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Abstract. The instability of Bondi-Hoyle-Lyttleton accretion, oliged in numerical simulations, is analyzed through known
physical mechanisms and possible numerical artefactsmiehanisms of the longitudinal and transverse instadslitestab-
lished within the accretion line model, are clarified. Thapot account for the instability of BHL accretion at moderslach
number when the pressure forces within the shock cone age tato account. The advective-acoustic instability issidered

in the context of BHL accretion when the shock is detachenhfiiwe accretor. This mechanism naturally explains the Igabi
of the flow when the shock is weak, and the instability whenaberetor is small. In particular, it is a robust proof of the
instability of 3D accretion whety = 5/3 if the accretor is small enough, even for moderate shoangth (M ~ 3). The
numerical artefacts that may be present in existing nuraksienulations are reviewed, with particular attentiondpta the
advection of entropyorticity perturbations and the artificial acoustic feeclhfrom the accretor boundary condition. Several
numerical tests are proposed to test these mechanisms.
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Q\l 1. Introduction which have been proposed over the years? What is left of the
longitudinal and transverse instabilities of the accretine
L0 The phenomena described by numerical simulations at€owie 1977, Soker 1990, 1991), the "relatively simple” imec
O usually highly simplified compared to the physical realityynism based on the shock opening angle by Livio et al. (1991),
E However simplified, these phenomena are sometimes comglis "vortex shedding in the Von Karman manner” (Koide et al.
Q;:ated enough to challenge our ability to understand thera. Tfhg1 Matsuda et al. 1991, 1992)? The present uncertaa situ
1_Tlow of gas onto a gravitating accretor moving supersonjcalion reveals how unconvincing the proposed mechanisms.were
Oiis a classic astrophysical problem (Hoyle & Lyttleton 193%ome were inconclusive, lacked quantitative criteria, aid
+— Bondi & Hoyle 1944) which is relevant in many astrophysicalys might also have been incompletely understood. Themrese
% contexts such as wind fed X-ray binaries, supermassivekblagork aims at clarifying the dierent instability mechanisms
-~ holes, star formation, and also galaxies in a cluster (seeeth anq confront them with existing numerical simulations, -pay
_= centreview by Edgar 2004). Early numerical simulationshn 2ing particular attention to possible numerical artefacts.
> (Matsuda et al. 1987, Fryxell & Taam 1988) revealed that thishe general trends based on the existing simulations, @nd th
s« flow is unstable. 3D simulations (Matsuda et al. 1991ff&t roposed mechanisms are recalled in Sect. 2. The longitudi-
(T & Arnett 1994) confirmed the unstable character of the flowa| and transverse instabilities of the accretion line awisr
displaying however a weaker variability than in 2D. The ingeq in Sect. 3 and Sect. 4. The advective-acoustic inétsl
stability is not understood even in the simple case of anl id%apted to the BHL flow in Sect. 5. This enables a new look at
uniform gas. Is this instability physical, or numerical?tlthe {he simulations in Sect. 6, in an attempt to reconcile thene. T
same instability mechanismin 2D and 3D? How can this unsigssis of new simulations, free of numerical artefactsijrtgst
ble behaviour be extrapolated to small accretor sizes vdlie hese ideas, is described in Sect. 7. For the sake of theyclari
relevant for wind fed X-ray binaries but out of reach of numegs the paper, the main text contains only the most important

ical simulations? Some authors recently doubted that this kquations, which summarize the analytical arguments prove
stability is physical (Pogorelov, Ohsugi & Matsuda 2000)eT jn appendices A to H.

most recent relativistic simulations by Font & Ibanez (1898
1998b) and Font, Ibanez & Papadopoulos (1999) also showed
stable flows. What about the published instability mechasis
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2 T. Foglizzo, P. Galletti, and M. Riert: Instability mechanism

Table 1. Overview of the published numerical simulations of BHL atwn using a polytropic equation of state and a totally ab-
sorbing accretor: plane accretion in 2D, 3D axisymmetrazetion and full 3D accretion. The first column contains areaiated
reference which can be found in the bibliography.

ref. grid Mach accretor index transverse  stability
number r./ra y gradients
3D
R99 Cart. 1.4-10 0.02-1 1.01/3,5/3 den no
R97 Cart. 0.6-10 0.02-1 /3,5/3 vel no
R96 Cart. 0.6-10 0.02-1 Q1 - no
R95 Cart. 0.6-10 0.02-1 /3 - no
RA95 Cart. 3 0.01-10 B vel no
RA94 Cart. 3 0.01-10 B - no
R94 Cart. 0.6-10 0.02-10 /8 - no
IMS93 cyl. 3 0.125 isothermal derel no
MIS92 Cart. 3 0.1 D05-53 - no
MSS91 Cart. 3 0.06 - 0.25 /8 - no
SMAS89 curv. 1.4 0.1 53 vel quasi
LSK86 Cart. 3,16 0.15 /B -5/3 den quasi
SLK86 Cart. 2,4 0.15 1 den yes
3D axisym.
POMOO polar 3-10 0.05 1.01,1.4% - yes
FI98a polar 0.6-10 0.1-2.4 1.1/3, 5/3 - yes
KMS91 polar 1.4-10 0.005-0.015 /3 - no
MSS89 polar 1.4 0.01-0.05 /8 - no
SMA89 curv. 1.4 0.1 53 - yes
PSS89 polar 0.6-5 0.125 1.1/315/3,2 - yes
FTM87 polar 1.4-4 0.016-0.13 /8 - no
SMT85 polar 0.6-5 0.1 1.1,/8,5/3 - yes
H79 polar 0.6-3.6 0.01 /B - -
H71 polar 0.6-2.4 0.01 3 - -
2D planar
POMOO polar 3-10 0.05 1.4/8 -/denvel yes
POMOO polar  3-10 0.05 1.01 - hes
POMOO polar 4 0.05 ] den no
FIP99 polar 5 0.25 M, 5/3,2 - yes
FI98b polar 3-10 0.25 1.1,/3,5/3 - yes
SMA98 polar 1-16 0.005 - 0.05 isothermal - no
BLT97 polar 4 0.001, 0.005 /8 -/denvel no
Z\WN95 Cart. 3 0.03-0.13 /3 - yes
ZWN95 Cart. 4 0.03-0.13 /B den no
BA94 SPH 3 0.04-0.13 11,13,15 - no
IMS93 Cart. 3 0.13 isothermal dael no
MIS92 Cart. 1.4-10 0.04-0.3 1.005 /% - no
MSS91 Cart. 3-5 0.06 - 0.25 1.2/% - no
SMAS89 curv. 3 0.1 15,2 vel no
TF89 polar 4 0.037 ] vel no
FT88 polar 4 0.037 /B den no
MIS87 curv. 1-5 0.03-0.6 8, 5/3 binary no
ABM87 SPH 3 0.13, 0.15 1.5 vel, den yes

