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ABSTRACT

Hundred meter sized objects have been identified by the Cassini spacecraft in Saturn’s A ring
through the so-called “propeller” features they create in the ring. These moonlets should migrate,
due to their gravitational interaction with the ring ; in fact, some orbital variation have been
detected. The standard theory of type I migration of planets in protoplanetary disks can’t be
applied to the ring system, as it is pressureless. Thus, we compute the differential torque felt by
a moonlet embedded in a two-dimensional disk of solid particles, with flat surface density profile,
both analytically and numerically. We find that the corresponding migration rate is too small to
explain the observed variations of the propeller’s orbit in Saturn’s A-ring.

However, local density fluctuations (due to gravity wakes in the marginally gravitationally
stable A-ring) may exert a stochastic torque on a moonlet. Our simulations show that this torque
can be large enough to account for the observations, depending on the parameters of the rings.
We find that on time scales of several years the migration of propellers is likely to be dominated
by stochastic effects (while the former, non-stochastic migration dominates after ∼ 104−5 years).
In that case, the migration rates provided by observations so far suggests that the surface density
of the A ring should be of the order of 700 kgm−2. The age of the propellers shouldn’t exceed 1
to 100 million years, depending on the dominant migration regime.

Subject headings: planets and satellites: dynamical evolution and stability — planets and satellites:
individual (Saturn) — planets and satellites: rings — planet-disk interactions1
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1. Introduction

The theory of disk-satellite interactions has
for the most part been developed after Voy-
ager’s encounter with Saturn. The satellites
that orbit beyond the outer edge of the rings
perturb the dynamics of the particles compos-
ing the rings. This leads to an exchange of
angular momentum between the rings and the
satellites, and to the formation of density waves
in the rings. Lin and Papaloizou (1979) and
Goldreich and Tremaine (1979, 1980) have cal-
culated, using two different methods, the total
torque exerted by a satellite on a disk interior
(or exterior) to its orbit. This torque is called
the one-sided Lindblad torque, because it can be
computed as the sum of the torques exerted at
Lindblad resonances with the secondary body. In
the lowest order, local approximation, the inner
and outer torques are equal and opposite : the
torque exerted by a satellite on a disk located
inside its orbit is negative, with the same abso-
lute value as the positive torque exerted on a disk
located outside the orbit.

Reciprocally, a disk exerts a torque on the sec-
ondary body. When the strictly local approxi-
mation is relaxed, the inner and outer torques
are not exactly equal and opposite (Ward 1986).
Their sum, called the differential Lindblad torque,
is generally negative. As a consequence, the or-
bital angular momentum of a body embedded in
a disk decreases, and so does its semi-major axis
(on circular Keplerian orbits, the orbital angular
momentum is proportional to the square root of
the semi-major axis). This is planetary migration
of type I (Ward 1997). So far, this phenomenon
has been mainly studied in the frame of plan-
ets embedded in protoplanetary gaseous disks (see
Papaloizou et al. 2007, for a review).

The Cassini spacecraft has been orbiting the
Saturnian ring system since 2004, offering the
possibility to observe the coupled evolution of the
ring system and the satellites. Due to short orbital
timescales (1 year is equivalent to about 700 orbits
of the A ring) it may be possible to observe the ex-
change of angular momentum between the two sys-
tems. One of the most striking discoveries of the
Cassini spacecraft is the observation of propeller
shaped features in the A ring (located between
122 000 and 137 000 km from Saturn), with longi-

tudinal extent about 3 km (Tiscareno et al. 2006,
2008; Sremčević et al. 2007). They are most prob-
ably caused by the presence of moonlets about
hundred meters in size, embedded in the ring, and
scattering ring particles (Spahn and Sremčević
2000). As they are embedded in the ring, these
small bodies should exchange angular momentum
with the ring, and migrate (Crida et al. 2009).
This migration could be detected by Cassini ob-
servations through the cumulative lag, or advance
with time t of the orbital longitude φ induced by
a small variation of the semi-major axis and the
angular velocity Ω (δφ = δΩ × δt), offering for
the first time the possibility to confront directly
the planetary migration theory with observations,
and to give insights and constrains on the physical
properties of the rings and of the moonlets.

In this paper, we address the question of the
theoretical migration rate of these propellers, us-
ing both numerical and analytical approaches.
The theory is then confronted to observations. In
Sect. 2, we review the standard theory of type I
migration ; the differences between migration in
protoplanetary disks and in Saturn’s rings are ex-
plained, showing the need for a new calculation of
the migration rate of embedded moonlets. This
rate is given in Sect. 3 for an homogeneous, ax-
isymmetric disk with a flat surface density profile,
as a result of numerical computation in Sect. 3.1,
and analytical calculation in Sect. 3.2. In Sect. 4,
we consider the effect of density fluctuations in the
rings, in particular the role of short-lived gravitat-
ing clumps, also called gravity wakes, which are
known to be numerous in the A ring (Colwell et al.
2006). We then conclude in Sect. 5 on what our
model tells us on the properties of the rings, given
the observed migration rates.

2. Review of Type I migration and the dif-

ferential Lindblad torque

In protoplanetary gaseous disks, the perturba-
tion caused by a terrestrial planet leads to the for-
mation of a one armed spiral density wave, leading
the planet in the inner disk, and trailing behind
the planet in the outer disk. This wave is pressure
supported and generally called the wake, but it has
nothing to do with the gravity wakes mentioned
above : the latter are local features, while the
planet wake spirals through the whole disk. The
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planet wake carries angular momentum, so that
the angular momentum given by the planet to the
disk is not deposited locally (e.g. Crida et al. 2006,
Appendix C). Therefore, the disk profile is hardly
modified in this linear regime. Still, the negative
torque exerted by the outer disk on the planet
through the wake is larger in absolute value than
the positive torque from the inner disk. Without
going into the details (for which the reader is ref-
ereed to Ward 1997), the main reason the outer
disk wins over the inner disk lies in pressure ef-
fects : from the dispersion equation of a pressure
supported wave, one finds that the location rL,m

where the wave with azimuthal mode number m,
corresponding to themth Lindblad resonance with
the planet, is launched, is not exactly the location
of the resonance given by Kepler’s laws. The shift
is not symmetrical with respect to the planet posi-
tion for inner and outer resonances, but favors the
outer ones. As a consequence, the planet feels a
negative total torque, called the differential Lind-
blad toque, and given by Tanaka et al. (2002) :

Tdiff = −Cq2Σrp
4Ωp

2h−2 , (1)

where the index p refers to the planet, rp being
the radius of its orbit and Ωp its angular velocity,
q is the planet to primary mass ratio, Σ is the
surface density of the disk in the neighborhood
of the planetary orbit. Finally, h is the aspect
ratio of the disk, being the ratio between its scale
height and the distance to the central body, being
proportional to the square root of the gas pressure.
In a typical protoplanetary disk, h ≈ 0.05. The
numerical coefficient C is given by C = 2.340 −
0.099ξ, where ξ is the index of the power law of
the density profile : Σ ∝ r−ξ.

