assessment

Experimental access

DVCS Kinematics

First universality tests

Towards precision studies

PARTONS Project

Computing chain
Example
Automation
Team

GPD modeling

About Polynomiality Survey of models Dyson-Schwinger

- \mathbb{Q}^2 is **not so large** for most of the data.
- **Higher twists**, finite-*t* and target mass corrections?

Kinematics of existing DVCS measurements. Precision studies of the DVCS process at JLab.

Introduction

Needs

assessment

Experimental access

DVCS Kinematics

First universality

Towards precision studies

PARTONS Project

Team

Computing chain Example Automation

GPD modeling Formalism

About Polynomiality Survey of models Dyson-Schwinger

- $extbf{Q}^2$ is **not so large** for most of the data.
- **Higher twists**, finite-t and target mass corrections?
- **Consistent modeling** of GPDs beyond leading twist?

The challenges brought by JLab.

Hints of target mass corrections from recent DVCS analysis.

Hadron Reverse Engineering

Introduction

Needs

assessment Experimental access

DVCS Kinematics First universality

Towards precision studies

PARTONS Project

Computing chain Example Automation

Team

GPD modeling

Formalism About Polynomiality Survey of models Dyson-Schwinger

Conclusion

Improved analysis of 2004 Hall A data (unpolarized target)

Defurne et al., arXiv:1504:05453 [nucl-ex]

The challenges brought by JLab.

Widest phase space ever explored in the valence region.

Hadron Reverse Engineering

Introduction

Needs assessment

Experimental access

DVCS Kinematics First universality tests

Towards precision studies

PARTONS Project

Computing chain Example

Automation Team

GPD modeling

About Polynomiality Survey of models Dyson-Schwinger

Conclusion

Analysis of 2009 Hall B data (polarized target)

Pisano *et al.*, Phys. Rev. **D91**, 052014 (2015)

The challenges brought by JLab. Widest phase space ever explored in the valence region.

Hadron Reverse Engineering

Introduction

Needs

assessment

Experimental access **DVCS Kinematics** First universality

Towards precision studies

PARTONS Project

Computing chain Example Automation

Team

GPD modeling

Formalism About Polynomiality

Survey of models Dyson-Schwinger

Conclusion

solid: VGG dash-dotted: KMS dotted dashed:KM10

Timelike and spacelike Compton Scattering. Scattering amplitudes and their partonic interpretation.

Hadron Reverse Engineering

Introduction

Needs assessment

Experimental access

DVCS Kinematics First universality

tests Towards precision

studies

PARTONS Project Computing chain

Team

Example Automation

GPD modeling

Formalism About Polynomiality Survey of models Dyson-Schwinger

Conclusion

Compton Form Factors (CFF)

Parametrize amplitudes.

Timelike and spacelike Compton Scattering. Scattering amplitudes and their partonic interpretation.

Hadron Reverse Engineering

Introduction

Needs

assessment

Experimental access

DVCS Kinematics First universality

Towards precision studies

PARTONS Project

Computing chain

Example Automation Team

GPD modeling

Formalism

About Polynomiality

Survey of models

Dyson-Schwinger

Conclusion

DVCS

x +

Compton Form Factors (CFF)

- Parametrize amplitudes.
- Evaluation at LO.

Timelike and spacelike Compton Scattering. Scattering amplitudes and their partonic interpretation.

Hadron Reverse Engineering

Introduction

Needs assessment

Experimental access

DVCS Kinematics First universality tests

Towards precision studies

PARTONS Project

Computing chain Example

Automation Team

GPD modeling

Formalism About Polynomiality Survey of models Dyson-Schwinger

Conclusion

Compton Form Factors (CFF)

- Parametrize amplitudes.
- Evaluation at LO.
- Evaluation at NLO.

Timelike and spacelike Compton Scattering. Scattering amplitudes and their partonic interpretation.

Hadron Reverse Engineering

Introduction

Needs assessment

Experimental access **DVCS Kinematics**

First universality tests

Towards precision studies

PARTONS Project

Computing chain Example

Automation Team

GPD modeling

Formalism About Polynomiality Survey of models Dyson-Schwinger

Conclusion

DVCS

Compton Form Factors (CFF)

- Parametrize amplitudes.
- Evaluation at LO.
- Evaluation at NI O.
- Other diagrams at NLO, including gluon GPDs.

Explicit expressions.

Hadron Reverse Engineering • Convolution of singlet GPD $H_a^+(x) \equiv H_a(x) - H_a(-x)$:

Quark and gluon contributions to the CFF \mathcal{H} at LO and NLO.

$$\xi, Q^2) = \int_{-1}^{+1} dx H_q^+(x, \xi, \mu_F) T_q\left(x, \xi, \alpha_S(\mu_F), \frac{Q}{\mu_F}\right)$$

Introduction

Needs

assessment Experimental access

DVCS Kinematics

First universality tests

studies

Towards precision

PARTONS Project

Team

Computing chain

Example Automation

GPD modeling

Formalism About Polynomiality Survey of models Dyson-Schwinger

Conclusion

$$+ \int_{-1}^{+1} dx \, H_{g}(x, \xi, \mu_{F}) \, T_{g}\left(x, \xi, \alpha_{S}(\mu_{F}), \frac{Q}{\mu_{F}}\right)$$

Belistky and Müller, Phys. Lett. **B417**, 129 (1998) Pire et al. Phys. Rev. **D83**, 034009 (2011)

Explicit expressions. Quark and gluon contributions to the CFF \mathcal{H} at LO and NLO.

Hadron Reverse Engineering

■ Convolution of singlet GPD
$$H_q^+(x) \equiv H_q(x) - H_q(-x)$$
 :

Convolution of singlet GPD
$$H_q^+(x) \equiv H_q(x) - H_q(-x)$$
:
$$\mathcal{H}_q(\xi, Q^2) = \int_{-1}^{+1} dx H_q^+(x, \xi, \mu_F) C_0^q(x, \xi)$$

Introduction

Needs assessment

Experimental access

DVCS Kinematics First universality

tests Towards precision

studies

PARTONS Project Computing chain

Example

Automation Team

GPD modeling

Formalism About Polynomiality Survey of models Dyson-Schwinger

Conclusion

$$+\int_{-1}^{+1} dx \, H_{g}(x,\xi,\mu_{F}) \, \, \mathbf{0}$$

Belistky and Müller, Phys. Lett. **B417**, 129 (1998) Pire et al, Phys. Rev. **D83**, 034009 (2011)

■ Integration yields **imaginary** parts to \mathcal{H} :

$$Im\mathcal{H}_q(\xi, Q^2) \stackrel{\mathbf{LO}}{=} \pi H_q^+(\xi, \xi, \mu_F)$$

Explicit expressions.

Hadron Reverse Engineering

Towards precision studies

PARTONS Project

Computing chain Example Automation

Team GPD modeling

Formalism About Polynomiality Survey of models

Needs assessment Experimental access **DVCS Kinematics** First universality

Quark and gluon contributions to the CFF \mathcal{H} at LO and NLO.

■ Convolution of singlet GPD
$$H_q^+(x) \equiv H_q(x) - H_q(-x)$$
 :

Engineering
$$\mathcal{H}_q(\xi,Q^2) \stackrel{\text{NLO}}{=} \int_{-1}^{+1} dx \, H_q^+(x,\xi,\mu_F) \left[C_0^q + C_1^q + \frac{1}{2} \ln \frac{|Q^2|}{\mu_F^2} C_{\text{Coll}}^q \right]$$
Introduction

$$+ \int_{-1}^{+1} dx H_{g}(x, \xi, \mu_{F}) \left(0 + C_{1}^{g} + \frac{1}{2} \ln \frac{|Q^{2}|}{\mu_{F}^{2}} C_{\text{Coll}}^{g} \right)$$

H. Moutarde | ANL Theory Seminar

Belistky and Müller, Phys. Lett. **B417**, 129 (1998) Pire et al, Phys. Rev. D83, 034009 (2011)

Integration yields **imaginary** parts to \mathcal{H} :

$$Im\mathcal{H}_{q}(\xi, Q^{2}) \stackrel{\text{NLO}}{=} \mathcal{I}(\xi)H_{q}^{+}(\xi, \xi, \mu_{F})$$

$$+ \int_{-1}^{+1} dx \mathcal{T}^{q}(x) \Big(H_{q}^{+}(x, \xi, \mu_{F}) - H_{q}^{+}(\xi, \xi, \mu_{F})\Big)$$
+ gluon contributions.

