COCHISE: a 2.6m mm/submm telescope at Dome C

- 1. COCHISE installation (a collection of pictures)
- 2. Intraday measurements of water vapour (routine water vapour measurements to evaluate the transmission)

Lucia Sabbatini on behalf of the COCHISE group sabbatini@fis.uniroma3.it

COCHISE

Cosmological Observations at Concordia with High-sensitivity Instrument for Source Extraction

A 2.6m millimeter telescope, very similar to the OASI telescope (installed @ MZS since 1989)

Focal plane:

- Multichannel millimetric photometer ($\lambda \approx 1 \div 2 \text{ mm}$)
- FTS

Scientific Goals:

- Sunayev-Zeldovich Effect on galaxy clusters
- > CMB polarization
- Galactic and extragalactic astrophysics @ mm and submm wavelengths (eg. HII regions, GPRS...)
- > Study of dust (anomalous emission, spinning dust...)

COCHISE

From Valenziano presentation to the "Submm astronomy from Dome C" Workshop (Rome, 21/12/2006)

Late December 2006

Ice platform: height 3.5m ÷ 4.2m Laboratory tent

Courtesy of Chiara Montanari

Courtesy of Marco Maggiore

December 31st

Arrival of the telescope with the traverse #2 from DDU to Dome C (1 year late...)

January 10th

Wood base on the platform to prevent from sinking into the ice

January 11th

Assembling the mounting in a heated tent ("falegnameria")...

... and installing it on the ice platform:

January 12th

Preparing the primary mirror in the heated tent Assembling the secondary mirror and the modulator First alignment of the optics

January 12th

Installation of the mirror

January 13th

Mechanical balancing of the system

January 14th-17th

Preparing electronics, cables and connections Test of electronics at ambient temperatures Test of modulator Alignment of the optics

January 18th

Special thanks to PNRA and IPEV people

COCHISE	
(Cosmological Observations at Concordia with High sensitivity Instrument for Source Extraction)	
Optical configuration	Cassegrain
Primary mirror	D = 2600mm
Focal legth	f = 1300 mm
Focal ratio	f/D = 0.5
Secondary mirror	d = 410 mm
Equivalent focal length	F = 10400 mm
Equivalent focal ratio	F/D = 4
Angular resolution	Few arcmins in mm range

COCHISE

Site testing with COCHISE

skydip observations:

- a direct measurement to evaluate sky opacity.
- the sky luminosity is observed varying the elevation angle θ .
- Eg: a skydip performed at MZS from OASI telescope at 1.25 and 2.0 mm (December 2004)

sky noise measurements

Activities already performed: intraday measurements of pwv

Solar hygrometer

Solar hygrometer designed by Tomasi and Guzzi (1974)

Solar irradiance measurements in two spectral bands:

- $\lambda_1 \approx 0.940 \ \mu m$ (water vapour absorption band)
- $\lambda_2 \approx 0.870 \ \mu m$ (transparency window)

Hygrometric ratio: R = V(0.940)/V(0.870)

- \rightarrow accuracy and reliability
- \rightarrow low costs
- \rightarrow easy to be operated at harsh sites
- \rightarrow but only for antarctic summer...

Calibration: using radiosoundings (kindly provided by PNRA - ENEA sez. CLIM-OSS)

Measurements of pwv (1997 & 2007)

December 1996 - January 1997 (Valenziano et al. 1998) : about 80 intraday measurements

New calibration (Tomasi et al. 2007, submitted): using the monthly mean vertical profiles of pressure, temperature and humidity using 87 radiosoundings performed in 2003 and 2004

→First attempt to characterize the site (pwv content)
→First instrumental calibration specific for Dome C values (pwv < 1mm)

```
January-February 2007:
```

```
16 days, measurements every 2 hours (day time)
```

More than 100 measurements of pwv Improvements in the procedure (3 measurements for each point to reduce the fluctuations)

→ The instrument is still at Dome C: it is possible to have other measurements at the beginning of next summer season (thanks to Runa Briguglio)
→ First systematic monitoring of daily variation of pwv

pwv from radiosoundings

Data obtained from www.climantartide.it

Copyright PNRA. Tutti i dritti sono riservati

pwv from hygrometer (very preliminary results!)

January (preliminary results)

February (preliminary results)

18:00

Work in progress...

- More accurate use of radiosoundings: removal of systematics (Tomasi et al. 2006, JGR) (→Valenziano)
- More accurate calibration of the hygrometer (Tomasi et al. 2007, submitted)
- Use of atmospheric models to obtain transmission at mm-submm wavelengths

(→Pardo, De Petris)

- Next antarctic summer (nov 2007 Jan 2008):
 - First light
 - Start of scientific observations