This result is robust. In particular, the value of
the negative torque is almost independent on the
slope of the density profile ξ. This is due to the so-
called pressure buffer : the resonances are shifted
when the density gradient varies (Ward 1997). If
the disk were pressureless, then the expression of
C would be completely different. Also, the aspect
ratio h in Eq. (1) appears because rL,m doesn’t
converge towards rp when m tends to infinity, but
towards rp(1 ± 2h/3), due to pressure effects. To
sum up, the gas pressure plays a fundamental role
in type I migration.

It should be mentioned for completeness that,
in addition to the differential Lindblad torque

discussed above, the horseshoe drag – exerted on
the planet by the gas on horseshoe orbits around
the planetary orbit – plays a significant role in
type I migration (see e.g. Ward 1991; Masset 2001;
Baruteau and Masset 2008; Kley and Crida 2008;
Paardekooper and Papaloizou 2009; Paardekooper et al.
2009).

In contrast to gaseous protoplanetary disks,
pressure effects in Saturn’s rings are not impor-
tant. The aspect ratio h is of the order of 10−7.
The spiral density waves that are observed in the
A ring are gravity supported, not pressure sup-
ported. Thus, the standard theory of type I migra-
tion does not apply. In particular, the spiral planet
wake doesn’t appear. The interaction of the moon-
let responsible for the propeller structure with the
disk is observed to take place within a few hundred
kilometers. Resonances with m & 103 are located
within this distance and should play a significant
role. However, in the standard type I migration
the important resonances have m ∼ 1/h ∼ 107.
Therefore, Eq. (1) can’t be directly applied to a
moonlet in Saturn’s rings. A new approach is
needed, adapted to the two main characteristics
of the problem : the fact that the rings are made
of solid particles, and the fact that the interaction
is taking place very close to the moonlet.

3. The ring-moonlet interaction

In this section, we compute the interaction be-
tween a moonlet and a ring test particle. In this
analysis, the gravity of the other ring particles is
neglected. This leads to the torque exerted on
the moonlet by an initially unperturbed, homoge-
neous ring. In subsection 3.1, the computation is
performed numerically. In subsection 3.2, it is de-
rived analytically. Both results are in agreement,
and a corresponding migration rate for the moon-
let is given and discussed in subsection 3.3.

From now on, m denotes the mass of the moon-
let (and not anymore the order of a resonance).
The moonlet, has a circular orbit of radius rm
around the central planet of mass M . The grav-
itational potential due to the moonlet is Ψ. The
radial and azimuthal components of the equation
of motion of a ring particle in two dimensional
cylindrical polar coordinates (r, φ) are

d2r

dt2
− r

(

dφ

dt

)2

= −∂Ψ

∂r
− GM

r2
(2)
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and r
d2φ

dt2
+ 2

(

dr

dt

)(

dφ

dt

)

= −1

r

∂Ψ

∂φ
. (3)

The angular velocity of the moonlet is ω =
√

GM/rm3. Let r0 be the radius of the initially

circular orbit of a test particle and Ω =
√

GM/r03

its angular velocity. We note b = r0 − rm is the
impact parameter, and b̂ = b/rH the normalized

impact parameter, where rH = rm
(

m
3M

)1/3
is the

Hill radius of the moonlet.

3.1. Numerical computation of the ring

moonlet interaction

In this section, the numerical integration of the
above equations of motion is performed, in order
to find the trajectories of ring particles in the pres-
ence of a perturbing moonlet in the frame corotat-
ing with the moonlet. To measure the tiny asym-
metry between the inner and the outer part of the
ring, the full equations are integrated, without lin-
earization or simplification. A Bulirsch-Stoer al-
gorithm (Press et al. 1992) is used, and a Taylor
expansion is performed in the code when neces-
sary to subtract accurately large numbers, in order
to achieve machine double precision (10−16). We
have checked that the Jacobi constant is conserved
to this precision along the trajectories. Examples
of obtained trajectories are given in Fig. 1.

It is well known within the framework of the re-
stricted 3-body problem that if |b̂| is small enough,
the test particle has a horseshoe shaped orbit,
while if |b̂| is larger than ∼ 2.5, the test particle is
circulating, and scattered into an eccentric orbit.
This can be seen in Fig. 1. We perform many nu-
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Fig. 1.— Trajectories of test particles perturbed
by a moonlet of mass m = 3 × 10−12M , located
at (r = rm, φ = 0) (that is at (0, 1) in the plot),
in the frame corotating with the moonlet. Dashed
circle : orbit of the moonlet.

merical integrations with various b in the case of
a moonlet of mass m = 3× 10−12M , starting the
particle at an azimuth |φ0| = 3000 rH/rm = 0.3
(where the moonlet is at φ = 0). This angle is
large enough so that at this location the influence
of the moonlet is negligible and the orbital pa-
rameters of the test particle are not disturbed, as
will be checked later. We find that the horseshoe
regime occurs for b̂ < 1.8, and the scattered regime
occurs for b̂ > 2.5. For 1.774 < b̂ < 2.503, how-
ever, the trajectory approaches the center of the
moonlet to within a distance smaller than 0.95 rH .
In that case, if one assumes the moonlet is a point
mass, the test particle eventually leaves the Hill
sphere, either on a horseshoe or a circulating tra-
jectory, but the outcome changes several times
with increasing b̂. In the case we are concerned
about here, the moonlet most likely almost fills
its Roche lobe, and therefore we stop the inte-
gration of the trajectory as soon as the distance
between the test particle and the moonlet is less
than 0.95 rH , assuming a collision.