Large NLO corrections.

Mostly due to gluons, maximum in HERMES / COMPASS region.

Introduction

Needs

assessment

Experimental access
DVCS Kinematics
First universality

Towards precision

studies PARTONS

Project Computing chain

Example Automation

Team

GPD modeling

Formalism

About Polynomiality

Survey of models

Dyson-Schwinger

Conclusion

dotted: LO dashed: NLO quark corrections solid: sfull NLO C

PARTONS Project

PARTONS Project

PARtonic Tomography Of Nucleon Software

Hadron Reverse Engineering

Experimental data and phenomenology

Full processes

Introduction

Needs assessment

Experimental access **DVCS Kinematics** First universality

Towards precision studies

PARTONS

Project Computing chain

Example Automation Team

GPD modeling

Formalism About Polynomiality Survey of models Dyson-Schwinger

Conclusion

Computation of amplitudes

First principles and fundamental parameters

Small distance contributions

Large distance contributions

Hadron Reverse Engineering

Introduction

Needs

assessment

Experimental access

DVCS Kinematics

First universality tests

studies

PARTONS Project Computing chain

Example Automation Team

GPD modeling

Formalism About Polynomiality Survey of models

Dyson-Schwinger

Conclusion

Experimental data and phenomenology

Computation of amplitudes

First principles and fundamental parameters

Full processes

Small distance contributions

Large distance contributions

Hadron Reverse Engineering

Introduction

Needs

assessment Experimental access

DVCS Kinematics
First universality

tests

Towards precision studies

PARTONS Project

Computing chain

Example Automation Team

GPD modeling

About Polynomiality Survey of models Dyson-Schwinger

Conclusion

Hadron Reverse Engineering

Introduction

Needs

assessment

Experimental access **DVCS Kinematics** First universality

tests Towards precision

studies

PARTONS Project

Computing chain

Example Automation Team

GPD modeling Formalism

About Polynomiality Survey of models Dyson-Schwinger

Conclusion

- Many observables.
- Kinematic reach.

Hadron Reverse Engineering

Introduction

Needs

assessment

Experimental access **DVCS Kinematics** First universality

Towards precision

studies

PARTONS

Project Computing chain

Example Automation Team

GPD modeling

Formalism About Polynomiality Survey of models Dyson-Schwinger

data and phenomenology Need for

Experimental

modularity

Computation of amplitudes

First principles and fundamental parameters

DVMP **DVCS** DVMP

GPD at $\mu \neq \mu_F^{\text{ref}}$

GPD at μ_{F}^{ref}

- Many observables.
- Kinematic reach.
- Perturbative approximations.
- Physical models.
 - Fits
- Numerical methods
- Accuracy and speed.

Conclusion

Evolution

Hadron Reverse Engineering

Introduction

Needs

assessment

Experimental access **DVCS Kinematics** First universality

Towards precision

studies

PARTONS Project

Computing chain

Example Automation Team

GPD modeling

Formalism About Polynomiality Survey of models Dyson-Schwinger

First principles and fundamental parameters

Experimental

Need for

Computation

of amplitudes

modularity

data and

DVMP **DVCS** phenomenology DVMP GPD at $\mu \neq \mu_F^{\text{ref}}$

GPD at $\mu_F^{\rm ref}$

- Many observables.
- Kinematic reach.
 - Perturbative approximations.
- Physical models.
 - Fits
- Numerical methods
- Accuracy and speed.

Evolution

Hadron Reverse Engineering

Introduction

Needs

assessment

Experimental access **DVCS Kinematics** First universality

Towards precision studies

PARTONS Project

Computing chain

Example Automation Team

GPD modeling

Formalism About Polynomiality Survey of models Dyson-Schwinger

Conclusion

Experimental data and phenomenology

Need for modularity

Computation of amplitudes

First principles and fundamental parameters

DVMP DVCS

DVCS

GPD at $\mu \neq \mu_F^{\text{ref}}$ Evolution

GPD at $\mu_F^{\rm ref}$

- Many observables.
- Kinematic reach.
- Perturbative approximations.
- Physical models.
 - Fits
- Numerical methods
- Accuracy and speed.

Hadron Reverse Engineering

Introduction

Needs

assessment

Experimental access
DVCS Kinematics
First universality

Towards precision

studies

PARTONS Project

Computing chain

Example Automation Team

GPD modeling

About Polynomiality Survey of models Dyson-Schwinger

Conclusion

Experimental data and phenomenology

Need for modularity

Computation of amplitudes

First principles and fundamental parameters DVCS TCS TCS TCS

GPD at $\mu \neq \mu_F^{\text{ref}}$ Evolution

GPD at μ_F^{ref}

- Many observables.
- Kinematic reach.
- Perturbative approximations.
- Physical models.
 - Fits.
- Numerical methods.
- Accuracy and speed.

Hadron Reverse Engineering

Introduction

Needs

assessment

Experimental access **DVCS Kinematics** First universality

Towards precision

studies

PARTONS Project

Computing chain

Example Automation Team

GPD modeling

Formalism About Polynomiality Survey of models Dyson-Schwinger

Conclusion

Experimental data and phenomenology

Need for modularity

Computation of amplitudes

First principles and fundamental parameters

DVMP DVCS

GPD at $\mu \neq \mu_F^{\text{ref}}$ Evolution GPD at μ_{F}^{ref}

- Many observables.
- Kinematic reach.
- Perturbative approximations.
- Physical models.
 - Fits
- Numerical methods.
- Accuracy and speed.

Status. Currently: integration, tests, validation.

Hadron Reverse Engineering

Introduction

Needs assessment

Experimental access

DVCS Kinematics First universality

tests Towards precision

studies PARTONS Project

Computing chain

Example Automation Team

GPD modeling

Formalism About Polynomiality Survey of models

Dyson-Schwinger

3 stages:

Design.

Integration and validation.

Production.

Flexible software architecture.

■ 1 new physical development = 1 new module.

■ What can be automated will be automated.

Get ready for 12 GeV!

GPD computing made simple.

Each line of code corresponds to a physical hypothesis.


```
gpdEvolutionExample()
  Hadron
  Reverse
             1 // Load QCD evolution module
 Engineering
             2 EvolQCDModule* pEvolQCDModule = pModuleObjectFactory ->
               getEvolQCDModule( VinnikovEvolQCDModel::moduleID ) ;
Introduction
             5 // Configure QCD evolution module
Needs
               pEvolQCDModule—>setQcdOrderType( QCDOrderType::LO );
assessment
Experimental access
DVCS Kinematics
               // Load GPD module
First universality
               GPDModule* pGK11Module =
tests
               pModuleObjectFactory—>getGPDModule( GK11Model::moduleID );
Towards precision
studies
            11
PARTONS
               // Create kinematic configuration ( x, xi, t, MuF, MuR )
Project
                GPDKinematic gpdKinematic( 0.25, 0.29, -0.28, 1.82, 1.82 );
Computing chain
Example
            14
Automation
            15 // Compute GPD and store results
Team
                GPDOutputData results = pGPDService->
GPD modeling
               computeGPDModelWithEvolution(gpdKinematic,pGK11Module,
Formalism
                pEvolQCDModule, GPDComputeType::H);
About Polynomiality
            19
Survey of models
            20 // Print results
Dyson-Schwinger
               std::cout << results.toString() << std::endl ;</pre>
Conclusion
                                                      H. Moutarde
                                                                   ANL Theory Seminar
                                                                                        24 / 50
```


GPD computing made simple. Each line of code corresponds to a physical hypothesis.