2. An overview of existing simulations of BHL

accretion and proposed instability mechanisms

2.1. Numerical simulations are numerous

Numerical simulations of the BHL problem started with the
work of Hunt (1971). The instability first appeared in Mataud
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et al. (1987), Fryxell & Taam (1988). The many subsequesbme persistant oscillations. The instability seems to beem
simulations are listed in Tab[@ 1. Simulations involvingnmo violent if the shock is detacheg & 4/3 and 53).
complicated ingredients such as realistic heating andirapol
(e.g. Blondin et al. 1990, Taam, Fu & Fryxell 1991) are not in-
cluded for the sake of simplicity. The simulations of Table 2.2. Several mechanisms were proposed
are divided into three groups corresponding to plane dotret
axisymmetric accretion and full 3D accretion. In each okthe The question of the stability of BHL accretion could in piinc
groups, the listing in chronological order follows the pregs ple be solved by performing a perturbation analysis on a sta-
in computing speed and numerical techniques over the l@shary solution such as obtained by POMO0O. This procedure
30 years. This progress enabled the simulation of smallér amould be very heavy, and has never been achieved. Using var-
smaller accretors, improving the first attempts by a factor lious simplifications, six dierent physical instability mecha-
Denoting byra = 2GM/V2 the accretion radius of an accretonisms have been proposed so far. In chronological order:
of massM and velocityv,,, the most recent simulations reach (i) longitudinal instability of the accretion line (Cowie
r./ra = 0.005 in axisymmetric flows (KMS91),./ra = 0.001 1977)
in planar accretion (BLT97), and/ra = 0.01 in 3D accretion '
(RA94). Global trends can be summarized as follows: (ii) transverse instability of the accretion line (Soke®09
-The shock is always attached to the accretor in simulatioh891),
of 2D planar flow. By contrast, 3D simulations revealed a de-
tached bow shock, ahead of the accretor, if the accretorai sm
enough andy > 4/3. A calculation in Appendix A suggests (iv) vortex shedding in the Von Karman manner (Koide et
that the shock should be detached in planar flows with3.  al. 1991, Matsuda et al. 1991, 1992),
-Although the strength of the instability varies from one (y) |ocal Rayleigh-Taylor (RT) and Kelvin-Helmhotz (KH)
code to another, the instability is found in numerical simynstapilities (Foglizzo & Réfert 1999),
lations using any of the coordinate systems, Cartesiamrpol

(iif) shock opening angle (Livio et al. 1991),

cylindrical or special curvilinear, even with SPH. If nurive, (vi) advective-acoustic cycle (Foglizzo & Tagger 2000,
the phenomenon is not specific to a particular grid or a specii©glizzo 2001, 2002). _ o _ _
method. Some of the proposed mechanisms (iii, iv, v) are interesting

-Simulations of plane accretion exhibit the most unstab'@eas’ which need to be developed, but which are not conclu-

behaviour. The shock moves sideways in a flip-flop manndy® at present:

(MIS87). The instability is strongest for small accretqres- -The calculation of Livio et al. (1991) is not a stability &na
sibly for intermediate Mach numberg/( = 3 according to ysis of the shock surface, but rather an attempt to express in
MIS87 and POMOO). equations the idea that the pressure should decrease alng t

-The presence of velocity or density gradients in the tranghiock surface. Since no growth rate or typical timescaleris-c
verse direction of the flow was considered in the earliestaunsputed, extrapolating on the possibility that this is respole
ble simulations (MIS87, FT88, SMA89), but MSS91 realizetbr the violent and chaotic behaviour observed in 2D simula-
that this ingredient is not crucial for instability. Thisr@usion  tions is not convincing.