The specific orbital angular momentum J =
r2(dφ/dt) of the test particles is computed along
the trajectories. Angular momentum is exchanged
during the close encounter with the moonlet. For
b̂ > 2.503, the test particle is scattered onto an
eccentric orbit of larger angular momentum than
initially, which results in a gain in angular mo-
mentum. The variation of orbital angular momen-
tum along the trajectory is shown in the bottom
panel of Fig. 2 for the case b̂ = 3, where the top
panel is the trajectory. The difference in angu-
lar momentum between the initial circular orbit
at φ0 = 0.3 sgn(b) and the end of the integration,
when |φ| = 0.3 again, is noted ∆J . In the figure,
only the interval −0.05 < φ < 0.05 is displayed,
for convenience. Most of the exchange of angular
momentum occurs when |φ| < 0.01.

Figure 3 shows |∆J | (top thick curve) as a func-

tion of b̂, in units of the specific angular momen-
tum of the moonlet Jm = r2mω. For 0 < b̂ 6 1.774,
the horseshoe trajectory corresponds to a U-turn
towards the central planet, and to a loss of angular
momentum for the test particle. More precisely, as
for circular orbits J ∝ r1/2, one expects for such a
U-turn ∆J/J = 1

2
∆r
r = −b/rm ; this is indeed the

case for b̂ < 1.3. In the case where the test particle
collides with the moonlet, we assume that it gives
all its orbital angular momentum to the moon-
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let : ∆J = r 2
0 Ω − Jm, so that ∆J/J ≈ b/(2rm).

This also appears in Fig. 3. The opposite holds
for b < 0.

Computing ∆J as a function of b to numer-
ical precision enables us to also compute the
difference between the inner and outer disk :
δJ(b) = ∆J(b) + ∆J(−b). This quantity is
small with respect to ∆J(b), but nonetheless well
determined and converged in our simulations :
∆J(b) + ∆J(−b) is constant after the encounter
to a precision better than 0.5% for all |φ| > 0.02.
This validates our choice of φ0. In Fig. 3, the
bottom thick dashed curve shows δJ in the same
scale as |∆J |. We see that δJ > 0 for all b > 0
and that δJ ≪ ∆J , with

δJ/∆J ≈ 5× 10−4 b̂ (4)

for circulating trajectories, and

δJ/|∆J | ≈ 1.17× 10−4 b̂

for horseshoe orbits. In the following subsection,
the empirically found Eq. (4) is derived analyti-
cally and justified.

3.2. Analytic model for the ring moonlet

interaction

In this section, we consider only circulating tra-
jectories. Developing to second order the exchange
of angular momentum during an encounter with
the moonlet ∆J , we can find the asymmetry δJ .

3.2.1. Solution for the perturbed moonlet orbit

Let us start again from Eq. (2) and (3). The
ring particle is assumed to be on an unperturbed
circular orbit of radius r0 = rm + b. It orbits with
angular velocity Ω =

√

GM/r03 such that φ = Ωt,
where without loss of generality we have defined
the origin of time t = 0 to be when the particle
is at φ = 0. Under the perturbation induced by
Ψ, the particle moves to r = r0 + x, and φ =
Ωt+y/rm, where x and y are assumed to be small.
Linearizing Eq. (2) and (3) about the circular orbit
state, we obtain equations for x and y in the form

d2x

dt2
− 2Ω

dy

dt
− 3Ω2x = − ∂Ψ

∂r

∣

∣

∣

∣

0

and (5)

d2y

dt2
+ 2Ω

dx

dt
= − 1

r0

∂Ψ

∂φ

∣

∣

∣

∣

0

(6)
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Fig. 2.— Top panel : trajectory of a test particle
with impact parameter b̂ = 3 ; the motion of the
particle is toward negative φ. Bottom panel : vari-
ation of the specific orbital angular momentum J
of the same particle along its trajectory.
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(∆J)Eq. (32)

(δJ)num
4.92(b/rm)(∆J)num

(b/rm) Jm
(b/2rm) Jm

Fig. 3.— Angular momentum exchanges during
one close encounter, as a function of the impact pa-
rameter. Top, thick, red curve : ∆J(b), from nu-
merical simulations. Green, thin, dashed, straight
line : ∆J(b), as given by Eq. (32). Bottom, thick,
dark blue, long-dashed curve : δJ(b), from nu-
merical simulations. Thin, light blue, dash-dotted
line : δJ(b) as given by Eq. (34), taking ∆J from
the simulations. Orange, thin, double- and triple-
dashed lines : (b/rm)Jm, and (b/2rm)Jm, respec-
tively, to compare with |∆J |.
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Here the subscript 0 denotes evaluation on the un-
perturbed particle orbit.

We suppose that the perturbation is induced by
a moonlet of mass m that is on a circular orbit of
radius rm and has an angular velocity ω. Then its
azimuthal coordinate φm = ωt + φm,0, with φm,0

being a constant. The perturbing potential

Ψ =
Gm

√

r20 + r2m − 2rmr0 cos(φ− φm)
(7)

becomes a function of time through substituting
φ− φm = (Ω− ω)t− φm,0 therein.

Thus we have

1

r0

∂Ψ

∂φ

∣

∣

∣

∣

0

≡ 1

r0(Ω− ω)

∂Ψ

∂t

∣

∣

∣

∣

0

. (8)

Using this in Eq. (6) and integrating with respect
to time, we obtain

dy

dt
+ 2Ωx = − Ψ

r0(Ω− ω)

∣

∣

∣

∣

0

, (9)

which when combined with Eq. (5) gives an equa-
tion for x in the form

d2x

dt2
+Ω2x = −

(

∂Ψ

∂r
+

2ΩΨ

r0(Ω− ω)

)∣

∣

∣

∣

0

= S (10)

3.2.2. Solution of the linearized equations

To solve Eq. (10), we note that the perturbing
potential Eq. (7) evaluated on the unperturbed
orbits is a periodic function of time with period
2π/|ω−Ω| = 2π/β. Thus we should look for a peri-
odic response. In order to do this we have to intro-
duce a small frictional term into Eq. (10) to enable
transients to decay and a net torque on the moon-
let to be set up. When the frictional term is small
it is expected that the resulting torque should not
depend on it (e.g. Goldreich and Tremaine 1980).
Hence we add a frictional term γ(dx/dt) to the
left hand side of Eq. (10), where γ/Ω is a small
constant parameter so that it now reads

d2x

dt2
+γ

dx

dt
+Ω2x = −

(

∂Ψ

∂r
+

2ΩΨ

r0(Ω− ω)

)
∣

∣

∣

∣

0

= S .