gpdEvolutionExample() Hadron Reverse 1 // Load QCD evolution module Engineering **Preliminary** 2 EvolQCDModule* pEvolQCDModule = pModule 3 getEvolQCDModule(VinnikovEvolQCDModel::n Hu = 1.5435Introduction Hu(-) = 2.047365 // Configure QCD evolution module Needs Hu(+) = 1.039646 pEvolQCDModule—>setQcdOrderType(QCDO assessment Experimental access **DVCS** Kinematics 8 // Load GPD module First universality Hd = 0.5240689 GPDModule* pGK11Module = Towards precision pModuleObjectFactory—>getGPDModule(GK1 Hd(-) = 1.00457studies 11 PARTONS Hd(+) = 0.043565112 // Create kinematic configuration (x, xi, t, M Project 13 GPDKinematic gpdKinematic (0.25, 0.29, -0.28)Computing chain Example 14 Hs = -0.539675Automation 15 // Compute GPD and store results Team Hs(-) = 016 GPDOutputData results = pGPDService-> GPD modeling computeGPDModelWithEvolution(gpdKinemat Hs(+) = -1.07935Formalism pEvolQCDModule, GPDComputeType::H); About Polynomiality Survey of models 19 Dyson-Schwinger // Print results Hg = -0.3086std::cout << results.toString() << std::endl;</pre> Conclusion

H. Moutarde

ANL Theory Seminar

GPD computing made systematic. What can be automated is automated.


```
scenario 01.xml
  Hadron
  Reverse
              <?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
 Engineering
               <scenario id="01" date="" description="Test_using_GPD_service">
                   <!-- Select type of computation -->
                       <operation service="GPDService" method="computeGPDModel" >
Introduction
                           <!-- Specify kinematics -->
Needs
                           <GPDKinematic x="-0.99" xB="0.33" t="-0.1" MuF2="2"
assessment
               MuR2="2">
Experimental access
DVCS Kinematics
                           </GPDKinematic>
First universality
                           <!-- Choose GPD model and set parameters -->
Towards precision
                           <GPDModule id="GK11Model">
             g
studies
                               <param name="" value="" />
PARTONS
                               <param name="" value="" />
            11
Project
                           </GPDModule>
            12
Computing chain
                       </operation>
Example
Automation
               </scenario>
Team
GPD modeling
                                      void playScenarioExample()
Formalism
               ScenarioManager* pScenarioManager = ScenarioManager::getInstance();
About Polynomiality
             2 // Compute without compiling
Survey of models
Dyson-Schwinger
             3 pScenarioManager—>playScenario(PropertiesManager::getInstance()
                   ->getString("scenario.directory") + "scenario_01.xml");
Conclusion
```

H. Moutarde

ANL Theory Seminar

GPD computing made systematic. What can be automated is automated.

H. Moutarde

ANL Theory Seminar

GPD computing made systematic. What can be automated is automated.

Members and areas of expertise. Collaborations at the national and international levels.

Hadron Reverse Engineering

Introduction

Needs assessment

Experimental access

DVCS Kinematics First universality

Towards precision studies

PARTONS Project

Computing chain Example Automation

Team

GPD modeling Formalism

About Polynomiality Survey of models Dyson-Schwinger

Conclusion

GPD Modeling

GPD Modeling

Nucleon Generalized Parton Distributions.

Needs

assessment

Experimental access **DVCS Kinematics**

First universality tests

Towards precision studies

PARTONS Project

Computing chain

Example Automation Team

GPD modeling Formalism

Survey of models Dyson-Schwinger

About Polynomiality

Conclusion

Matrix elements of twist-2 bilocal operators.

$F^{q} = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle p' \left| \bar{q} \left(-\frac{z}{2} \right) \gamma^{+} q \left(\frac{z}{2} \right) \right| p \rangle_{z^{+}=0, z_{\perp}=0}$

$$= \frac{1}{2P^{+}} \left[\mathbf{H}^{\mathbf{q}} \bar{u}(p') \gamma^{+} u(p) + \mathbf{E}^{\mathbf{q}} \bar{u}(p') \frac{i\sigma^{+\alpha} \Delta_{\alpha}}{2M} u(p) \right]$$

$$\tilde{F}^{q} = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle p' \left| \bar{q} \left(-\frac{z}{2} \right) \gamma^{+} \gamma_{5} q \left(\frac{z}{2} \right) \right| p \rangle_{z^{+}=0, z_{\perp}=0}
= \frac{1}{2P^{+}} \left[\tilde{H}^{q} \bar{u}(p') \gamma^{+} \gamma_{5} u(p) + \tilde{E}^{q} \bar{u}(p') \frac{\gamma^{5} \Delta^{+}}{2M} u(p) \right]$$

References

Müller et al., Fortschr. Phys. 42, 101 (1994) Ji, Phys. Rev. Lett. **78**, 610 (1997)

Radyushkin, Phys. Lett. **B380**, 417 (1996)

4 D b 4 A B b 4 B b

Nucleon Generalized Parton Distributions.

Needs assessment

Experimental access

DVCS Kinematics First universality tests

Towards precision studies

PARTONS Project Computing chain

Example Automation Team

GPD modeling Formalism

About Polynomiality Survey of models Dyson-Schwinger

Conclusion

Matrix elements of twist-2 bilocal operators.

$$F^{q} = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle p' \left| \bar{q} \left(-\frac{z}{2} \right) \gamma^{+} q \left(\frac{z}{2} \right) \right| p \rangle_{z^{+}=0,z_{\perp}=0}$$
$$= \frac{1}{2P^{+}} \left[\mathbf{H}^{q} \bar{u}(p') \gamma^{+} u(p) + \mathbf{E}^{q} \bar{u}(p') \frac{i\sigma^{+\alpha} \Delta_{\alpha}}{2M} u(p) \right]$$

$$\tilde{F}^{q} = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle p' \left| \bar{q} \left(-\frac{z}{2} \right) \gamma^{+} \gamma_{5} q \left(\frac{z}{2} \right) \right| p \rangle_{z^{+}=0,z_{\perp}=0}$$

$$= \frac{1}{2P^{+}} \left[\tilde{\boldsymbol{H}}^{q} \bar{\boldsymbol{u}}(\boldsymbol{p}') \gamma^{+} \gamma_{5} \boldsymbol{u}(\boldsymbol{p}) + \tilde{\boldsymbol{E}}^{q} \bar{\boldsymbol{u}}(\boldsymbol{p}') \frac{\gamma^{5} \Delta^{+}}{2M} \boldsymbol{u}(\boldsymbol{p}) \right]$$

8 GPDs per parton type at twist 2

- Partons with a light-like separation.
- Quarks, gluon and transversity GPDs.
- $\blacksquare \mathsf{GPD}^{q,g} = \mathsf{GPD}^{q,g}(x, \xi, t, \mu_F).$

Nucleon Generalized Parton Distributions. Matrix elements of twist-2 bilocal operators.

Hadron Reverse Engineering

Introduction

Needs assessment

Experimental access

DVCS Kinematics

First universality tests Towards precision

studies

PARTONS Project

Computing chain Example

Automation Team

GPD modeling

Formalism About Polynomiality Survey of models

Dyson-Schwinger Conclusion

Interpretation

- $\mathbf{x} \in [\xi, 1]$: q emitted + q absorbed.
- $\mathbf{x} \in [-\xi, +\xi]$: \bar{q} emitted +q absorbed.
- $\mathbf{x} \in [-1, -\xi] : \bar{q} \text{ emitted } + \bar{q} \text{ absorbed.}$

ANL Theory Seminar

Pion Generalized Parton Distribution. Definition and symmetry relations.

Hadron Reverse Engineering

Introduction

Needs assessment

Experimental access

DVCS Kinematics

First universality tests

Towards precision studies

PARTONS Project

Team

Computing chain Example Automation

GPD modeling Formalism

About Polynomiality Survey of models Dyson-Schwinger

Conclusion

$$H_{\pi}^{q}(x,\xi,t) =$$

$$\frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{ixP^{+}z^{-}} \left\langle \pi, P + \frac{\Delta}{2} \middle| \bar{q} \left(-\frac{z}{2} \right) \gamma^{+} q \left(\frac{z}{2} \right) \middle| \pi, P - \frac{\Delta}{2} \right\rangle_{z^{+}=0}$$

with $t = \Delta^2$ and $\xi = -\Delta^+/(2P^+)$.