-Vortex shedding, by the interaction of the incoming gas

. . the "atmosphere” captured by the accretor, was demon-
but found a stable flow when the accretor is spatially resm\.’@trated by SMT85 and MSS89 in simulations where the accre-

and modelized as a polygon. From their point of view, the Mor is non-absorbing. The fate of this instability in BHL aec

stability is related to the d_etachement of the shack. tion, where the gas is absorbed at supersonic velocitythera
-Stable planar accretion flows were also found by Flg%eculative.

and FIP99 who considered a rather large rafiba = 0.25

and POMO0O0 whose method is further discussed below. -The local analysis of FR99 investigates two natural causes
-Axisymmetric flows are generally stable, with few exceg? instability (RT and KH), and concluded that these are not

tions. Among them, SMT85, FTM87 and MSS89 showed vofluantitatively convincing without a feedback mechanism.

tex shedding when the accretor is a hard, non absorbingepher

:in this case the problem is similar to the classical flow abu  Among the cited mechanisms, the only conclusive stabil-

a sphere, modified by gravity. An important exception to thg; analysis are those of Cowie (1977) and Soker (1990, 1991)

stability of axisymmetric flow is KMS91, who also found vorin the approximation of the accretion line model. This sim-

tex shedding for an absorbing accretorif > 2.4. It can be piification is known to be valid only when the shock open-

noted that the accretor size they considered is the smailest ing angle is very narrow, i.e. at very high Mach number. Even

used in axisymmetric simulations. then, it misses the possible interaction between a bow shock
-The instability of full 3D accretion is never as strong aand the accretor (as described by the advective-acousiie)cy

the flip-flop observed for planar flows, but seems present iowever simplified, these instability mechanisms are ptafsi

all published simulations, at least for small enough actset They should be understood well enough to predict what is left

Even the earliest simulations of LSK86 and SMA89 showeaf them beyond the accretion line model.



4 T. Foglizzo, P. Galletti, and M. Riert: Instability mechanism

Table 2. Accretion line models in 2D and 3D.

H rt 1
stagnation

1-v 1 1-v _ i accretor point
T 2r2 o 2r2 L e :

3. A new look at the longitudinal instability of the
accretion line

3.1. Physical cause of the longitudinal instability

The mechanism of the longitudinal instability of the acinet

line was briefly explained by Cowie (1977) as being due to tfhdg. 1. Schematic view of the accretion line model. Stream lines
effect of accreted momentum on density perturbations. SoRée drawn as solid lines with arrows. When pressure is taken
(1990) challenged this explanation by assessing that this into account (SecE=3.2), density perturbations in the etim
stability mechanism is independent of accretion and is amdfe pPropagate as acoustic waves (wavy lines with arrows).
consequence of the acceleration of the flow. A closer look at

the equations, in Appendix B, shows the weakness of thisargu

ment. Let us consider more generally the following dynamictine model, Eq.[[B) becomes:

system: . _
1 _ 141
dp Opv h(r) « rzl exp[lwr + ;I(Za))% Iog% ry,
— + — = H(r), (1) log? r 3 ]
ot or
ov  ov ( ) @ for r > «, (4)
—+v— = F(r,v,p ; 3 ]
s Vs bl 2 1 _ 8 2
o or h(r) « rs exp{——lwr% + TI (—w) ra ,
whereH, F are regular functions describing the mass input and @
the force per unit mass. The particular case of the accritien f 1
o - <r<a, (5)

model is described in Tallg 2 and Appendix A, where velogitie Wt

are in units of/,, distances are in units of the accretion radius . . . . .
) o . : whereq is the distance of the stagnation point. The amplitude
ra , and the line density is normalized using the mass accre-

tion rate (the normalization of distances and densities bge of high frequency perturbations increases far from theetocr

Cowie (1977) are dierent by a factor 2). A linearization of(r) Zea;.lszel:trgg zi)t;gr;i Ihn| tEefrZCEreerEg])gor\)/?r:t tgf;heol;lnmw’vi
Egs. [OE2) gives the fierential equation satisfied by a perturg 2 9 q P

bation of the mass flulRk = pgdv + Vodp (Appendix B). In what w5 where the amplicatior_1 ceases an_d the WKB approximat-ion
follows, the subscript for unperturbed quantitigspy is omit- breaks down. In a numerical simulation, the treatment ol hig

L . . ; frequency perturbations is limited by the numerical reSotu
';epdp;rz?(?rrf;tlilcj)tr:qn is written at high frequenoyusing the WKB According to Eqgs.[435), the better the resolution, thersjes

the instability on both sides of the stagnation point. Fdeau
1 computed in Appendix B for 2D flows show slightfidirences
h~|2-| exp f vﬁ _pﬁ dr which are not significant on the scale of a few accretion radii
veE ov dp | 22
. dr s p OF 2 3.2. The longitudinal instability modified by pressure

eXp|lw f v f ($ %) dry. ®) forces: analogy with radiation driven winds

. . . The region of the stagnation point is necessarily subsonic,
The flow is Fhus unstable at hlghfrequency if the force pe’ru Ind longitudinal pressure forces cannot be neglected .there
massF, acting on the accretion line, depends on density. T

. ) X essure forces in the stationary accretion line were densi
instability does not depend on the accretion of mass, assette .
by Soker (1990), in the sense that it does not depend on {& Wolfson (1977), Yabushita (1978a) and Horedt (2000). The

n%plest formulation corresponds to the isothermal hypsith)

function H. Nevertheless it does depend on the accreted MO which the dynamical equatiori§[1-2) are changed into:

mentum through the functioR. In this sense, accretion plays
a crucial role in this instability, as initially sketched Bpwie dp N dpv H() ©6)
(1977). Contrary to the conclusions of Soker (1990), aceele 5t or ’
tion within the accretion line is not crucial for this institly gv  ov c? dp

(see a counter example in Appendix B). In the 3D accretiog; * Vr F(r.p,v) - oo ()