(11)
As the potential is periodic in time we can adopt
a Fourier series of the form

S =
n=∞
∑

n=−∞

Sn exp(inβt) , (12)

where it is implicit that the real parts of such com-
plex expressions is to be taken, and

Sn =
1

2π

∫ 2π/β

0

S(t) exp(−inβt)dt . (13)

The periodic solution of Eq. (11) is now readily
written down as

x =

n=∞
∑

n=−∞

Sn exp(inβt)

(Ω2 − n2β2 + iγnβ)
. (14)

We may write this in terms of a Green’s function
defined through

G(τ) =
1

2π

n=∞
∑

n=−∞

exp(inβτ)

(Ω2 − n2β2 + iγnβ)
. (15)

Then the solution for x may be written

x = β

∫ 2π/β

0

S(t− t′)G(t′)dt′. (16)

Note that as the orbit of a ring particle relative
to the planet is periodic, the solution given by
Eq. (16) includes the effects of infinite numbers of
repeating encounters. However, we wish to con-
sider the case when dissipative effects, although
weak, are strong enough to recircularize orbits be-
tween encounters in which case they will be in-
dependent of each other. This condition requires
that γ/|ω−Ω| = γ/β ≫ 1. This is equivalent to re-
quiring that the damping time scale be short com-
pared to the relative orbital period between moon-
let and ring particle. On account of the length
scale of the encounters of interest being compara-
ble to the Hill radius of the moonlet, this is much
longer than the orbital period itself, so that we
may adopt the ordering

γ/|ω − Ω| = γ/β ≫ 1 ≫ γ/Ω. (17)

In order to make use of the above ordering we write
down the form of the Green’s function derived in
the appendix (see Eq. (A7) ) valid for 0 < t <
2π/β.

G(τ) =

e−γτ/2 sin(ωγτ) − e−γπ/β sin(ωγ(τ − 2π/β))

ωγβ
[

1 + e−2γπ/β − 2e−γπ/β cos(2πωγ/β)
] ,

(18)
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where ωγ =
√

Ω2 − γ2/4. The function is de-
fined elsewhere through its periodicity with pe-
riod 2π/β. Making use of the inequality Eq. (17)
we may replace the Green’s function Eq. (18) by
the simple expression

G(τ) =
exp(−γτ/2) sin(ωγτ)

ωγβ
. (19)

Then the solution Eq. (16) gives

x = A(t)e−γt/2 sin(ωγt) +B(t)e−γt/2 cos(ωγt),
(20)

where

A(t) =
1

ωγ

∫ t

t−2π/β

S(t′) exp(γt′/2) cos(ωγt
′)dt′

(21)
and

B(t) = − 1

ωγ

∫ t

t−2π/β

S(t′) exp(γt′/2) sin(ωγt
′)dt′.

(22)

To make use of the above expressions, we con-
sider the situation when the ring particle has a
close encounter with the moonlet at time t = 0,
thus we take φm.0 = 0 (we note that a non zero
φm,0 can be dealt with by rotating the coordi-
nate system and shifting the origin of time). The
source term S is then expected to be highly peaked
around t′ = 0, and almost all of the contributions
to the above integrals will occur for |t′| <∼ 2π/Ω.
Furthermore, during this dynamical interaction,
dissipation will be negligible. Thus, if we are in-
terested in times after the main interaction, but
before significant dissipation takes place, we may
set γ = 0 and extend the limits of the integra-
tion to ±∞. However, in practice one may have to
apply a cut off to the potential at large distances
from the moonlet in order to do that (see below).
But this should not matter if the important inter-
action occurs when the moonlet and ring particle
are close.

Then we simply have

A =
1

Ω

∫

∞

−∞

S(t′) cos(Ωt′)dt′ (23)

and

B = − 1

Ω

∫

∞

−∞

S(t′) sin(Ωt′)dt′. (24)

Thus A and B are constants representing epicyclic
oscillation amplitudes induced after the close ap-
proach of the ring particle to the moonlet.

We remark that the approximations made in
obtaining Eq. (23) and Eq. (24) relate to how dis-
sipation is treated. There has been no assump-
tion that the particle trajectories are symmetric
on opposite sides of the moonlet so that curvature
effects remain fully incorporated during particle
moonlet encounters. When dissipation is negligi-
ble during the encounter, then immediately after-
ward an epicyclic oscillation is established. The
assumption that dissipation circularizes orbits be-
tween encounters implies that we should consider
approaching ring particles to be on circular orbits.
The above discussion indicates that errors associ-
ated with this assumption are exponentially small.

3.2.3. Angular momentum transfer

For the set up considered here, symmetry con-
siderations imply that S(t) is an even function of
time (see below), so that B = 0. The generation
of the epicyclic oscillation is associated with an
angular momentum transfer between the moonlet
and particle. To find this we firstly note that

∆J =
√
GM

(

√

af (1 − e2)−√
r0

)

, (25)

where af and e are the post encounter semi-major
axis and eccentricity of the particle. We also note
that the Jacobi constant implies that the change of
the particle orbital energy and angular momentum
are related by ∆E = GM [1/(2r0) − 1/(2af)] =
ω∆J . This can be used to eliminate af in Eq. (25)
after which ∆J may be found correct to second
order in e ≡ A/r0 with the result that ∆J =
Ω2A2/[2(ω −Ω)]. This in turn may be simply de-
termined after evaluating A. Note that ∆J < 0
for particles interior to the moonlet which have
Ω > ω and conversely ∆J > 0 for particles orbit-
ing exterior to the moonlet.

3.2.4. Development of the perturbing potential

We now consider

S(t) = −
(

∂Ψ

∂r
+

2ΩΨ

r0(Ω− ω)

)∣

∣

∣

∣

0

. (26)
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We begin by recalling that

Ψ = − Gm
√

r20 + r2m − 2r0rm cos(φ− φm)

= − Gm
√

r20 + r2m − 2r0rm cos(βt)
. (27)

In order to evaluate the Fourier transform as spec-
ified by Eq. (23), which was derived under the
assumption that the interaction occurs only near
closest approach, we must truncate the potential
at large |t|. As the encounter takes place over a
time ≪ 1/β, this can be achieved by replacing
cos(βt) in Eq. (27) by 1 − β2t2/2. Note that a
dimensionless estimate of the error involved is of
order (β/ω)2 ∼ (rH/rm)2, where rH is the Hill ra-
dius of the moonlet. This is small enough that the
leading order asymmetry in the angular momen-
tum transferred to orbits with the same impact
parameter on either side of the disk can be esti-
mated.

