The SuperMassive Black Hole at the Galactic Center

A. Goldwurm Service d' Astrophysique / CEA - Saclay

- **η** The Galactic Center Region
- η Sgr A*: radiative signature of the galactic SMBH
- **η** High energy emission from Sgr A*
- **η** Flaring activity of Sgr A*
- **η** Recent INTEGRAL results
- **η** Accretion / Jet Models for Sgr A*
- **η** Perspectives with SIMBOL X

Atelier SIMBOL X – 11-12 March 2004 CNES Paris, France

(Decourchelle et al. 2003)

The Sgr A complex and Sgr A*

- **η** Sgr A*: a bright (1 Jy), variable, compact synchrotron radio source
- **η** Flat spectrum, sub-mm bump linearly polarized
- **n** Coincide (< 10 mas) with * cluster dynamical center. Proper motion < 15 km s⁻¹
- **n** Radio size ≈ 0.1 mas < 1 AU ($\approx 15 \text{ R}_{\text{S}}$ for a BH of 3 10⁶ M_{\odot})

DISCOVERED 30 yr ago (Balick & Brown 1974) PREDICTED in 1971 (Lynden-Bell & Rees)

Sgr A*: the GN Massive Black Hole

η Enclosed Dark Mass ≈ 3 10⁶ M_☉
 within 124 AU = 17 I. h. ≈ 2000 R_S
 ⇒ <u>A SUPER MASSIVE BLACK HOLE</u>

(Schoedel et al '02, Genzel et al '03, Ghez et al '03)

NIR adaptive optics at VLT & Keck

- η Proper motions of the stars of the central cluster
- η Orbital parameters of the closest star S2 to the GC:
 P≈15.2 yr, V ≈ 5000 km s⁻¹

η Dynamical center in Sgr A*

Chandra Observations of Sgr A*

Sgr A* weak persistent emission:
L_X(2-10 keV) ≈ 2 10³³ erg s⁻¹
soft power law (α ≈ - 2.7)
partly extended (≈ 1")
(Baganoff et al. 2003)

Sgr A* bright X-ray Flares : short duration ~ 3 hr L_{peak} (2-10 keV) $\approx 10^{35}$ erg s⁻¹ hard power law ($\alpha \approx$ - 1.3) (Baganoff et al. 2001)

The Brightest Sgr A* X-Ray Flare

Detected with XMM-Newton in Oct 2002 η Peak L_X (2-10 keV) \approx 3.6 10³⁵ erg s⁻¹ η L increase > 180, Duration \approx 2.7 ks η Soft spectrum ($\alpha \approx 2.5 \pm 0.3$) η No spectral variations, No Fe lines η Changes on scales of 200 s => emitting region size of \approx 10 R_S (Porquet et al. 2003)

The Sgr A* Near-IR Flares

Near-IR Flare from Galactic Centre (VLT YEPUN + NACO)

ESO PR Photo 29a/03 (29 October 2003)

© European Southern Observatory

(Genzel et al. 2003)

Periodicity in the NIR flares Sgr A*: BH spin ?

η Discovery of 17 min periodicity in the NIR flares

- η For a 3.6 10⁶ M_o Schwarzschild BH the keplerian period at the LSO is 27 min
- η The QPO imply that Sgr A* is a Kerr BH with spin of a = J/(GM/c²) = 0.52 ± 0.1 ? (Genzel et al. 2003 Nat)
- Recent time analysis of the data of the X-ray Flares have shown presence of similar periodicities (Lense-Thirring ?) (Aschenbach et al. 2004)

NIR flares Sgr A*: non-thermal model

- **η** NIR flares have time-scales similar to X-ray flares (but more frequent)
- η NIR Emission also comes from very close to the BH
- η Models strongly constrained. Non-thermal component needed
- **η** An important energy range to explore: the hard X-rays/gamma-rays

Hard X-rays & Gamma-Rays from GN

SIGMA / GRANAT discovered a closeby source and set upper limits to Sgr A* γ-ray emission:

L _(30 - 300 keV) < 1.2 10³⁶ erg s⁻¹ (Goldwurm et al. 1994, Goldoni et al. 1999)

SL2/XRT and ART-P detected Sgr A at $L_X(3-20 \text{ keV}) \approx 0.5-1 \ 10^{36} \text{ erg s}^{-1}$ (Skinner et al 87, Pavlinsky et al 94, Sunyaev 94)

G. Bélanger (SAp/CEA - Saclay)

Feb-May 2003 Obs.

