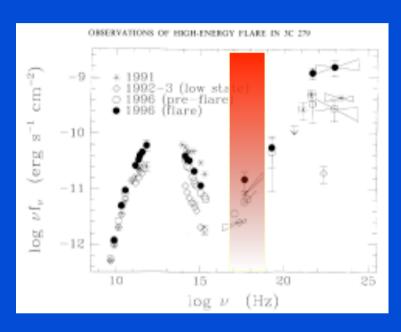
High energy emission of blazars: the need for high sensitivity

G. Henri Laboratoire d!'Astrophysique de Grenoble

Gamma-ray emitting blazars (grazars)

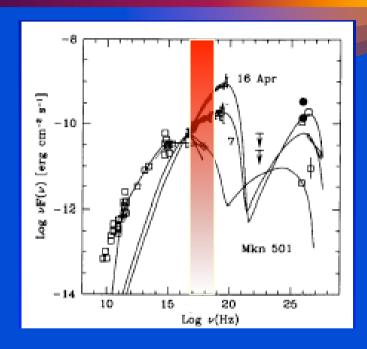
Dominated by NON-THERMAL processes

Most probably electromagnetic processes by highly relativistic leptons (e^- or e^+)
($\gamma \sim 10^3$ to 10^6)


- -synchrotron bump at «!low!» energy (radio-louds)
- -Inverse Compton bump at «!high!» energy

Relativistic jets with a bulk motion Γ ~ 10:

- -superluminal motions $v_{app} \sim \Gamma c$
- Doppler boosting of frequencies and intensities


$$v'\sim\delta v$$
 $I'v'\sim\delta^3 Iv$ Lbol' $\sim\delta^4$ Lbol

Red and blue objects

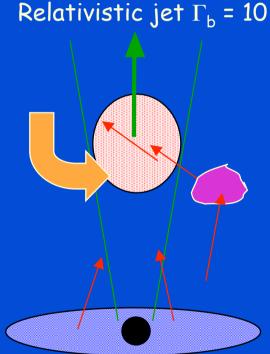
Wehrle et al. 1998

A «!red!» object : 3C 279 Hard X-rays dominated by IC component

A «!blue!» object : Mrk 501 Hard X-rays dominated by

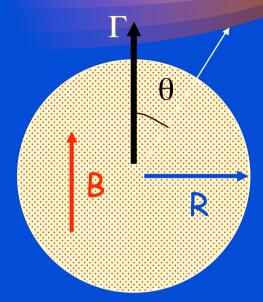
Pian et al. 1998

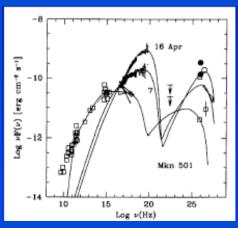
synchrotron component


«! Standard! » model for gamma-ray emission

Physics of relativistic jets still poorly understood..

Relativistic particles injection $@\gamma \approx 10^3 \cdot 10^5$ Usually power-law Internal Shocks?

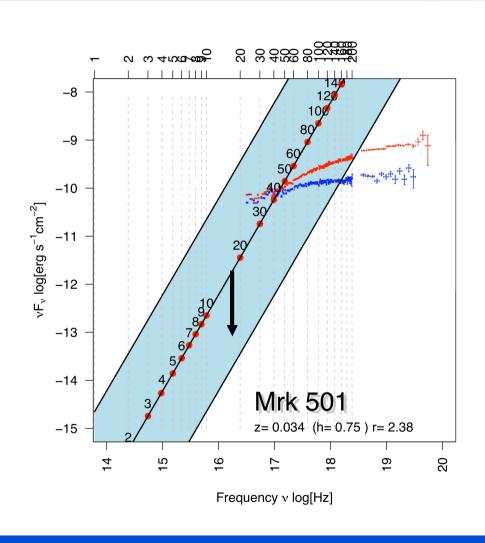

High energy photons produced by Inverse Compton scattering on soft photons


- accretion disk
- optical lines
- synchrotron (SSC)

Simplest one zone model

- * Assume one-zone, spherical homogeneous blob filled with B and relativistic plasma, dominated by a characteristic energy γ_c
- Basically five parameters : R, B, n, γ_c , and $\delta = [\Gamma(1-\beta\cos\theta)]^{-1}$
- And four constraints: 2 peak energies and 2 peak luminosities
- One free parameter left! A further constraint must be found : $\gamma-\gamma$ opacity , variability time scale, ... giving only upper or lower limits.

Effects of $\gamma-\gamma$ opacity


 $\gamma\text{-rays}$ photons of energy $\epsilon m_e c^2$ mainly absorbed by low energy photons with energy $\epsilon^{-1} m_e c^2$ E'(keV) = 1/E(GeV) Or $\lambda(\mu m)$ =1/E(TeV)

Absorption can be extragalactic (1) and/or intrinsic (2)

- * (1) raises the real gamma-ray emission level
- * (2) constrains the minimal Doppler factor δ of the source

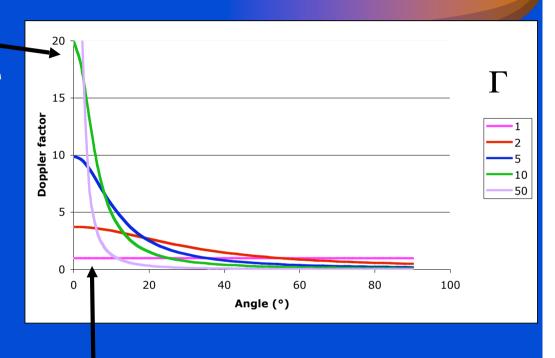
For Tev blazar Mrk 501 (1)+(2) -> δ > 50!