As the first stage in evaluating the Fourier
transform of S specified in Eq. (23) that gives the
epicyclic amplitude, we evaluate

C =
1

Ω

∫

∞

−∞

Ψcos(Ωt)dt

= − 1

Ω

∫

∞

−∞

Gm cos(φ)
β
Ω

√

(r0 − rm)2Ω2/β2 + r0rmφ2

dφ

Ω
.

(28)
This can also be expressed as

C = −2GmK0(ξ0)

Ωβ
√
r0rm

, (29)

where ξ0 = (Ω|r0 − rm|)/(β√r0rm), and Kj de-
notes the modified Bessel function of the second
kind of order j.

3.2.5. Total angular momentum exchange

We may now use the above expression together
with Eq. (26) to evaluate the epicyclic amplitude
Eq. (23) (noting that the radial derivative is with
respect to r0 with other quantities held fixed) so
obtaining

A = − 2Gm

Ωβr0
√
r0rm

×
(

K0(ξ0)

[

1

2
− 2Ω

(Ω− ω)

]

+ K1(ξ0)ξ0

[

1

2
+

rm
(r0 − rm)

])

. (30)

The associated angular momentum exchanged is
then given by

∆J =
2(Gm)2

r30rm(ω − Ω)3
×
(

K0(ξ0)

[

1

2
− 2Ω

(Ω− ω)

]

+K1(ξ0)ξ0

[

1

2
+

rm
(r0 − rm)

])2

. (31)

In a strictly local approximation under which
the inner and outer sides are symmetric, the con-
tributions from orbits equidistant from the moon-
let would cancel, leaving the net result to be de-
termined by the surface density profile. However,
although we have assumed the interactions are lo-
cal, we did not assume symmetry between the ex-
terior and interior orbits. Accordingly we evalu-
ate the difference in the magnitude of ∆J eval-
uated from orbits equidistant from the moonlet :
r0 = rm±b. The leading order contribution to ∆J
is symmetric in b. The lowest order contribution
is antisymmetric and accordingly leads to cancel-
lation between the two sides. We make use of the
expansions ξ0 = 2/3− b/(2rm) +O((b/rm)2), and
2Ω/(Ω−ω) = −4rm/(3b)(1− b/(4rm)) +O(b/rm)
together with standard properties of Bessel func-
tions to write

∆J =
64(Gm)2rm
243ω3b5

(2K0(2/3) +K1(2/3))
2

(

1 + α
b

rm

)

,

(32)
where

α =
3

4
+

(6K1(2/3) + 3K0(2/3))

(4K0(2/3) + 2K1(2/3)
= 2.46 . (33)

The first order term of Eq. (32) was already given
by Goldreich and Tremaine (1980). It is plotted
as a straight green dashed line in Fig. 3. Our ex-
pansion to second order enables us to go further,
and to give the expression of the magnitude of the
asymmetry between the two sides of the disk :

δJ

∆J
= 2α|b|/rm = 4.92|b|/rm . (34)

It is such that for an orbit with a given impact
parameter, the angular momentum exchanged in
the outer disk is the larger.

In the case studied numerically, we had rH =
10−4, so that |b|/rm = 10−4b̂. Then, Eq. (34)
remarkably agrees with the numerical fit Eq. (4).
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The light blue dot-dashed curve in Fig. 3 displays
4.92× 10−4 b̂∆J .

In the context of the above, we note that ap-
proximations made in obtaining equation Eq. (31)
such as effectively starting and truncating the in-
teraction at some finite though large distance from
the moonlet could conceivably lead to changes
comparable to those given by Eq. (34). However,
such changes are again approximately symmetric
for trajectories on both sides of the moonlet and
thus approximately cancel so we do not expect
such effects to significantly alter Eq. (34).

3.3. Migration rate and discussion

If the surface density of ring particles is Σ, the
total rate of angular momentum transferred to the
moonlet is

dJ

dt
= −

∫ ∫

disk

Σ ∆J
|ω − Ω|

2π
dr rdφ , (35)

where the integral is taken over the disk. The
particles exterior to the moonlet contribute neg-
atively while those interior contribute positively.
The cumulative torque exerted by the moonlet on
the region of the ring located within a distance b
to its orbit reads then :

Tc(b) =

∫ b

−b

Σ(rm + b′)(∆J(b′))|ω − Ω|db′ (36)

The normalized cumulative torque

Tc(b)/
[

(m/M)4/3(Σ/Mr−2
m )

]

is plotted in Fig. 4. The proportionality to Σ is
obvious ; that Tc ∝ (m/M)4/3 is numerically ver-
ified for 3 × 10−15 6 m/M 6 3 × 10−9, and has
been already found analytically by Ward (1991)
for the horseshoe drag in a similar context.

Most of the total torque comes from scattered,
circulating particles, in particular the ones with
smallest impact parameter b̂ ≈ 2.5. This makes
the total torque sensitive to the physical size of the
moonlet (taken as 0.95 rH here), as some particles
colliding with the moonlet could be circulating if
it were smaller.

The role of the horseshoe drag appears to be
non negligible, amounting to

∼ 4.1(Σ/Mr−2
m )(m/M)4/3 Mr 2

mω2. The expres-
sion of Ward (1991) for the torque arising from

material executing horseshoe turns, called the
horseshoe drag, is for a Keplerian disk with flat
density profile :

THS =
9

8
Σw4ω2 , (37)

where w is the half-width of the horseshoe region.
In our case, w = 1.774 rH , which gives THS =
2.6 (Σ/Mr−2

m )(m/M)4/3 Mr 2
mω2. The agreement

is good because Ward’s analysis is based only on
geometrical effects and angular momentum vari-
ation in a Keplerian disk, without any pressure
effect. Therefore, it also applies in Saturn’s ring.
We remark that taking w = 2rH in Eq. (37) gives
a perfect match with what we find numerically for
the total horseshoe drag.

In conclusion, from Fig. 4, the total torque felt
by a moonlet of mass m on a circular orbit of ra-
dius rm around a planet of mass M can be written
as

T = −17.8

(

Σ

Mr−2
m

)

(m

M

)4/3

Mr 2
mω2 . (38)

Note that to get the same dependency of the type I
torque in the parameters of the system, one has
to assume h ∝ rH/rm in Eq. (1) ; however, in a
protoplanetary disk, h is fixed and independent
of the mass of the secondary body, so that this
proportionality would not be justified.