- From **isospin symmetry**, all the information about pion GPDs is encoded in $H_{\pi^+}^u$ and $H_{\pi^+}^d$.
- Further constraint from charge conjugation: $H_{-+}^{u}(x,\xi,t) = -H_{-+}^{d}(-x,\xi,t).$

Hadron Reverse Engineering

PDF forward limit

$$H^q(x,0,0) = q(x)$$

Introduction

Needs assessment

Experimental access

DVCS Kinematics

First universality tests

Towards precision studies

PARTONS Project

Computing chain

Example Automation

Team

GPD modeling

Formalism

About Polynomiality Survey of models Dyson-Schwinger

Hadron Reverse Engineering

- PDF forward limit.
- Form factor sum rule

$$\int_{-1}^{+1} dx H^{q}(x\xi, t) = F_{1}^{q}(t)$$

Introduction

Needs assessment

Experimental access

DVCS Kinematics First universality

tests

Towards precision studies

PARTONS Project

Computing chain Example

Automation Team

GPD modeling

Formalism

About Polynomiality Survey of models

Dyson-Schwinger

Hadron Reverse Engineering

- PDF forward limit.
- Form factor sum rule
- **Polynomiality**

$$\int_{-1}^{+1} dx \, x^n H^q(x, \xi, t) = \text{polynomial in } \xi$$

Introduction

Needs assessment

Experimental access

DVCS Kinematics

First universality tests

Towards precision studies

PARTONS Project

Computing chain

Example Automation

GPD modeling

Formalism

Team

About Polynomiality Survey of models Dyson-Schwinger

Properties.

Generalization of form factors and Parton Distribution Functions.

Hadron Reverse Engineering

Introduction

- PDF forward limit
- Form factor sum rule
- **Polynomiality**
- **Positivity**

$$H^{q}(x,\xi,t) \leq \sqrt{q\left(\frac{x+\xi}{1+\xi}\right)q\left(\frac{x-\xi}{1-\xi}\right)}$$

Needs Experimental access

assessment

DVCS Kinematics First universality tests

Towards precision studies

PARTONS Project

Computing chain Example Automation

GPD modeling

Formalism

Team

About Polynomiality Survey of models Dyson-Schwinger

Hadron Reverse Engineering

- PDF forward limit
- Form factor sum rule
- **Polynomiality**
- **Positivity**
- H^q is an **even function** of ξ from time-reversal invariance.

Introduction

Needs assessment

Experimental access

DVCS Kinematics First universality

tests Towards precision

studies

PARTONS Project

Computing chain Example

Automation Team

GPD modeling

Formalism About Polynomiality

Survey of models Dyson-Schwinger

Conclusion

ANL Theory Seminar

Hadron Reverse Engineering

- PDF forward limit
- Form factor sum rule
- Polynomiality
- Positivity
- H^q is an **even function** of ξ from time-reversal invariance.
- \blacksquare H^q is **real** from hermiticity and time-reversal invariance.

Introduction

Needs assessment

Experimental access

DVCS Kinematics First universality tests

Towards precision studies

PARTONS Project

Computing chain Example

Automation Team

GPD modeling

Formalism

About Polynomiality Survey of models Dyson-Schwinger

Hadron Reverse Engineering

PDF forward limit

- Form factor sum rule
 - Polynomiality
- Positivity
- \blacksquare H^q is an **even function** of ξ from time-reversal invariance.
- \blacksquare H^q is **real** from hermiticity and time-reversal invariance.
- H^q has support $x \in [-1, +1]$.

Introduction

Needs assessment

assessment Experimental access

DVCS Kinematics First universality tests

Towards precision studies

PARTONS Project

Computing chain Example

Automation Team

GPD modeling

Formalism

About Polynomiality Survey of models Dyson-Schwinger

Hadron Reverse Engineering

Form factor sum rule

Introduction

Polynomiality

PDF forward limit

Needs assessment

Positivity

Experimental access

 \blacksquare H^q is an **even function** of ξ from time-reversal invariance.

DVCS Kinematics First universality tests Towards precision ■ H^q is **real** from hermiticity and time-reversal invariance.

studies

■ H^q has support $x \in [-1, +1]$. Soft pion theorem (pion target)

PARTONS Project

Computing chain Example Automation Team

$$H^{l=1}(x,\xi=1,t=0) = \phi_{\pi}\left(\frac{1+x}{2}\right)$$

GPD modeling Formalism

About Polynomiality Survey of models

Dyson-Schwinger Conclusion

/

Hadron Reverse Engineering

Introduction

Experimental access
DVCS Kinematics
First universality

Needs

tests
Towards precision

PDF forward limit

Form factor sum rule

Polynomiality

Positivity

- H^q is an **even function** of ξ from time-reversal invariance.
- \blacksquare H^q is **real** from hermiticity and time-reversal invariance.
- H^q has support $x \in [-1, +1]$.
- **Soft pion theorem** (pion target)

PARTONS Project

Computing chain
Example
Automation
Team

GPD modeling

About Polynomiality Survey of models

Dyson-Schwinger

Conclusion

Numerous theoretical constraints on GPDs.

- There is no known GPD parameterization relying only on first principles.
- Modeling becomes a key issue.

Polynomiality. Mixed constraint from Lorentz invariance and discrete symmetries.

Hadron Reverse Engineering

Introduction Needs

assessment Experimental access **DVCS Kinematics**

Introduce isovector and isoscalar GPDs:

$$H^{l=0}(x,\xi,t) = H^{u}_{\pi^{+}}(x,\xi,t) + H^{d}_{\pi^{+}}(x,\xi,t)$$

 $H^{l=1}(x,\xi,t) = H^{u}_{\pi^{+}}(x,\xi,t) - H^{d}_{\pi^{+}}(x,\xi,t)$

Compute Mellin moments of GPDs:

 $\int_{-\infty}^{\infty} dx x^m H^{l=0}(x,\xi) = 0 \ (m \text{ even})$ First universality Towards precision

Towards precision studies
$$\sum_{\text{studies}}^{\text{Towards precision}} \int_{-1}^{1} \mathrm{d}x \, x^m H^{l=0}(x,\xi) = \sum_{i=0}^{m} (2\xi)^i C_{mi}^{l=0} + (2\xi)^{m+1} C_{m\,m+1}^{l=0} \ (m \text{ odd})$$

Automation $\int_{-1}^{1} dx x^{m} H^{l=1}(x,\xi) = \sum_{m=1}^{\infty} (2\xi)^{i} C_{mi}^{l=1} (m \text{ even})$

About Polynomiality even Survey of models Dyson-Schwinger
$$\int_{0}^{1} \mathrm{d}x \, x^m H^{l=1}(x,\xi) = 0 \ (m \ \mathrm{odd})$$

H. Moutarde | ANL Theory Seminar | 31 / 50

Example

Double Distributions.

A convenient tool to encode GPD properties.