T. Foglizzo, P. Galletti, and M. Rtert: Instability mechanism 5

wherec is the isothermal sound speed. Again, a singléedi This contrasts with the instability found by Cowie (1977)
ential equation is obtained for the radial structure of ihe | which could be arbitrarily fast at high frequency (Ei4§l4-5)
ear perturbatiom of the mass flux (Eq1C14)), describing the

propagation of acoustic waves modified by the external forc o - .
F. The solution is approximated at high frequency through§a3' The longitudinal instability beyond the accretion

WKB analysis, away from the sonic points£ +c): line model
h~ o} dr |. 1(0F poF The longitudinal instability of the accretion line provést if
~prexp et o gy E copll’ the Mach number is high enough, the amplification of ingo-
oV OF ing acoustic waves should be visible in numerical simufetio
for w> §%~ (8) Such a transient amplification, however, cannot be coresitier

) . . . . to be a convincing mechanism to explain the instability ob-
This stability analysis resembles that of radiation drivémds, served in numerical simulations for moderate Mach numbers

studie_d by Mestel,_ Moore & I_Der_ry (1976) and Mathews (_1976)\400 ~ 3-5. Atrue instability would require a feedback loop, in
Considering a uniform gravitational acceleratigmnd a lin- - o qer 1 puild an acoustic cycle. Ingoing acoustic waves beay
earized radiative forceH = Ao — g, H = 0), they showed ., i)y reflected outwards near the accretor. Outgoingesa
that acoustic waves propagating outwards are amplified by (g ever, are likely to escape to infinity rather than be redigic

diation. In a_ddition to the densityfﬁ_ect_aF/a,_o, the yelocity inwards again. Moreover, their amplitude is damped by the ef
effectdF/dvis formally well known in line-driven winds (S€€ go ot of the accreted momentum. In conclusion, the longitaldi

€.g. Car_lberg 1980, gnd more recent rgviews by OV\_’OCki_ 1gs?ﬁlstability of the accretion line does not explain the ibdity
Feldmeier & Owocki 1998)dF/dv < 0 in the accretion line ¢ gl accretion.

model, implying that this velocityféect is always stabilizing,

independently of the direction of propagation. This codaién

been anticipated directly from the Euler equation, sinces p 4. A new look at the transverse instability of the
itive perturbation of velocity results in a decreased exder  5-cretion line

force. By contrast, thefiect of the density dependence (term

0F/dp) is opposite for outgoing and ingoing waves: 4.1. High frequency approximation of the transverse
- instabilit
Qﬁiﬂgﬁzz——i-@i“” ﬂ in 3D, ) Y
dv - cdp r-a ¢ Soker (1990) extended the stability analysis of Cowie (3977

= v (1 4 Yoo o V) in 2D. (10) tothe case of transverse perturbations in 2D planar flows. Th
c

T 1,1 .. . . . . . .
rz(rz —a) position of the accretion line is described in polar cooatis
The density #ectdF/dp < 0 is thus stabilizing for waves prop-¢ = ©(r). The angle¥ between the tangent to the accretion
agating outwards and destabilizing for waves propagating i€ and the symmetry axis, and the transverse velogigre
wards. This can be understood as follows: wif/dp < 0, related to® as follows:

a positive density perturbation is associated with a dseda 90
external force. According to the Euler equation, this daseel Y=0+r—, (14)
. o . or
force has a dampingftect on the positive velocity perturba- P
tion associated with a wave propagating outwards, wheteag,i= r(_t + V6_)®' (15)
r

amplifies the negative velocity perturbation associateith &i

wave propagating inwards. I_n contrast WiFh the instabWt;h-_ . As remarked by Soker (1990), the transverse instabilityeis d
out pressure found by_ Cowie (1.977)' thls_possmle a””[)I"c'cﬁlt'aupled from the longitudinal one. The an@eof the accre-
tion of ingoing acoustic waves is not oscillatory. Altogeth 4\ jine satisfies a second ordefferential equation, which is

the density and velocityfiects damp outgoing acoustic waves, imated at high f in A dix D usi WKB
According to Egs.[(8) andi[©-]L0), acoustic waves propagatigﬁglr;;?a ed at high frequency in Appendix D using a

inwards may be amplified only if

CH+ V< V. 1) 6 « is exp[iwr +23(1+ i)w%r%] for r > a, (16)
This condition cannot be fulfilled far from the accretor &nc
V ~ Vo, forr > a. From this we conclude that the only possiblgy . — exp[iwf
amplification of high frequency acoustic waves is restddte rs

ingoing waves in a region of finite size. The size of this reg#o
independent of frequency. The amplification factrdeduced
from the WKB analysis, is also independent of the pertudmati

as Iong as its frequency IS hlg_h enough to satisfy Hq. (8jnit Cceases close to the accretorrate w25, and thus depends
be estimated as follows in 3D:

) on the numerical resolution. These high frequency estisnate
A ~ expf Vo—V-C_ Vv dr for s VL Ve oV (12) could be used to compare the radial profiles of the transverse
2c r-av- r-a
< M

giza:n

w%r%] for r < a. a7)
\' 5@2

According to Eq.[(IB), the larger the distance from the aocye
the larger the amplification of perturbations. As for thedion
tudinal instability, the amplification in the region of aetion

and longitudinal instabilities of the accretion line in tireear
(13) regime in 2D flows: the dierences between EqE1IG-17) and
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Egs. [BJEBB) are not significant on the scale of few accr
tion radii, and cannot be responsible for the dominant longi
dinal instability observed in the non linear simulationSoker
(1991).