The torque is related to the migration speed
through T = 0.5mrmΩ(drm/dt). Hence we de-
duce that

drm
dt

= −35.6
Σr 2

m

M

(m

M

)1/3

rmΩ . (39)

The migration rate is here proportional to the
mass of the moonlet to the power 1/3, in con-
trast to standard type I migration where drm/dt ∝
m. A numerical application to the case of an
m = 10−18MSaturn = 5.68 × 108 kg moonlet in
orbit in the A-ring of density Σ = 400 kgm−2

at rm = 130 000 km from Saturn gives drm/dt =
−0.23 myr−1. Increasing the mass by two orders
of magnitude to correspond to a radius of ∼ 200 m
speeds up the migration rate by a factor of only
∼ 4.5 to ∼ −1 myr−1.

After time t, a migrating propeller will be
shifted longitudinally with respect to a corre-
sponding non migrating one by a distance rm δφ =
3Ω |drm/dt| t2/4. For the above parameters, this

9



gives 713 [t/(1 year)]2 m. A shift of this magni-
tude is potentially detectable on a timescale of a
year to a few years (Porco et al. 2004 and note
also Burns et al. 2009). Actually, migration of
propellers has already been detected (Burns et al.
2009; Tiscareno et al. 2010). During one time
period of nearly a year, a particular propeller
has been seen moving outward at a rate of ∼
110 myr−1 ; and during a later similar time pe-
riod, the same propeller has been seen moving in-
ward at a rate of ∼ 40 myr−1 (Tiscareno et al.
2010, and personal communication).

These observations are not compatible with the
above theory. But we recall that the process of
migration of a moonlet described above assumed a
smooth particle disk with constant surface density.
Here we note that there are features and mech-
anisms that might produce a significantly faster
migration rate, possibly in both directions inward
and outward, and non constant in time. One can
first think of a radial density gradient : as there is
no pressure buffer here, this would directly affect
the balance between the torques from the inner
and outer parts of the ring. This would also affect
the torque from the horseshoe region, which could
turn positive. However, if the migration is gov-
erned by the gradient of some quantity, it seems
likely that the moonlet would have approached an
extremum in that quantity, and thus should have
attained a migration rate comparable to that esti-
mated for a constant surface density.

Another possibility resulting in the moonlet
migrating faster than what the previous calcu-
lation indicates, and possibly outward, is a run-
away migration in a planetesimals disk (Ida et al.
2000; Levison et al. 2007, for a review), similar to
the type III migration of planets in protoplane-
tary disks (Masset and Papaloizou 2003). In this
regime, the migration of the moonlet in the disk
leads to a positive feedback on its migration rate,
because of the material of the inner (resp. outer)
disk making horseshoe U-turns to the outer (resp.
inner) disk. This speeds up the migration, pos-
sibly leading to a runaway. However, this leads
inevitably to an asymmetry in the horseshoe re-
gion, while the propeller structures observed are
rather symmetrical.

Finally, the A-ring of Saturn is not homoge-
neous. It is close to gravitational instability, which
should lead to the formation of gravity wakes and

density fluctuations. The effect of these density
fluctuations on the moonlet is studied in next sec-
tion.

4. The role of density fluctuations and re-

sulting stochastic migration

The analytic calculations and numerical simu-
lations in the previous chapters assume an inflow
of particles on circular orbits only perturbed by
the nearby moonlet. However, we know that Sat-
urn’s A ring is marginally gravitationally stable
(Daisaka et al. 2001). The Toomre Q parameter
(Toomre 1964), which is a measure of the impor-
tance of self-gravity, is expected to be of the order
of 2 ∼ 7, indicating that the ring particles’ mutual
gravity is indeed a strong effect. It leads to the
regular formation and dispersion of gravity wakes,
which are local density enhancements elongated in
parallel directions by the Keplerian shear. Those
over-densities give rise to stochastic forces which
act on the embedded moonlet.

A very similar effect is expected to occur in
protoplanetary disks. These disks are thought to
be turbulent due to the magneto-rotational in-
stability (MRI, Balbus and Hawley 1991). The
turbulent fluctuations create over-densities which
interact gravitationally with embedded small
mass planets. The stochastic forces make the
planet undergo a random walk. An analytic
model of this random walk has been derived by
Rein and Papaloizou (2009). In the following, we
apply this model to moonlets embedded in Sat-
urn’s rings. To do that, we need to get an estimate
of the amplitude of the stochastic forces.

4.1. Numerical calculations

We perform three-dimensional simulations of
ring particles, in a shearing box, similarly to Salo
(1995). The simulations are done in a local cube
of size H with shear periodic boundary conditions,
and the origin of the box is fixed at a semi ma-
jor axis of a = 130 000 km. A BH tree code
(Barnes and Hut 1986) is used to calculate the
self-gravity between ring particles and resolve in-
elastic collisions. Collisions between particles are
resolved using the instantaneous collision model
and a velocity dependent coefficient of restitution
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given by Bridges et al. (1984) :

ǫ(v) = min

{

0.34×
( v

1 cm.s−1

)

−0.234

, 1

}

, (40)

where v is the impact speed projected on the vec-
tor joining the centers of the two particles. The
code is described in more detail in Rein et al.
(2010).

The size of ring particles is not well constrained.
Therefore and to be able to scale to different loca-
tions in Saturn’s rings, we perform multiple sim-
ulations. For a given simulation, all the particles
are assumed to be spherical and have the same size
(or radius), which varies from simulation to simu-
lation from 0.52 to 13 meters. The simulation pa-
rameters are listed in Table 1. The nomenclature
and physical parameters are, for easy comparison,
the same as in Lewis and Stewart (2009), as our
simulations are similar to theirs.

The moonlet is not taken into account in the
simulations. We measure the specific gravitational
force f̂ (or acceleration) felt by a passive test-
particle sitting at the origin. We calculate the
force in two different ways, in order to avoid the
singularity at the origin and to account for the
physical size of the moonlet. In the first case, we
use a cut off at the moonlet’s radius d and exclude
all particles within that radius from the force cal-
culation. In the second case we use a smoothed
gravitational force per unit mass in the form

f̂ = − Gmpart

|r̂|2 + d2
r̂, (41)

where r̂ is the vector linking the origin to the
particle and mpart is the mass of the particle.
The smoothing length d is set equal to the moon-
let’s size. In a self-consistent simulation, one
should include the moonlet with it’s real physi-
cal size. However, this goes beyond the scope of
this paper and will be considered in future work
(Rein and Papaloizou 2010). Our purpose here is
to estimate the underlying stochastic fluctuations
in the migration rate that occur independently of
the moonlet. This procedure is reasonable as long
as the moonlet is in a steady state, namely if it
doesn’t accumulate or lose a large amount of mass
over one orbit. In all our simulations we assume a
moonlet size of d = 200 m.
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Name ra τ ρp Σp H N

L2 13 m 0.1 0.5 g cm−3 885 kgm−2 5000 m 4808
S1 0.52 m 0.1 0.7 g cm−3 49.7 kgm−2 1000 m 120548
S3 1.3 m 0.2 0.7 g cm−3 246 kgm−2 1000 m 38 188

Table 1: Simulation parameters. The first column identifies the simulation, following the convention of
Lewis and Stewart (2009). The second and third column give the size (or radius) of the particles and their
density. The fourth and fifth column give the surface density and the size of the computational domain,
respectively. The last column lists the number of particles.