Hadron Reverse Engineering Define Double Distributions F^q and G^q as matrix elements of twist-2 quark operators:

 $\left\langle P + \frac{\Delta}{2} \middle| \bar{q}(0) \gamma^{\{\mu_i \overleftrightarrow{D}^{\mu_1} \dots i \overleftrightarrow{D}^{\mu_m\}}} q(0) \middle| P - \frac{\Delta}{2} \right\rangle = \sum^{m} {m \choose k}$

Needs assessment

Experimental access

DVCS Kinematics

studies

Towards precision

PARTONS Project Computing chain

Example Automation Team

GPD modeling Formalism

About Polynomiality Survey of models Dyson-Schwinger

Conclusion

with

$$F_m^q$$

$$F_{mk}^{q} = \int_{\Omega} d\beta d\alpha \, \alpha^{k} \beta^{m-k} F^{q}(\beta, \alpha)$$

$$\int_{\Omega} \mathrm{d}\beta$$

$$\int_{\Omega} d\beta$$

$$\Omega$$

$$G_{mk}^q = \int_{\Omega} d\beta d\alpha \, \alpha^k \beta^{m-k} G^q(\beta, \alpha)$$

Müller et al., Fortschr. Phys. 42, 101 (1994) Radyushkin, Phys. Rev. **D59**, 014030 (1999)

Radysuhkin, Phys. Lett. **B449**, 81 (1999) H. Moutarde | ANL Theory Seminar

Double Distributions. Relation to Generalized Parton Distributions

Hadron Reverse Engineering

Introduction

Needs assessment

Experimental access

DVCS Kinematics First universality

tests Towards precision

studies

PARTONS Project

Computing chain Example

Automation Team

GPD modeling

Formalism About Polynomiality

Survey of models Dyson-Schwinger

Conclusion

Representation of GPD:

$$H^{q}(x,\xi,t) = \int_{\Omega} d\beta d\alpha \, \delta(x-\beta-\alpha\xi) \big(F^{q}(\beta,\alpha,t) + \xi G^{q}(\beta,\alpha,t) \big)$$

- Support property: $x \in [-1, +1]$.
- Discrete symmetries: F^q is α -even and G^q is α -odd.

Double Distributions. Lorentz covariance by example.

Hadron Reverse Engineering

Introduction

Needs

assessment

Experimental access **DVCS Kinematics** First universality tests

Towards precision studies

PARTONS Project

Team

Computing chain Example Automation

GPD modeling

Formalism About Polynomiality

Survey of models Dyson-Schwinger

Conclusion

• Choose $F^q(\beta, \alpha) = 3\beta\theta(\beta)$ ad $G^q(\beta, \alpha) = 3\alpha\theta(\beta)$:

$$H^{q}(x,\xi) = 3x \int_{\Omega} d\beta d\alpha \, \delta(x - \beta - \alpha \xi)$$

Simple analytic expressions for the GPD:

$$H(x,\xi) = \frac{6x(1-x)}{1-\xi^2} \text{ if } 0 < |\xi| < x < 1,$$

$$H(x,\xi) = \frac{3x(x+|\xi|)}{|\xi|(1+|\xi|)} \text{ if } -|\xi| < x < |\xi| < 1.$$

Double Distributions. Lorentz covariance by example.

Hadron Reverse Engineering Compute first Mellin moments.

 $\int_{-\xi}^{+1} \mathrm{d}x \, x^n H(x,\xi)$ $\int_{-\epsilon}^{+\xi} dx x^n H(x,\xi)$ $\int_{\pm \xi}^{+1} \mathrm{d}x x^n H(x,\xi)$ n Introduction $\frac{1+\xi-2\xi^2}{1+\xi}$ Needs assessment Experimental access **DVCS Kinematics** $\frac{1+\xi+\xi^2-3\xi^3}{2(1+\xi)}$ First universality tests Towards precision studies $\frac{3(1-\xi)(1+2\xi+3\xi^2+4\xi^3)}{10(1+\xi)}$ $\frac{6\xi^4}{5(1+\xi)}$ PARTONS Project Computing chain Example Automation 3 Team GPD modeling

About Polynomiality
Survey of models
Dyson-Schwinger
Conclusion

Formalism

Expressions get more complicated as *n* increases... But they always yield polynomials!

Double Distribution models. VGG model (Vanderhaeghen, Guichon and Guidal).

 $f(\beta, \alpha, t) = \frac{1}{|\beta| \alpha' (1-\beta)t} h(\beta) \pi_n(\beta, \alpha)$

 $h_{\text{sea}}^{q}(\beta) = q_{\text{sea}}(|\beta|) \operatorname{sign}(\beta)$

Hadron Reverse Engineering

Introduction

Needs assessment

Experimental access
DVCS Kinematics
First universality
tests
Towards precision

PARTONS Project

Example

Automation Team GPD modeling

Computing chain

Formalism About Polynomiality Survey of models

Dyson-Schwinger

■ Factorized Ansatz.

$$H(x,\xi,t) = \int_{|\alpha|+|\beta|\leq 1} d\beta d\alpha \, \delta(\beta+\xi\alpha-x) f(\beta,\alpha,t)$$

$$\pi_n(\beta, \alpha) = \frac{\Gamma(2n+2)}{2^{2n+1}\Gamma^2(n+1)} \frac{(1-|\beta|)^2 - \alpha^2]^n}{(1-|\beta|)^{2n+1}}$$

Expressions for h and n:

$$h_g(\beta) = |\beta| g(|\beta|)$$

$$h_{\text{val}}^{q}(\beta) = q_{\text{val}}(\beta)\Theta(\beta)$$

■ Add *D*-term at $z = x/\xi$:

$$D(z) \simeq (1-z^2) \Big(-4.C_1^{3/2}(z) - 1.2C_3^{3/2}(z) - 0.4C_5^{3/2}(z) \Big)$$

Guidal *et al.*, Phys. Rev. **D72**, 054013 (2005)

Double Distribution models. GK model (Goloskokov and Kroll).

Hadron Reverse Engineering

Introduction

Needs

assessment

Experimental access

DVCS Kinematics First universality tests

Towards precision studies

PARTONS Project

Team

Computing chain Example Automation

GPD modeling Formalism About Polynomiality

Survey of models Dyson-Schwinger

Conclusion

Factorized Ansatz. For i = g, sea or val :

$$H(x \in t) = \int d\beta d\alpha \delta(\beta + \xi \alpha)$$

$$H_{i}(x,\xi,t) = \int_{|\alpha|+|\beta|\leq 1} d\beta d\alpha \, \delta(\beta + \xi \alpha - x) f_{i}(\beta,\alpha,t)$$

$$f_{i}(\beta,\alpha,t) = e^{b_{i}t} \frac{1}{|\beta|^{\alpha't}} h_{i}(\beta) \pi_{n_{i}}(\beta,\alpha)$$

$$\pi_{n_i}(\beta,\alpha) = \frac{\Gamma(2n_i+2)}{2^{2n_i+1}\Gamma^2(n_i+1)} \frac{(1-|\beta|)^2 - \alpha^2]^{n_i}}{(1-|\beta|)^{2n_i+1}}$$

Expressions for h_i and n_i :

$$\begin{array}{llll} h_{\rm g}(\beta) & = & |\beta| {\rm g}(|\beta|) & n_{\rm g} & = & 2 \\ h_{\rm sea}^{\rm q}(\beta) & = & q_{\rm sea}(|\beta|) {\rm sign}(\beta) & n_{\rm sea} & = & 2 \\ h_{\rm val}^{\rm q}(\beta) & = & q_{\rm val}(\beta) \Theta(\beta) & n_{\rm val} & = & 1 \end{array}$$

Designed to study DVMP. Expect better comparison to data at small x_R .

Goloskokov and Kroll, Eur. Phys. J. C42, 281 (2005)

Quark - diguark model. GGL model (Goldstein, Gonzalez Hernandez and Liuti).

Hadron Reverse Engineering

Introduction

Needs assessment

Experimental access **DVCS Kinematics** First universality

tests Towards precision

studies PARTONS Project

Computing chain Example

Automation Team

GPD modeling

Formalism About Polynomiality Survey of models Dyson-Schwinger

Conclusion

- DGLAP region ($|x| > \xi$): Reggeized quark-diquark model.
- ERBL region ($|x| < \xi$): Extension with polynomials of degree 2 or 3.
- Chiral-even and odd GPDs.

Goldstein et al., Phys. Rev. **D84**, 034007 (2011) and arXiv:1311.0483 [hep-ph]

37 / 50

Mellin-Barnes representation. KM model (Kumericki and Müller) (1/2).

Hadron Reverse Engineering

Recently proved equivalent to **dual models**.