40°**∆** 30°**∆**

G. Bélanger (SAp/CEA - Saclay)

Feb-May 2003 Obs.

20°**∆** 15°∆

G. Bélanger (SAp/CEA - Saclay)

Feb-May 2003 Obs.

10°Δ 7.5°Δ

G. Bélanger (SAp/CEA - Saclay)

10°**▲** 7.5°**▲** Feb-May 2003 Obs.

INTEGRAL IBIS / ISGRI Images of the Nuclear Region

- Feb May 2003 Observations (Eff. Exp. ~ 800 ks)
- Six known high-energy sources in the central $2^{\circ} \times 2^{\circ}$ of the Galaxy
- A significant excess (8.7 _) at ~ 1' from Sgr A* (4.7 _ in 40-100 keV)
- Flux 20-100 keV ≈ 3-5 mCrab

(Bélanger et al. 2004, ApJ)

Nature of the INTEGRAL source in Sgr A region

- The INTEGRAL source is not compatible with known high energy (> 10 keV) sources of the region (the closest are GRS 1743-290 at 9' and GRS 1741.9-2853 at 10')
- It is not associated to non-thermal structures of the region (Radio Arc, Radio/X NTF) proposed as possible HE sources.
- It cannot be explained by the extrapolation of the (point/diffuse) X-ray emission within 10' from Sgr A* as measured by XMM, SAX, Chandra. The thermal plasma with kT ~ 8 keV would give ~ 1 mC in 20-40 keV and < 0.1 mC in 40-100 keV
- Several Chandra sources are present in the error box but they are weak and soft. However a strong and hard X-ray transient was observed by ASCA AX1745.6-2901 at only 1.3' from Sgr A*. It was suggested to be the counterpart of the SL2 and ART P sources.

A new (unidentified) INTEGRAL source : IGR J1745.6-2901 which cannot be unambiguously identified with Sgr A*

If IGR J1745.6-2901 is associated to Sgr A*

Accretion Models & ...

Hot magnetized keplerian disk Model for Sgr A* (Bremm flare) (Liu & Melia, 2002)

Radiative Inefficient Accretion Model for Sgr A* with nonthermal component (synch fl) (Yuan et al. 2003)

.... Jet Models for Sgr A*

Compact Jet Model for Sgr A* with SSC X-ray Flare

(Markoff et al. 2002, Yuan et al. 2002)

Compact Jet Model for Sgr A* with thin synchrotron X-ray flare (Markoff et al. 2002, Yuan et al. 2002)

Planned 2004 Multi-_ Campaign on Sgr A*

WAVELENGTH

TELESCOPE

VHE Gamma-ray Hard X-rays/_-rays X-rays NIR Sub-mm Mm Radio

HESS INTEGRAL XMM/Newton VLT, HST/NICMOS CSO, SMA BIMA, NRO ATCA, VLA, GMRT Status

Planned Planned (300 × 2 ks) Planned (260 × 2 ks) Planned, proposed Planned, proposed Planned, proposed Planned, proposed

Perspectives with SIMBOL X

Perspectives with SIMBOL X

L_x – L_R correlation in accreting BH ?

 η E.g. Sgr A* shares with AGN and BH XRB the correlation law found between L_X and L_R
 η General correlation after proper object mass scaling

(Gallo et al. 03, Falcke et al. 04)

- The nucleus of our Galaxy links stellar mass black hole systems to AGNs
- Understanding Sgr A* will provide deep insight in accretion/ejection processes at work in compact objects