4.2. Comparison of the transverse instability with the ;
instability of a flag

More generally, a system satisfying a transverse equatitheo =

form
2+v2 Vg = A® + BY + Cyv, (18)
ot or) T o

with arbitrary codficientsA, B, C, is unstable at high frequency.
The diferential equation[{DI3) satisfied Wy is written in
Appendix D. Ifv £ 0, the WKB approximation at high fre- Fig. 2. Transverse instability growing in the vicinity of the stag-

guency is as follows: nation point. The shock (thick line), the sonic surface (ks
) _ _ ) line) and the stream lines (thin lines with arrows) are drawn
® o (L)‘_‘ expf[lﬁ N c N B . (@)2} ar The thin dotted line delineates the accreted gas. The teasesv
r2B vV 2v 202 8 ’ motion of the shock on one side is transmitted to the other sid
v __Av dlog B through acoustic waves (wavy lines with arrows).

for w > F,C, E, 7\/2.
This formulation outlines the role of the restoring foB#® in
driving the high frequency instabilityd = —1/(r%p) in the 2D
accretion line model. This mechanism is reminiscent of the i
stability of a flag as described by Argentina et al. (2004exmh A < exp(Zer)%. (22)

the hydrodynamical force acting on the flag is also propogio . . ,
to the inclination?. The equation describing the transverse mJ-ak'”g into account the finite width of the shock cone sets an

tion of a flag with infinite flexibility corresponds to the Samé}pper_bour_\ck M, to the frequency of _the mo_st P”Stab'e per-
Eq. [IB), withv = 0, A = 0, B = —aUp andC = a, whereU turbations in a plane 2D flow. An additional limitation to the
is the wind velocity and the céécienta > O characterizes the accretion line model comes from the acoustic time across the

aerodynamic force acting on the flag. The solution of Eg. (18§/0ck cone, which is a lower bound to the growth time of the
whenv = 0 is unstable at high frequency&< O: instability. This also favours the subsonic region suraing

the stagnation point rather than the supersonic regiony awa
1 . C w? A from it. The instability as described by Soker (1990) is aloc
@oc?expf m)E— Bdr.

(19)

The maximum exponential amplificatiofl deduced from
Eqgs. [IHETIR) is thus bounded by:

B B (20) mechanism, taking place in the advected flow. A global mode
as observed in the 2D plane simulations of the flip-flop insta-

The presence of finite flexibility (*flexural rigidity”) in ae= pijlity requires an acoustic feedback inside the subsomjiore

alistic flag material would set an upper bound to unstable frehis instability could be described as a purely acoustidecyc

quencies. The comparison with the instability of a flag sstgie between the opposite sides of the shock cone as ifFig. 2.
the possible existence of a transverse instability of thesuic
region of the stagnation point & 0). . e

4.3.2. Towards a global transverse instability in BHL

) - ] accretion ?
4.3. The transverse instability beyond the accretion o _ o
line model The amplification of transverse perturbations should bibles

if the Mach number is high enough. Whether this iffisient to
4.3.1. Transient growth of the transverse instability in a explain the instability observed in 2D flows at low Mach num-
shock cone ber is not clear since this instability is transient. Wheessure
L . . is taken into account, the region of the stagnation pointnsee
The accretion line model relies on the asumption that the h be a privileged place for the growth of a global mode involv
angle_eo_of the shock cone is s_mall compared to other diSt_anCﬁar?g transverse displacement and acoustic propagation.
Identifying the shock cone with the Mach codg,~ 1/ M., is The fate of the transverse instability in 3D BHL accretion

indegd §mal| if the incident flow is highly supersonic. With & e, uncertain, as remarked by Soker (1991). Obviously
longitudinal wavelength comparable-t@rv/ew, the transverse transverse motions of the accretion line are forbidden in 3D

instability of the accretion line model is valid only for since incoming symmetrical trajectories which do not iséet
2nv 2r the displaced accretion line meet along the symmetry axds an
o M (21 generate a new accretion line. This does not exclude a possi-
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ble unstable oscillation of the shock cone in a transverse 8i2. Efficiencies Q; based on radial accretion
rection, such that the symmetry axis stays inside the doaret
shock. According to Eqd{I8A19), the existence of a tramseve . . e ,
restoring force proportional to the inclination angle ioegh entroplc—acoustlc_: cycle, th? amplification of the perttidra
. . " . f of the Bernoulli constant :

to generate a high frequency instability. Beyond geomatric

factors, this force is still present in the 3D geometry. Tihida- 2 o6 25
bility mechanism could thus be present for high enough Ma 1 c. (25)

y -
numbers, although it has never been observed clearly in 3D nu . N
merical simulations. A correct description of the stapiiitith L€t US denote by its values for pressure perturbatiofs*

respect to transverse oscillations would require taking ag- CcOrresponding to an enerdy fl" propagating with £) or
count pressureffects and the 3D dynamical deformation of th892inst ¢) the stream, and™ for entropy pertl.eratlonSS. At
shock cone, which is much morefitult than the accretion line Nigh frequency, for low degree waves 0, 1, 2:

In a radial flow withy > 1, we choose to measure, in the

éhE VOV +

formalism. s 1 .0
F* o W'f %, (26)
5. The advective-acoustic mechanism in BHL f* ~ (1z M)CZ‘sﬁ’ 27)
accretion YP
5.1. Schematic formulation of a global cycle fs ~ ;55- (28)