Müller et al., JHEP 1503, 052 (2015)

■ Start from *t*-channel **partial-wave expansion**:

Introduction

Needs

 $H_{+}(x,\xi) = 2\sum_{n=1}^{\infty} \sum_{l=1}^{n+1} B_{nl}\theta \left(1 - \frac{x^{2}}{\varepsilon^{2}}\right) \left(1 - \frac{x^{2}}{\varepsilon^{2}}\right) C_{n}^{3/2} \left(\frac{x}{\varepsilon}\right) P_{l}\left(\frac{1}{\varepsilon}\right)$ assessment Experimental access **DVCS Kinematics** odd even

Towards precision studies

■ From $C_n^{3/2}$ define rescaled polynomials $c_n(x,\xi)$ to **recover Mellin moments** when $\xi \to 0$.

■ Define **orthogonal polynomials** $p_n(x,\xi)$ such that:

$$\int_{-1}^{+1} dx \, c_n(x,\xi) p_m(x,\xi) = (-1)^n \delta_{nm}$$

■ Write partial-wave expansion:

$$H_{+}(x,\xi) = \sum_{n=0}^{\infty} (-1)^{n} p_{n}(x,\xi) H_{n}(\xi)$$

H. Moutarde | ANL Theory Seminar | 38 / 50

PARTONS Project

First universality

Computing chain Example Automation

Team

GPD modeling Formalism

About Polynomiality Survey of models Dyson-Schwinger

Mellin-Barnes representation. KM model (Kumericki and Müller) (2/2).

Hadron Reverse Engineering

Introduction Needs

assessment Experimental access **DVCS Kinematics**

First universality Towards precision studies PARTONS

Computing chain Example Automation

Project

Team GPD modeling Formalism About Polynomiality Start from partial-wave expansion:

$$H_{+}(x,\xi) = \sum_{n=0}^{\infty} (-1)^{n} p_{n}(x,\xi) H_{n}(\xi)$$

Resum by means of **Sommerfeld - Watson transform**:

$$H_{+}(x,\xi) = \frac{1}{2i} \int_{c-i\infty}^{c+i\infty} dj \frac{1}{\sin \pi j} p_j(x,\xi) H_j(\xi)$$

Müller and Schäfer, Nucl. Phys. B739, 1 (2006)

Express CFF \mathcal{H} in terms of moments H_i :

$$\mathcal{H}(\xi) = \frac{1}{2i} \int_{a_{j} = a_{j}}^{c + i\infty} dj \frac{1}{\xi j + 1} \left[i + \tan\left(\frac{\pi j}{2}\right) \right] \left[C_{j}^{0} + \ldots \right] H_{j}(\xi)$$

■ Regge modeling of $H_i(\xi)$ moments. Kumericki and Müller, Nucl. Phys. **B841**, 1 (2009)

Survey of models Dyson-Schwinger Conclusion

$$\langle x^m \rangle^q = \frac{1}{2(P^+)^{n+1}} \left\langle \pi, P + \frac{\Delta}{2} \left| \bar{q}(0) \gamma^+ (i \overleftrightarrow{D}^+)^m q(0) \right| \pi, P - \frac{\Delta}{2} \right\rangle$$

Introduction

Needs

assessment Experimental access

DVCS Kinematics First universality

tests Towards precision

studies

PARTONS Project

Computing chain Example

Automation Team

GPD modeling

Formalism About Polynomiality Survey of models Dyson-Schwinger

Conclusion

Compute **Mellin moments** of the pion GPD H.

Hadron Reverse Engineering

$$\langle x^m \rangle^q = \frac{1}{2(P^+)^{n+1}} \left\langle \pi, P + \frac{\Delta}{2} \left| \overline{q}(0) \gamma^+ (i \overrightarrow{D}^+)^m q(0) \right| \pi, P - \frac{\Delta}{2} \right\rangle$$

Introduction

Needs assessment

Experimental access

DVCS Kinematics First universality

tests

studies

Towards precision

PARTONS Project

Computing chain Example

Automation Team

GPD modeling

Formalism About Polynomiality Survey of models

Dyson-Schwinger

- Compute Mellin moments of the pion GPD H.
- Triangle diagram approx.

$$\langle \mathbf{x}^{m} \rangle^{q} = \frac{1}{2(P^{+})^{n+1}} \left\langle \pi, P + \frac{\Delta}{2} \left| \bar{q}(0) \gamma^{+} (i \overleftrightarrow{D}^{+})^{m} q(0) \right| \pi, P - \frac{\Delta}{2} \right\rangle$$

Introduction

Needs assessment

Experimental access

DVCS Kinematics

First universality tests Towards precision

studies

PARTONS Project

Computing chain Example

Automation Team

GPD modeling Formalism

About Polynomiality Survey of models

Dyson-Schwinger

Conclusion

- Compute **Mellin moments** of the pion GPD H.
- Triangle diagram approx.
- Resum **infinitely many** contributions.

ANL Theory Seminar

Dyson - Schwinger equation

$$(-0-)^{-1}=(---)^{-1}+$$

Hadron Reverse Engineering

$$\langle x^m \rangle^q = \frac{1}{2(P^+)^{n+1}} \left\langle \pi, P + \frac{\Delta}{2} \left| \bar{q}(0) \gamma^+ (i \overleftrightarrow{D}^+)^m q(0) \right| \pi, P - \frac{\Delta}{2} \right\rangle$$

Introduction

Needs

Experimental access

DVC\$ Kinematics

First universality tests

Towards precision studies

PARTONS Project

Computing chain Example

Team

GPD modeling

Formalism

About Polynomiality

Survey of models

Dyson-Schwinger

Conclusion

Triangle diagram approx.

Resum infinitely many contributions.

Hadron Reverse Engineering

$$\langle \mathbf{x}^{m} \rangle^{q} = \frac{1}{2(P^{+})^{n+1}} \left\langle \pi, P + \frac{\Delta}{2} \left| \bar{q}(0) \gamma^{+} (i \overleftrightarrow{D}^{+})^{m} q(0) \right| \pi, P - \frac{\Delta}{2} \right\rangle$$

Introduction

Needs assessment

Experimental access

DVCS Kinematics First universality tests

Towards precision studies

PARTONS Project

Computing chain Example

Automation Team

GPD modeling

Formalism About Polynomiality Survey of models Dyson-Schwinger

- Compute Mellin moments of the pion GPD H.
 - Triangle diagram approx.
- Resum infinitely many contributions.
- **Nonperturbative** modeling.
- Most GPD properties satisfied by construction.

Hadron Reverse Engineering

$$\langle x^m \rangle^q = \frac{1}{2(P^+)^{n+1}} \left\langle \pi, P + \frac{\Delta}{2} \left| \bar{q}(0) \gamma^+ (i \overleftrightarrow{D}^+)^m q(0) \right| \pi, P - \frac{\Delta}{2} \right\rangle$$

Introduction

Needs assessment

Experimental access

DVCS Kinematics First universality

tests Towards precision

studies

Team

PARTONS

Project Computing chain

Example Automation

GPD modeling

Formalism About Polynomiality Survey of models

Dyson-Schwinger Conclusion

- Compute Mellin moments of the pion GPD H.
- Triangle diagram approx.
- Resum **infinitely many** contributions.
- Nonperturbative modeling.
- Most GPD properties satisfied by construction.
- Also compute crossed triangle diagram.

Mezrag et al., arXiv:1406.7425 [hep-ph] and Phys. Lett. **B741**, 190 (2015)

Hadron Reverse

Algebraic model.

Intermediate step before using numerical solutions of Dyson-Schwinger and Bethe-Salpeter equations.

Engineering

Expression for GPD Mellin moments:

Introduction

Needs

assessment

Experimental access **DVCS Kinematics**

First universality

tests Towards precision

studies PARTONS

Team

Formalism

Survey of models

Dyson-Schwinger

Conclusion

 $\times S(k-\frac{\Delta}{2})i\gamma^{+} S(k+\frac{\Delta}{2})i\bar{\Gamma}_{\pi}\left(k+\frac{\Delta}{2},P+\frac{\Delta}{2}\right)S(k-P)$

 $\Delta_M(s) = \frac{1}{s + M^2}$

 $\rho_{\nu}(z) = R_{\nu}(1-z^2)^{\nu}$

Expressions for vertices and propagators:

 $S(p) = [-i\gamma \cdot p + M] \Delta_M(p^2)$

 $\Gamma_{\pi}(k,p) = i\gamma_5 \frac{M}{f_-} M^{2\nu} \int_{-1}^{+1} \mathrm{d}z \, \rho_{\nu}(z) \left[\Delta_M(k_{+z}^2) \right]^{\nu}$

with R_{ν} a normalization factor and $k_{+z} = k - p(1-z)/2$.

