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Next steps for our study

Cloud coverage detection
Percentage of clear sky
Cloud type detection

New atmospheric data
LW radiance data: clear sky analysis in winter

Merge radiosoundings with cloud coverage data
ISAC sky radiometer data

PWYV intra-day monitoring (daytime) -> stability
ISAC LIDAR

Cloud detection
Ice cristal study (polarization)




Conclusions

Radiosoundings data results:
mm observations are well assessed
Atmospheric window at 200 nm is open at DomeC
PWV value variability over some days is also present

Transmission stability (short term) is not assessed (some data from
Sabbatini talk)

Detailed predictions from ATM need model validation for DomeC
CASPER is an opportunity

PWYV monitoring: 183 GHz radiometer (?)
Further critical analysis of radiosounding data is in progress
Radiance data still to be completely injested in our study

It will allow to disentangle between clear and cloudy conditions

We squeezed meteorology data almost completely.
It is time to start a real site testing in the sub-mm range.
Transition from possible observations to robust project proposals.



High accuracy radiosoundings data
real data!

Radiosoundings accuracy is reduced at very low temperature (see also
Chamberlin, 2001 for South Pole)

Vaisala sensors used at Dome C
RS80-A, RS80-H, RS90,RS92
Thermocap sensor data corrected for heat exchange effects (Vaisala
procedure)
Barocap sensors corrected for lag effects (Tomasi et al, 2004)

Humicap sensor raw data are affected by errors (Wang, 2002)
Temperature dependence
Basic calibration model
Sensor aging
Chemical contamination
Sensor arm heating
Ground check

Lag errors (Miloshevich, 2004)
RH corrected using a custom procedure (Tomasi et al., 2006)
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Systematic effects
in radiosoundings
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Figure 5. Mean monthly vertical profiles of ahsohute
humidity g (g m~) obtained from the monthly data sets
of g relative to December (open sgquares), Jamuary (solid
circles), March (open diamonds), April (solid squares),
ad May {open circles). The bars represent the standard
deviations obtained at some fixed levels, giving a
measure of the dispersion of the maonthly data
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Figure 4. Mean monthly vertical profiles of air tempera-
ture T (K) obtained from the monthly data sets relative to
December ( squares), Jamuary (solid arcles), March

{apen dianwon]:x], Aprl (solid squares), and May (open
circles). The bars represent the standard deviations obtained
at some fixed levels, giving a measure of the dispersion of
the monthly data.
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PWYV vs. time
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Monthly distribution
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TABLE 1

PWYV (1IN mm) QUARTILES FOR 108 RADIOSONDES

Quartile S5000m 5400m 5750 m N
All: 108
0.23 25% ... 0.71 0.40 0.27
0.33 50% ... 1.04 0.72 0.49
0.48 T5% ... 1.75 1.28 092
i Day: 65
25% ... 0.58 0.40 0.32
50% ... 1.04 0.82 0.54
T5% ... L.75 1.33 1.00
Night: 30
25% ... 0.76 0.37 0.21
50% ... 1.00 0.57 042
T5% ... 142 1.05 0.68
0500-1300 UT: 32
25% ... 0.46 026 0.20
50% ... 0.85 0.53 0.36
T5% ... 1.23 0.86 0.63
from Giovanelli et al., 2001

Values of Precipitable Water W, mm

Measurement Site Measurement Period Mean First Quartile Median Third Quartile
Dome C (present results) December —January 2003/2004 0.76 = 0.20 0.60 0.71 0.90
Dome C (present results) March - April- May 2005 0.28 = 0.09 022 0.25 0.34
Dome C (VD data, excluding UL) December - January 1996/1997 0.72 £ 0.56 0.38 0.52 0.68
Dome C (VD data, including UL) December —January, 1996/1997 0.76 £ 0.44 047 0.64 0.78
South Pole [Chamberlin et al., 1997) Austral summer 1995/1996 - 043 0.54 0.72
South Pole [Chamberlin et al, 1997 Austral winter/spring 1995 - 0.19 0.25 0.32
Mauna Kea [Hogg, 1992] January - June 1989/1990/1991 - 1.05 1.65 3.15
Mauna Kea [Hogg, 1992] July - December 1990/1991 - 1.73 298 5.88
Atacama [Lane, 1998 April-September, 1995 - 0.68 1.00 1.60
Atacama [Lane, 1998] October 1995 to March 1996 - 1.10 2.00 3.70
Atacama [Giovanelli et al, 2001 October 1998 to August 2000 - 0.71 1.04 1.75

“The quartile values found at the Mauna Kea [[{ogg, 1992] and Atacama [Lane, 1998;
The monthly mean values of ¥ measured at the Kitt Peak National Observatory (USA) were found by Hallace and Livingston [1984] to assume a minimum
of 3—4 mm during December through March and a maximum of about 27 mm in August. VD refers to Valenziano and Dall ' Oglio [1999].

Giovanelli et al, 2001] observatories are given for comparison.




Radiosounding data
(Dec. 2003, Jan. 2003-2004, Apr.-Mar.2005, May 2005)
+ Correction procedures
(C. Tomasi et al. 2006)
+ Derived synthetic atmospheric emission spectra
(J. Pardo et al., 2001, ATM)
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In band Transmission as estimated by simulated ATM-spectra -1t data
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200mMm/1.5 THz-window
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CASPER

Concordia
Atmospheric
SPectroscopy of
Emitted

Radiation

Italian & International Collaborations @ PNRA 2003 proposal:

M. De Petris (PI)

Dipartimento di Fisica, Sapienza Universita di Roma, Italy

L. Valenziano

INAF/IASF-sezione di Bologna, Bologna, Italy

+ Universita’ di Milano, INAF/IASF-sezione di Milano, INAF-Osservatorio
Astronomico di Trieste

P. Encrenaz

Observatoire de Paris, Paris, France

P.A.R. Ade and P.Mauskopf

School of Physics and Astronomy - University of Wales, Cardiff, UK
J.R. Pardo, J. Cernicharo

Inst. Estructura de la Materia, Dpto. Astrofisica Molecular e IR, Madrid, Spain



CASPER'’s peculiarities & goals:

_ ~of atmospheric between 3 mm and
180 micron (resolving power: 15<R<275) producing an estimate of
transmission value within 1%, adeguate for accurate broad-band
photometric observations
Alternative approach: transmission measurements in band by observations

of known calibrated sources (probs: source spectra, visibility, ..) or tau
measurements by skydips (prob: loosing obs-time)

_ ( allowing good estimate of N, and
continuum opacity (n.,../n.,=3) (see Pardo et al.)

optimization of observing procedures for FIR/mm telescopes at
Dome C (hereafter master telescope) avoiding observational time
losing with skydips and permitting the necessary atmospheric
corrections to produce towards known sources

-~ for co-allignment with master telescope f.o.v
exploring in this way the same atmospheric path



The spectrometer is based on 4 main subsystems:

Martin-Puplett Fourier Trasform Spectrometer enriched by a
fast scan & phase modulator

Sky radiation collector (Pressman-Camichel 62-cm in dia.
telescope) with altaz mount

He*/N, cryostat with detectors cooled down to He, @ 0.3K
Acquisition system, data handling and pointing control

PC telescope

WG1 ™, Wea

Py

WG2  Lyot Stop

Photometer




Pressman-Camichel 62-cm in Foam on the top supporting
) . the subreflector
telescope shielded with reflec

vanes
(only 2 panels in the photo)

MP interferometer with:
roof mirror on the left (M1) for fast scan + step & integrate

and
roof mirror on the bottom (M2) as phase modulator

CASPER2 first ligth on July 2006 at MITO
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