The advective-acoustic |nStab|l|ty deals with the CyCladf Non radial entropy perturbation@ are associated to vortic-
vected perturbations (entropy, vorticity) coupled to a&t@u ity perturbationssw in shocked spherical accretion through
waves, between the shock and the sonic surfaces. The coupftgs. [EZT) to[[E-19), so that the amplification of the entrop
at the shock is a local process associated to the conservaig — sp~ — §S’ also measures the simultaneous amplifi-
laws through the shock. By contrast, the coupling due to t@gtion of vorticitysw — §p~ — 6w In the isothermal limit
inhomogeneity of the subsonic flow occurs all the way from, — 1), vorticity is more appropriate than entropy to de-
the shock to the sonic surface. FO1 showed in a simple radigfibe the advective-acoustic cycle, which becomes acarti
geometry that this acoustic feedback is described by an infoustic cycle (F02) .

gral over the subsonic region, dominated by the region dlose  The steps (1) and (3) of advection and propagation in the
the sonic point, where the temperature is highest. Thisvallogpherical accretion flow studied by FO1, FO2 are deduced from
us to decompose the advective-acoustic cycle in four stepssys. [26) and[[28) and the conservations of entré®yand

follows: acoustic energf

(1) advection of an entropyorticity perturbation from the S
shock to the sonic point, Q = - @ for w, ~ Cson (29)

(2) excitation of an acoustic feedback due to the inhomo- S 2 Fson’
geneity of the flow, fo, 1 G

(3) propagation of this acoustic feedback towards th& = T NMSZ“CS_’ (30)
ShOCk, son on

(4) excitation of a new entropyorticity perturbation on the Where the subscripts "son” and "sh” refer to the sonic poft a
shock surface. the shock respectively. Although the acoustic energy is con

Each of these stes= 1 to 4 is characterized by afffieiency Served, the amplitude of outgoing waviesdecreasess < 1)

Q; measuring the amplification of perturbations. This decorfiu€ to the geometric dilution in a diverging flow.

position is motivated by the existence of invariants, altapa  1he advection of an entropy perturbation in a hot region may
direct calculation o&; based on the conservation of entropy, direatly increase the thermal energy carried by this peatiob,

Qs based on the conservation of acoustic energy. The stabif®y a factor comparable to the temperature ratio (EJ. (2%). A

of the global cycle depends on the prod@ct sketched by FT0O, the filerence of energy is carried away by
acoustic waves, propagating both upward and downward. Even
Q=Q X XQ3XCu (23) the waves propagating downward may be refracted upward at

low enough frequency (FO1). The ratig,,/ fS$,is thus of order
The linear growth rate of the advective-acoustic cycle, megnity:

sured by the imaginary part of the eigenfrequency (wr, wi),

can then be approximated by Q= @1 ~1 (31)
f&n
1
Wi~ loglQl, (24)  The advective-acoustic couplir@, at the shock is deduced

] ) ) _ from a local analysis of a perturbed shock, performed in
wherer is the duration of the advective-acoustic cycle, genesppendix F:
ally dominated by the advection time. Note that this schema-
tized approach neglects the purely acoustic cycle, which 08 B fssh o« 1—- Mqn
4 = .

influence the stability threshold (FT00, F02). f2, Man

(32)
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This equation is identical to Egs. (16) and (C.11) in FTOG, ol
tained for radial perturbationgs may reach large values in
nearly isothermal flows with strong shock®t{, ~ 1/M3), in
which case the dominant advected perturbations are noalra
(F02): this is the basis of the vortical-acoustic cycle. Tae
tor (1 - Mqn) in Eq. (32) is responsible for the damping of the

advective-acoustic coupling for weak shocks. *Qo
Altogether, .
v OU
Qo Son1=Msn (33)
shMG,

This approximate formula illustrates the two regimes fif- e
cient advective-acoustic coupling identified by FTOO, Fed2:

(i) Strong temperature gradients are responsible forfian e
cient triggering of acoustic waves from advected entropy p¢
turbations, which is the basis of the entropic-acoustidecyc
(FTOO, FO1).

(i) Strong entropyvorticity perturbations can be producec
at the shock if the post shock Mach numbdgy, is small.
These two sources of amplification can be used as guidelil )
for anticipating the properties of advective-acousticlegdn s R
BHL accretion flows. However, the dependencQa the fre- .\““"‘"3””'
quency and the degréef the perturbation requires further cal- )

culations. In particular, FO1 showed that the acoustictiaekl

is strongest for non radial modes 1. Note also that EqLTB3)
is singular ifcson — oo as is the case for 3D accretion with
v = 5/3, which deserves a more careful analysis (Appendix C

5.3. From radial to BHL accretion Fig.3. Schematic view of a global mode if the shock is de-

5.3.1. Extrapolation to detached shocks tached or attached. Drawn lines have the same meaning as in
) i o Fig.[A. Perturbations of entropsprticity (circular arrows) fol-

The locus of the advective-acoustic cycle istetient if the oy the flow lines from the shock to the accretor, producing an

shock is attached or detached (Fy. 3). A global mode betwegh,sic feedback which propagates to the shock. A fraction

a bow shock and the accretor resembles the advective-&Coygk acoustic energy may leak outside of the accretion ogtind
cycle in a shocked radial flow. In this case th@akency of

the advective-acoustic cycle can be estimated from theystiud

radial accretion. By coptrast, if the shock is fittgched doattr 5.4. Influence of the parameters y, M., andr,

cretor, most of the flow is accreted from behind in a supersoni

manner. The value a@; in this particular geometry cannot beAccording to FT0O0, FO1, the stability of the entropic-adiis
directlly extrapolated from its value in a radial flow. cycle depends essentially on the temperature increasebeetw
the shock and the sonic point. The most unstable cycle iegolv
high frequency acoustic waves, those able to explore ttiegtot
parts of the flow but still be refracted out, with a wavelength