Chang et al., Phys. Rev. Lett. **110**, 132001 (2013) H. Moutarde | ANL Theory Seminar

 $2(P^+)^{m+1} \langle x^m \rangle^u = \operatorname{tr}_{CFD} \int \frac{\mathrm{d}^4 k}{(2\pi)^4} (k^+)^m i \Gamma_\pi \left(k - \frac{\Delta}{2}, P - \frac{\Delta}{2} \right)$

Intermediate step before using numerical solutions of Dyson-Schwinger and Bethe-Salpeter equations.

 $S(p) = [-i\gamma \cdot p + M] \Delta_M(p^2)$

Hadron Reverse Engineering Expressions for vertices and propagators:

assessment Experimental access

DVCS Kinematics

First universality

tests Towards precision

studies

PARTONS Project

Computing chain Example

Automation Team

About Polynomiality Survey of models

$$\Delta_{M}(s) = \frac{1}{s + M^{2}}$$

$$\Gamma_{\pi}(k, p) = i\gamma_{5} \frac{M}{f_{\pi}} M^{2\nu} \int_{-1}^{+1} dz \, \rho_{\nu}(z) \, \left[\Delta_{M}(k_{+z}^{2}) \right]^{\nu}$$

$$\rho_{\nu}(z) = R_{\nu} (1 - z^{2})^{\nu}$$

with R_{ν} a normalization factor and $k_{+z} = k - p(1-z)/2$.

Chang et al., Phys. Rev. Lett. 110, 132001 (2013)

Only two parameters:

Intermediate step before using numerical solutions of Dyson-Schwinger and Bethe-Salpeter equations.

Hadron Reverse Engineering Expressions for vertices and propagators:

$$S(p) = \left[-i\gamma \cdot p + \mathbf{M} \right] \Delta_{\mathbf{M}}(p^{2})$$

$$\Delta_{\mathbf{M}}(s) = \frac{1}{s + \mathbf{M}^{2}}$$

$$\Gamma_{\pi}(k,p) = i\gamma_5 \frac{\mathbf{M}}{f_{\pi}} \mathbf{M}^{2\nu} \int_{-1}^{+1} \mathrm{d}z \, \rho_{\nu}(z) \left[\Delta_{\mathbf{M}}(k_{+z}^2) \right]^{\nu}$$

$$\rho_{\nu}(\mathbf{z}) = R_{\nu}(1 - \mathbf{z}^2)^{\nu}$$

with R_{ν} a normalization factor and $k_{+z} = k - p(1-z)/2$. Chang et al., Phys. Rev. Lett. 110, 132001 (2013)

- Only two parameters:
 - Dimensionful parameter M.

Introduction

Needs assessment

Experimental access

DVCS Kinematics First universality

tests Towards precision studies

PARTONS Project Computing chain

Team

Example Automation

GPD modeling Formalism About Polynomiality

Survey of models

Dyson-Schwinger

Intermediate step before using numerical solutions of Dyson-Schwinger and Bethe-Salpeter equations.

Hadron Reverse Engineering Expressions for vertices and propagators:

 $\rho_{\nu}(z) = R_{\nu}(1-z^2)^{\nu}$

Experimental access **DVCS Kinematics** First universality tests Towards precision

studies PARTONS

Project Computing chain

Example Automation

Team

GPD modeling

Formalism About Polynomiality Survey of models

$$S(p) = \left[-i\gamma \cdot p + M \right] \Delta_{M}(p^{2})$$

$$\Delta_{M}(s) = \frac{1}{s + M^{2}}$$

$$\Gamma_{\pi}(k, p) = i\gamma_{5} \frac{M}{f_{\pi}} M^{2\nu} \int_{-1}^{+1} dz \, \rho_{\nu}(z) \, \left[\Delta_{M}(k_{+z}^{2}) \right]^{\nu}$$

with R_{ν} a normalization factor and $k_{+z} = k - p(1-z)/2$. Chang et al., Phys. Rev. Lett. 110, 132001 (2013)

- Only two parameters:
 - Dimensionful parameter M.
 - Dimensionless parameter ν

Intermediate step before using numerical solutions of Dyson-Schwinger and Bethe-Salpeter equations.

Hadron Reverse Engineering

Introduction

Needs assessment

Experimental access

DVCS Kinematics First universality

tests Towards precision

studies

PARTONS Project

Team

Computing chain Example Automation

GPD modeling

Formalism About Polynomiality Survey of models Dyson-Schwinger

Conclusion

Expressions for vertices and propagators:

$$S(p) = \left[-i\gamma \cdot p + M \right] \Delta_{M}(p^{2})$$

$$\Delta_{M}(s) = \frac{1}{s + M^{2}}$$

$$\Gamma_{\pi}(k,p) = i\gamma_{5} \frac{M}{f_{\pi}} M^{2\nu} \int_{-1}^{+1} dz \, \rho_{\nu}(z) \, \left[\Delta_{M}(k_{+z}^{2}) \right]^{\nu}$$

$$\rho_{\nu}(z) = R_{\nu} (1 - z^{2})^{\nu}$$

with R_{ν} a normalization factor and $k_{+z} = k - p(1-z)/2$. Chang et al., Phys. Rev. Lett. 110, 132001 (2013)

- Only two parameters:
 - Dimensionful parameter M.
 - Dimensionless parameter ν . Fixed to 1 to recover asymptotic pion DA.

Realistic model

Implementing vertices and propagators coming from the numerical resolution of the Dyson-Schwinger and Bethe-Salpeter equations.

Hadron Reverse Engineering

Introduction

Needs assessment

Experimental access

DVCS Kinematics First universality

Towards precision studies

PARTONS Project

Computing chain Example Automation Team

GPD modeling Formalism

About Polynomiality Survey of models Dyson-Schwinger

Conclusion

- Numerical solutions of equations are taken into account by a fit with the following Ansätze:
 - Ansatz for quark propagator:

$$S(p) = \sum_{j=1}^{j_m} \left(\frac{z_j}{i \not p + m_j} + \frac{z_j^*}{i \not p + m_j^*} \right)$$

Ansatz for scalar functions in Bethe Salpeter amplitude:

$$F(k; P) = c \int_{-1}^{+1} dz \, \rho_{\nu}(z) \Lambda k^2 \Delta_{\Lambda}^2(k_z^2) + \text{ other similar terms}$$

Chang et al., Phys. Rev. Lett. 110, 132001 (2013)

- Use experience from algebraic model.
- In principle slightly more complex. In practice many more terms. Work in progress.

Hadron Reverse Engineering ■ **Analytic expression** in the DGLAP region.

$$48 \left(3 \left(-2(x-1)^4 \left(2x^2 - 5\xi^2 + 3 \right) \log(1-x) \right) \right)$$