4.2. Results

We measure the amplitude and the correlation
time of the stochastic forces in all simulations.
The results are listed in Table 2. We also plot
the time evolution of the azimuthal (y) force com-
ponent in Fig. 5. Whereas the correlation time in
all simulations is almost the same, the amplitude
of the stochastic fluctuations varies by almost a
factor of 103. The forces in the vertical direction
are negligible and not presented here. The diffu-
sion coefficient, being a measure of the strength
of stochastic forces, is defined as D = 2〈f2〉τ (see
Rein and Papaloizou 2009), where 〈f2〉1/2 and τ
are the root mean square value and the approx-
imate correlation time of the specific stochastic
force in one direction.

The change in semi major axis a due to the
effect of stochastic forces with diffusion coefficient
D after time t is given by

∆a =
2

ω

√
Dt, (42)

where ω is the mean motion of the moonlet
(Rein and Papaloizou 2009). Note that in this
regime, the acceleration of the moonlet doesn’t
depend on its mass (as can be seen in Eq. (41)).
Therefore, the migration rate and the diffusion co-
efficient are independent of the mass of the moon-
let ; this might be an observational indication for
this migration regime.

Assuming an initial semi-major axis of a =
130 000 km and D ∼ 10−17 m2 s−3 as found in
simulation S1, one can calculate the expected
difference in semi major axis after one orbit
due to stochastic forces which turns out to be
∆a = 0.01m. For simulation S3, assuming
D ∼ 10−15m2 s−3, one finds ∆a = 0.11m. For the
simulation L2, assuming D ∼ 10−11m2 s−3, one
finds ∆a = 10.5 m. These translate to random

walks with standard deviation given as a func-
tion of time by ∆a = 0.27

√

t/(1 year) m, ∆a =

2.7
√

t/(1 year) m, and ∆a = 270
√

t/(1 year) m
respectively.

4.3. Discussion

From the above, it can be seen that increasing
the surface density by factors 4 − 5 changes the
migration rate by two orders of magnitude. Thus,
the results show clearly that the surface density Σ
is much more important than in the regular, type
I like migration, presented in Sect. 3. This can
be easily understood with a toy model. The crit-
ical unstable wavelength λ scales linearly with Σ
(Toomre 1964). If we assume a fixed moonlet size,
the ratio of moonlet size to λ therefore changes
with Σ. In the limit where λ is much smaller than
the moonlet radius, the stochastic forces are negli-
gible as the density distribution is approximately
homogeneous on the relevant scales. This is the
case in simulation S1. In the other limit where λ
is larger than the moonlet, the moonlet undergoes
a random walk that is similar to that of individual
ring particles, as seen in simulation L2.

The range in migration rates found in sim-
ulations shows that over time scales of several
years, the migration of a moonlet of mass m ∼
10−16MSaturn may be dominated by a random
walk in some situations (eg. those in simulations
S3 and L2, the latter carried out with particles
of radius 13 m). However, in regions of the rings
where the surface density is small (eg. simula-
tion S1), the moonlet may be in a regular, non-
stochastic migration regime. In that case, the
model from Sect. 3 can be applied.

This dependence offers an exciting possibility
to constrain the nature of the ring particles and
the physical processes occurring in the rings by
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Simulation Correlation time [s] Diffusion coefficient [m2 s−3] Q
τx τy Dx Dy

L2 cutoff 5000 7000 9.61× 10−12 14.97× 10−12 4.1
smooth 6000 9000 5.34× 10−12 9.11× 10−12

S1 cutoff 2000 4000 1.92× 10−17 2.26× 10−17 7.2
smooth 3000 8000 1.59× 10−17 1.69× 10−17

S3 cutoff 2000 6000 7.50× 10−16 30.24× 10−16 2.5
smooth 4000 10000 8.87× 10−16 20.48× 10−16

Table 2: Simulation results. The first column gives the name of the simulation, as defined in Table 1. The
second and third columns give the correlation time in the x (radial) and y (azimuthal) direction, respectively.
The fourth and fifth columns list the diffusion coefficients. The sixth column is the Toomre Q parameter, as
measured in the simulation.

measuring the migration of moonlets. But note
that because regular migration gives a decrease in
the semi-major axis that is linear in time, provided
it continues to operate, it will always ultimately
dominate the behavior for large time because the
spreading of the semi-major axis associated with
stochastic migration increases only as the square
root of time.

At the present day, the number of observed mi-
gration rates is not sufficient to draw a statisti-
cally significant conclusion. However, the fact that
the migration varies in rate and direction clearly
favors the stochastic migration model presented
in this section. Considering a migration rate of
|∆a| = 100m in t = 1 year in Eq. (42), one finds
D = 1.4 × 10−12m2 s−3. Taking |∆a| = 40m
in t = 1 year gives D = 2.2 × 10−13m2 s−3.
This is in the range obtained in the simulations,
and tends to favor the case of simulation L2, and
Σ ∼ 700 kgm−2 in the A ring.

5. Conclusion

In this paper we have calculated the differen-
tial torque exerted on a moonlet by the outer and
the inner disk with a smooth, flat surface den-
sity profile. We performed both an accurate nu-
merical integration and a second order analytical
calculation. These approaches were found to be
in excellent agreement where their domains of va-
lidity overlap. The migration rate found in this
case is proportional to the mass of the moonlet
to the power 1/3. It is about −1 myr−1 for a
200 m radius moonlet in the A-ring. This is way
too low to explain the observed migration of the

propellers in Saturn’s rings. Nonetheless, density
fluctuations in the rings, due to their proximity
to gravitational instability, can lead to stochastic
torques on a moonlet, that may dominate on the
timescale of the Cassini mission, to an extent that
depends mainly on the surface density of the rings.
These stochastic torques may account for the ob-
servations.