In BHL accretion, the shape of the shock surface is not orifjightly larger than the smallest size of the sonic surfatsing
non-spherical but open to infinity. The value @ might be the Bern_oullll equation, the temperature on a point of thecson
reduced by a geometrical facter2 compared to spherical ac-Surface is directly related to its distangg, to the accretor:
cretion because a significant fraction of acoustic waves mg —1[2G6M 2

. . Yoy 2 2
propagate away from the region of accretion and leave the Eyen = —— F ML+ —— . (34)
cle (Fig3) fson v-1
Conver.sely the value @ should be increased by the ampli-T he closer the sonic surface to the accretor, the higheethe t
fication of vorticity perturbations through the local KH aR@  Perature, and the moréieient the entropic-acoustic cycle. The

mechanisms (FR99), due to vorticity and entropy gradiernts‘?a|CU|ati0n of Appendix A indic_ates that t_he sonic surfacal
the post-shock flow. ways attached to the accretotif= ymayx, With

5.3.2. Geometrical factors

vy+1

The dficiencies; estimated in spherical geometry shouldthug . = 3 in 2D, (35)
be considered, at best, as very rough approximations oéthos 5
in the BHL flow. Ymax = 3 1N 3D, (36)
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even if the shock is detached. Fig. 17 of R94 shows the shape-Table[l indicates that most axisymmetric simulations of
of the attached sonic surface for 3D accretion witlk= 5/3. an absorbing accretor are stable (SMT85, PSS89, SMA89),
Together with Eq.[[33), the strengthof the instability should with the exception of KMS91 which shows an instability when
increase whem approachegmaxandr, decreases. The strengtlhr./ra < 0.05 andM > 2.4. The existence of a threshold for

of the instability should be asymptotically independenttef the accretor size and the minimum Mach number fits perfectly
incident Mach number for strong shocks. Conversely, thainswith the entropic-acoustic mechanism.

bility should be suppressed if the shock is wedf, ~ 1). -In the axisymmetric simulations of FI98a with, /Gign; =

According to Appendix A, a critical inde¥erit < ymax MUSt (5 the Schwarzschild radius is too big to allow for a detached
exist, below which the shock is always attached to the agcrelpock According to Newtonian 3D simulations, the shock dis

whatever its size. Numerical simulations with= 4/3 (R95) ance scales like a fraction (e.g. typicallg00.4 in R94) of the
suggest thacric < 4/3 in 3D flows. The entropic-acoustic Cy-gccretion radius. A slower black hole would have a detached
cle is expected to be arffgient instability mechanism in the shock, and the entropic-acoustic instability could depelat-
range ferit, ymad, @s long as the distance of the sonic surface {g4ly if the temperature gradient isfsigient. The shock gets
small enough. detached in the simulation of FI98a fer= 5/3, v../c = 0.15,
Nearly isothermal flowsy( ~ 1) could be unstable throughp i the shock is then too weal (., = 1.5) to be destabilized.
the vortical-acoustic cycle, fed @, > 1 for strong shocks. Indeed, the Newtonian simulations of fRert with M., = 1.4

However, the gfect of the acoustic feedback in the particWyere also stable. A decisive test could be made by simulating
lar geometry of an attached shock is uncertain. Neither thg axisymmetric flow withy = 5/3, M., = 3, andve./c < 0.1.
vortical-acoustic mechanism nor the extrapolated traisgve . i o

-The apparent stability observed in the simulations of

instability manage to explain why isothermal BHL accretion ) ; X X
MO0, in particular foyy = 5/3, cannot be explained by sim-

seems so much more unstable in planar flows (SMA98) thari _ , X
3D simulations (R96). ple considerations about the accretor size and shock streng

This result may be attributed to the particular numericahoé

of local time step used by the authors. In Sect. 3 of POMOO,
the authors make the following statement: "It is important t

) note from the very begining that we seek steady state salutio
reconciled? and generally do not perform time-accurate calculationsa(l
time step inside each cell for the sake of computatiofia! e
ciency)”. This method might not be adequate to propagate hig

The stability of the 2D planar flow simulated by F198b, Flodrequency acoustic waves across the subsonic region.
with a relativistic accretor contrasts with the many unsta-

ble simulations performed in Newtonian gravity. This is b
no mean a relativistic stabilization of BHL accretion thgbu

relativistic dfect, as recognized by FI98b. Indeed, they riumerical issues are numerous. Besides the damdieate

stricted their studies t9./Cignt = 0.5, which corresponds to . . . .
) . o . — ~ of numerical viscosity (SPH and Eulerian codes were com-
a rather big Schwarzschild radius in units of the accretan r . . ) ) )
red by BA94) and the possible axifext in axisymmetric

. . _ a
.dlus'rSCh/rA _.0'25.' '!'hese flows would have been stable eVés)r?mulations (FTM87), more subtlefects can be understood
in the Newtonian limit.