Introduction

assessment

Experimental access **DVCS Kinematics**

First universality

Towards precision studies

PARTONS Project Computing chain Example

Automation Team

Formalism

About Polynomiality Survey of models Dyson-Schwinger

GPD modeling

$$H_{x \ge \xi}^{u}(x,\xi,0) = \frac{48}{5} \left\{ \frac{3\left(-2(x-1)^4\left(2x^2 - 5\xi^2 + 3\right)\log(1-x)\right)}{20\left(\xi^2 - 1\right)^3} \right\}$$

$$(0) = \frac{48}{5} \left\{ \frac{3(-2(x-1)^2(2x^2-5\xi^2+3)\log(1-x))}{20(\xi^2-1)^3} \right\}$$

$$\frac{3\left(+4\xi\left(15x^2(x+3)+(19x+29)\xi^4+5(x(x(x+11)+21)+3)\xi^2\right)\tanh^{-1}\left(\frac{(x-1)}{x-\xi^2}\right)}{20\left(\xi^2-1\right)^3}$$

$$+\frac{3 \left(x^3 \left(x (2 (x-4) x+15)-30\right)-15 (2 x (x+5)+5) \xi^4\right) \log \left(x^2-\xi^2\right)}{20 \left(\xi^2-1\right)^3}$$

$$+\frac{3 \left(-5 \text{x}(\text{x}(\text{x}(\text{x}+2)+36)+18) \xi ^2-15 \xi ^6\right) \log \left(\text{x}^2-\xi ^2\right)}{20 \left(\xi ^2-1\right)^3}$$

$$+ \frac{3(2(x-1)^{6})}{(23x+58)\xi^{4} + (x(x(x+67)+112)+6)\xi^{2} + x(x((5-2x)x+15)+3))} + \frac{3(2(x-1)^{6})(23x+58)\xi^{4} + (x(x(x+67)+112)+6)\xi^{2} + x(x((5-2x)x+15)+3))}{20(\xi^{2}-1)^{3}}$$

$$+\frac{3 \left(\left(15 (2 x (x+5)+5) \xi^4+10 x (3 x (x+5)+11) \xi^2\right) \log \left(1-\xi^2\right)\right)}{20 \left(\xi^2-1\right)^3} \\ +\frac{3 \left(2 x (5 x (x+2)-6)+15 \xi^6-5 \xi^2+3\right) \log \left(1-\xi^2\right)}{20 \left(\xi^2-1\right)^3} \right\}$$

Hadron Reverse Engineering

- Analytic expression in the DGLAP region.
- Similar expression in the ERBL region.

Introduction

Needs assessment

Experimental access

DVCS Kinematics

First universality tests

studies

PARTONS Project

Computing chain Example

Automation Team

GPD modeling

Formalism

About Polynomiality

Survey of models

Dyson-Schwinger

Hadron Reverse Engineering

- **Analytic expression** in the DGLAP region.
- Similar expression in the ERBL region.
- Explicit check of support property and polynomiality with correct powers of ξ .

Introduction

Needs assessment

Experimental access

DVCS Kinematics First universality

tests Towards precision

studies

PARTONS Project

Computing chain Example

Automation Team

GPD modeling Formalism

About Polynomiality Survey of models

Dyson-Schwinger

Hadron Reverse Engineering

- **Analytic expression** in the DGLAP region.
- Similar expression in the ERBL region.
- Explicit check of support property and polynomiality with correct powers of ξ .
- Also direct verification using Mellin moments of H.

Introduction

Needs assessment

Experimental access **DVCS Kinematics** First universality tests

Towards precision studies

PARTONS Project

Computing chain Example

Automation Team

GPD modeling Formalism

About Polynomiality Survey of models

Dyson-Schwinger

Hadron Reverse Engineering

Analytic expression in the DGLAP region.

Similar expression in the ERBL region.

- Explicit check of support property and polynomiality with correct powers of ξ .
- Also direct verification using Mellin moments of H.

Introduction

Needs assessment

Experimental access **DVCS Kinematics**

First universality tests

Towards precision studies

PARTONS Project

Computing chain Example

Automation Team

GPD modeling Formalism

About Polynomiality Survey of models Dyson-Schwinger

Conclusion

ANL Theory Seminar

Pion form factor.

Determination of the model dimensionful parameter M.

Hadron Reverse Engineering

Introduction Needs

assessment Experimental access **DVCS Kinematics** First universality tests Towards precision

Pion form factor obtained from isovector GPD:

$$\int_{-1}^{+1} \mathrm{d}x \, H^{l=1}(x,\xi,t) = 2F_{\pi}(t)$$

Single dimensionful parameter $M \simeq 350$ MeV.

PARTONS Project Computing chain

studies

Team

Example Automation

GPD modeling Formalism

About Polynomiality Survey of models Dyson-Schwinger

Conclusion

Mezrag et al., arXiv:1406.7425 [hep-ph]

Pion form factor.

Determination of the model dimensionful parameter M.

Hadron Reverse Engineering

Introduction Needs

assessment Experimental access **DVCS Kinematics** First universality tests Towards precision studies

Pion form factor obtained from isovector GPD:

$$\int_{-1}^{+1} \mathrm{d}x \, H^{l=1}(x,\xi,t) = 2F_{\pi}(t)$$

■ Single dimensionful parameter $M \simeq 350$ MeV.

PARTONS Project

Computing chain Example Automation

Team

GPD modeling Formalism

About Polynomiality Survey of models

Dyson-Schwinger

Mezrag et al., arXiv:1406.7425 [hep-ph]

Pion form factor.

Determination of the model dimensionful parameter M.

Hadron Reverse Engineering

Pion form factor obtained from isovector GPD:

$$\int_{-1}^{+1} \mathrm{d}x \, H^{l=1}(x,\xi,t) = 2F_{\pi}(t)$$

■ Single dimensionful parameter $M \simeq 350$ MeV.

Introduction

Needs

assessment

Experimental access **DVCS Kinematics** First universality

tests Towards precision

studies

PARTONS Project

Computing chain Example

Automation Team

GPD modeling Formalism

About Polynomiality Survey of models

Dyson-Schwinger

Conclusion

Mezrag et al., arXiv:1406.7425 [hep-ph]

Pion Parton Distribution Function. Determination of the model initial scale.

Hadron Reverse Engineering ■ Pion PDF obtained from forward limit of GPD:

$$q(x) = H^q(x, 0, 0)$$

Use LO DGLAP equation and compare to PDF extraction.

Aicher et al., Phys. Rev. Lett. 105, 252003 (2010)

Mezrag et al., arXiv:1406.7425 [hep-ph]

Find model initial scale $\mu \simeq 400$ MeV.

Introduction

Needs assessment

Experimental access

DVCS Kinematics First universality

Towards precision studies

PARTONS Project

Computing chain Example

Team

GPD modeling

About Polynomiality Survey of models Dyson-Schwinger

Pion Parton Distribution Function. Crossing and the two-body problem.

Hadron Reverse Engineering

Introduction

Needs assessment

Experimental access

DVCS Kinematics First universality

Towards precision studies

Team

PARTONS Project

Computing chain Example Automation

GPD modeling

Formalism

About Polynomiality

Survey of models

Dyson-Schwinger

Conclusion

■ In a symmetric 2-body problem, the PDF should be symmetric with respect to $x \leftrightarrow 1 - x$.

Chang et al., Phys. Lett. **B737**, 23 (2014)

 A triangle diagram calculation neglects part of the gluon exchanges implementing this property.

Pion Parton Distribution Function. Limits of triangle diagrams.

Hadron Reverse Engineering Overlap of light-front wave functions:

$$a(x) = 30x^2(1-x)^2$$

"Improved" triangle diagram calculation:

$$q(x) = \frac{72}{25} \left(2x(1-x)[6-x(1-x)] + (1-x)^3[2(1-x)^3 - 5(1-x) + 15] \log(1-x) + x^3[2x^3 - 5x + 15] \log x \right)$$

Introduction Needs

assessment

Experimental access
DVCS Kinematics
First universality

tests

Towards precision studies

PARTONS Project

Team

Computing chain
Example
Automation

GPD modeling Formalism

About Polynomiality
Survey of models

Dyson-Schwinger

. . .

4回ト 4回ト 4回ト

Conclusions and prospects. Learning about QCD from precision GPD studies.

Hadron Reverse Engineering

Introduction

Needs assessment

Experimental access **DVCS Kinematics** First universality

tests Towards precision

studies PARTONS Project Computing chain

Example Automation Team

GPD modeling

Formalism About Polynomiality Survey of models Dyson-Schwinger

Last decade demonstrated maturity of GPD phenomenology.

- Good theoretical control on the path between GPD models and experimental data.
- **Challenging constraints** expected from JLab in the valence region.
- Building of QCD-inspired models to make progress.
- Development of a platform dedicated to global GPD analysis to perform precision GPD studies.

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay 91191 Gif-sur-Yvette Cedex

Etablissement public à caractère industriel et commercial R.C.S. Paris B 775 68

◀□▶ ◀圖▶ ◀필▶ ◀필▶