The possibility that the migration of propellers
is induced by stochastic processes rather than by
a regular type I like migration is therefore very
exciting : this may help to infer the local surface
density, and therefore the size of the ring parti-
cles. Indeed, both quantities are linked through
the optical depth, which is observationally well
constrained. Our estimate of Σ ∼ 700 kgm−2 is
equivalent to ∼ 10 m size particles in the A ring
for a single-sized population. This is in good
agreement with available estimates from stellar oc-
cultations. For the A ring, Voyager occultations
(Zebker et al. 1985) find that the radius ra of par-
ticles follows : 0.1 m (assumed) < ra < 11 m,
with a power index ∼ −3. For the 28 Sgr occul-
tation (French and Nicholson 2000), a range 1m
< ra < 20m is found, with a power index between
−2.7 and −3, and an effective size (the single aver-
age size accounting for the fluctuations in photon
count) being about 7m (Cuzzi et al. 2009).

Fortunately the Cassini mission has been ex-
tended to 2017. In the meantime, numerous ob-
servations of the propellers will hopefully give a
clear picture of their orbital evolution for a pe-
riod of 10 years, representing about 10 000 orbits.
This will allow us to test the hypothesis presented
in this paper, and in particular to check whether
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the propellers really are in stochastic migration,
whereas first results seem to favor the stochastic
hypothesis.

Among the questions that still need to be
addressed is why all the propellers seem to be
gathered in the A ring, in places apparently de-
void of density waves ? Indeed the propellers
seem gathered in a couple of narrow radial bands
of only about 1000 km width (Tiscareno et al.
2008). This is especially surprising since the
A ring is densely populated by numerous density
waves launched by the nearby small moons (At-
las, Prometheus, Pandora, Janus, Epimetheus).
Is there a systematic mechanism that would eject
the propellers away from density waves ? Or does
the present location of propellers just reflect the
initial location of the parent body, assuming that
the propeller population comprises the fragments
resulting from the destruction of an ancient moon
orbiting within the rings ?

If the moonlets really undergo stochastic mi-
gration, then Eq. (42) may strongly constrain the
age of the propellers, which can’t be larger than
the time needed to diffuse over ∆a > 1000 km.
Unfortunately, as long as D is unknown Eq. (42)
doesn’t provide any useful information. However,
considering that ∆a is proportional to the square
root of the time, and assuming that a moonlet
migrates about 100 m in 1 year, one finds that
∆a = 1000 km for t = 100 million years. Assum-
ing |∆a| = 40 m in 1 year, we find that it requires
∼ 625 million years to diffuse over 1000 km. Note
that for 200 m radius moonlets, the spreading due
to stochastic migration equates to the contraction
of the semi-major axes occurring as a result of
smooth, regular migration after ∼ 104 yr, and
then ∆a ≈ 10 km. Thus it would take about a
million years to migrate through ∆a = 1000 km
in this case, largely through the action of the non-
stochastic, regular migration process, if that can
be assumed to operate smoothly and simultane-
ously with the stochastic migration process. A
100 m radius moonlet would migrate through only
500 km in the same period, so that the smooth,
regular migration process spreads a population of
moonlets of various sizes over 1000 km in one to
two million years. These could be the times since
the catastrophic disruption of a small moon orbit-
ing at 130 000 km from Saturn, that was broken
into smaller moonlets by a meteoritic impact. On

the other hand, an estimate of the lifetime of a
Pan size moon (∼ 14 km in radius) against the
today’s cometary flux is provided by Dones et al.
(2009) and gives a range between 100 Myr and
16 Gyr, depending on the size distribution of im-
pactors. Therefore, the recent occurrence of such
an event, about 4 to 4.5 billion years after solar
system formation, is possible. Note also that an
age of about 100 Myr is coherent with some esti-
mates of Saturn’s ring age despite of the lack of
fully satisfactory explanation for their origin (see
Charnoz et al. 2009a, for a review).

We see that the question of propeller’s migra-
tion is inextricably linked to the issue of the ori-
gin of Saturn’s moons embedded in the rings,
which is still a mystery. Porco et al. (2007) and
Charnoz et al. (2007) have jointly proposed that
small moons embedded in the rings could be ag-
gregates of material on an initial shard denser than
ice. When destroyed by meteoritic bombardment,
these could release dense chunks of material that
could explain the origin of the propellers. How-
ever, the origin of Saturn’s ring system is still
a matter of debate (Harris 1984; Charnoz et al.
2009b). Knowledge of the age of the propellers
could provide important constraints on the age of
the main ring system and its embedded moons, as
there are strong indications that these could have
about the same age, provided these moonlets hide
a dense shard (Charnoz et al. 2007; Porco et al.
2007). Understanding the migration rate of the
propellers is therefore an important piece of this
puzzle.
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A. Evaluation of the Green’s function

Here we evaluate the Green’s function defined by Eq. (15) as

G(τ) =
1

2π

n=∞
∑

n=−∞

exp(inβτ)

(Ω2 − n2β2 + iγnβ)
. (A1)

To perform the summation we use the general result that if for a general periodic function

g(τ) =

n=∞
∑

n=−∞

b(n) exp(inβt), (A2)

with period 2π/β, and b(n) being defined as an integrable function, we set

F (τ) =
1

2π

∫

∞

−∞

b(n) exp(inβτ)dn, (A3)

then

g(τ) = 2π

n=∞
∑

n=−∞

F (τ + 2πn/β). (A4)

We set

b(n) =
1

2π(Ω2 − n2β2 + iγnβ)
. (A5)

Then the integral Eq. (A3) defining F (τ) is readily performed by contour integration with the result that
for t > 0,

F (τ) =
exp(−γτ/2) sin(ωγτ)

2πωγβ
, (A6)

otherwise F (τ) = 0. Here ωγ =
√

Ω2 − γ2/4. Using the above to evaluate the sum Eq. (A4) as a geometric
progression yields g(τ) ≡ G(τ) for 0 < τ < 2π/β as

G(τ) =
exp(−γτ/2) sin(ωγτ) − exp(−γπ/β) sin(ωγ(τ − 2π/β))

ωγβ [1 + exp(−2γπ/β)− 2 exp(−γπ/β) cos(2πωγ/β)]
, (A7)

the function is determined elsewhere by its periodicity with period 2π/β.
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