Upper limits on local photon density

The case against high Lorentz factors

High Lorentz factors are problematic for several reasons:

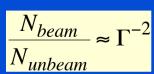
- very hard to produce theoretically !!
- absence of superluminal motion in TeV blazars
- disagreement with both the NUMBER and the LUMINOSITY of unbeamed counterparts (FRI vs BL lacs)


Relativistic beaming

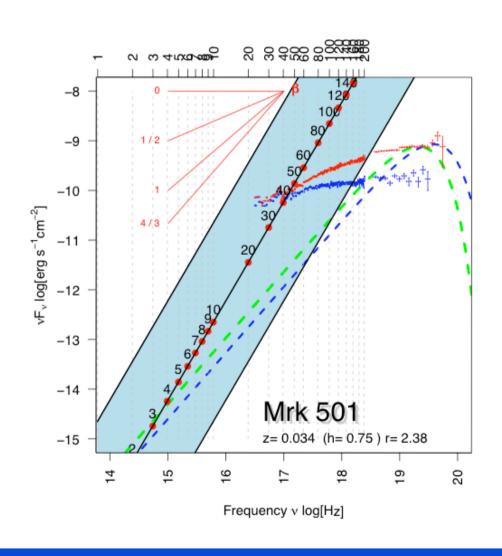
Doppler boosting δ varies from Γ^{-1} to 2 Γ

$$\frac{L_{beam}}{L_{unbeam}} \approx \Gamma^8$$

Predicted ~10⁹
Observed ~ a few 10⁴


(e.g. Trussoni et al. 2003)

Beaming angle


~ Γ⁻¹

More compatible with Γ ~3-5

Predicted ~a few 10⁻⁴
Observed ~ a few 10⁻²

A low Lorentz factor?

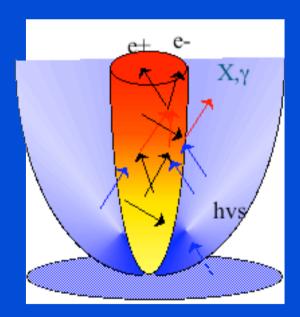
Possible solution

 γ - γ absorption unavoidable for a homogenenous source

SIMBOL-X workshop Paris March 11-12 2004

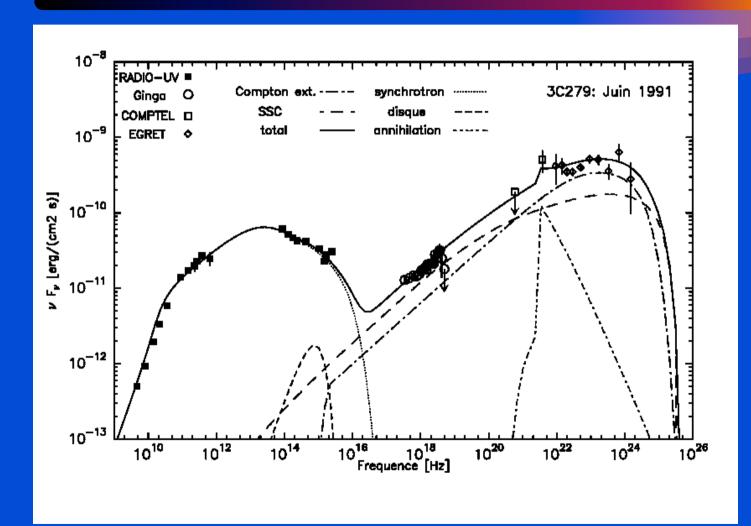
(Saugé & H. in prep)

The two flow model


(Sol, Pelletier, Asséo 1985, Marcowith et al. 1995)

Jet emitted from an accretion disk only mildly relativistic (v~0,5 c)

+ In situ generation of relativistic pair plasma

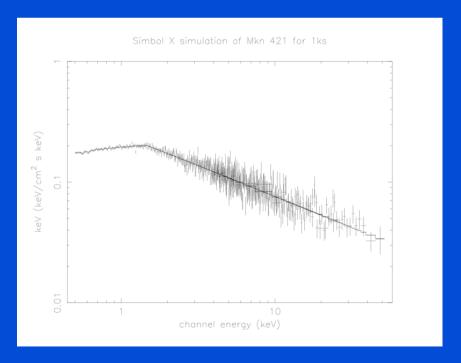

Feed-back on gamma-ray emission

- Some relativistic particles
- X-ray and gamma-ray emission by IC and/or SSC
- $\gamma-\gamma$ annihilation forms new pairs
- Continuous reacceleration by MHD turbulence
- Gradual acceleration of the pair plasma due to anisotropic IC effect > only modest values of Γ ~2- 3 in the emission zone

SIMBOL-X workshop Paris March 11-12 2004

Spectral fits

Need for fast variability studies


TeV observations by ACT showfast (<30') variability Critical to distinguish between models

Not testable by current hard X-rays instruments

Need for much higher sensitivity !-> SIMBOL-X!!

Simulated 1ks observation of Mrk 421

Broken power law
gamma1=1.973
Ebreak=1.473
gamma2=2.5
Spectral fit
gamma1= 2.02+/-0.05
Ebreak=1.59+/-0.06
gamma2=2.61+/-0.02

SIMBOL-X workshop Paris March 11-12 2004

Other interesting targets

- * Faint unbeamed radio-galaxies: improvement of statistical samples
- * Far, TeV-absorbed sources: search for hard X-rays flares.
- * «!Red!» Quasars, measurement of the IC component, complementary with GLAST

Conclusions

- * High energy emission of blazars related to the physics of relativistic jets, which is still poorly understood High sensitivity, fast multiwavelength observations needed.
- ·SIMBOL-X would be an ideal instrument in the hard X-ray range
- ·Hope that the French research will still be living in 2010!