According to ZWNSS5, the flow simulated by MSS91 beCometgrough the advective-acoustic cycle. This instabilitycime

. : fism is physical, but may be artificially triggered or damped
stable if the square accretor is replaced by a polygon. ABho by numerical &ects such as the carbuncle phenomenon at the

the shape .Of the accretor may mfluence_ the 'F‘Stat?"'ty mresshock, the boundary condition at the surface of the accastmr
old, the existence of strongly unstable simulations in pota

ordinates (BLT97 and SMA98) shows that 2D accretion can lt:é%ir%”(;j(;zrﬁ;; beet\:\;sft?ét-i:)hnesz%c dutrggy ?:; bg”;,::; ?)?\;?:f)ﬁuc;?ig
unstable even if the accretor is perfectly spherical. Thallem P yp propag

accretor size and higher resolution used by BLT97 and SMA@%?‘/’S?&\EL?Z&%?JZJE?nz?;t;ﬁtiir;d the sonic surface, is crueial fo
compared to ZWN95 (see Talflk 1), may be a hint in favour 0? '

an advective-acoustic mechanism. A direct comparison; how

ever, is hampered by the fact that the adiabatic indicesi&re g 5 1 carbuncle phenomenon at the shock

ferent in these three simulations. The influence of the shape
of the accretor, demonstrated by ZWN95, speaks against B®MO00 drew attention to possible numerical instabilitietha
transverse acoustic instability. These rather indiregtiarents, shock in the BHL flow. In the region where the shock is par-
if not conclusive, show at least that it is possible to redencalle| to the grid, the carbuncle instability (e.g. Robinetaé
existing simulations of 2D plane accretion in the framewafrk 2000) may favour the generation of vorticity and entropy per
the advective-acoustic mechanism. turbations, which in turn can feed an advective-acousiitecy
The stable 3D simulations can also be analyzed in tlB®nversely, one should carefully check tifieet of any numer-
framework of the entropic-acoustic cycle. This cycle idsta ical procedure designed to damp the carbuncle instabtlityea
lized by a weak shock, and destabilized by a small accresirock, since it may also damp the coupling between advected
size. and acoustic perturbations.

6. Can the different numerical simulations be

6.1. Some simulations are stable

%.2. Numerical artefacts in the simulations
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6.2.3. Boundary condition on the accretor

The size of the accretor is known to play an important role in
the strength of the instability. One reason for this is thnet t
sonic surface ahead of the accretor is generally attachiba:to
accretor in numerical simulations. Boundary conditionthat
surface of the accretor are therefore even more crucialesin
they are in contact with a subsonic flow. The advection of en-
tropy and vorticity perturbations through the boundarydien
tion should be considered carefully in order to avoid arfiarti
cial acoustic feedback from the accretor. For example, Bnpo
ing a transverse velocity equal to zero in the perturbed Bond
flow would generate a spurious feedbatk from any non
spherical entropyorticity perturbations S, and artificially ex-
cite a vortical-acoustic cycle. A calculation in Appendixofi

. . ) . ) . this condition at the boundary of a uniform, parallel flowsiso
Fig.4. Numerical damping of a sinusoidal perturbation of efp5¢

tropy (full line) or vorticity (dotted line) advected ovene

wavelength, in a direction parallel to the grid, as a fumti%(f;) —_1if 1%0 37)
of the number of grid points per wavelength. The flow is hot S boundary ’

mogeneous witly = 5/3, and moves uniformly at Mach2

The dashed line corresponds to the damping of an acoudte artificial coupling due to inadequate boundary cond#io
wave propagated over one wavelength. In the three cases,ahe be as strong as the physical couptibgexpected from the
wavevector of the perturbation is parallel to the flow. temperature gradients in the flow.

6.3. Physical or numerical instability?

6.2.2. Grid resolution between the shock and the Many of the numerical artefacts discussed in Sect. 6.2 wetre n
accretor considered by the authors of the existing simulations. €oul

new simulations of BHL accretion, corrected from numerical

Vorticity is not usually computed with as much accuracy as m8rtefacts, be stable? The physical arguments of Sbct. & prov

mentum or energy in classical numerical schemes such asttm%t the flow must be unstable, at least in the case 5/3

u:;(;,\: fc_)rtBI—]!L S|ml]:|lat|otnsd. Th_z artlflc;glfger(;erat|or:_of I\/Zmngn M. = 3, for a small enough accretor: in this case, tffe e
at the intertace of nested grids could teed a vortical- usciencyQ of the entropic-acoustic cycle diverges when the ac-

cycle. cretor sizer. — 0. Even the leak of acoustic energy cannot

Convgr_sgly, insﬂﬁgient num(-ar-ical resolution is responsible foBiminish the dficiencyQ by more than a finite geometrical fac-
an artificial damping of vorticity and entropy waves. As an or 2— 3, at most. The argument is weaker fox 5/3, because

ample, FigLh shows a measure of th? damping of the am ‘depends strongly on the unknown shape of the sonic surface.
tude of entropy and vorticity perturbations advected over o

wavelength, in a direction parallel to the grid, as a funcd

the number of grid cells per wavelength. This test is perfm7 Fyture numerical tests of the instability

on a Cartesian grid in 2D using the same PPM technique asyechanism

in Ruffert (1994). The correct advection of entropy and vortic-

ity in this numerical simulation requires as much as 10-18 grFuture simulations should consider carefully the numérica
cells per wavelength. Perturbations with a wavelengthtshorartefacts listed in Sedf_6.2. The boundary condition astire
than 10 grid cells are significantly damped over one wavtace of the accretor should be designed to absorb entropy and
length. The same test performed on acoustic waves propggatiorticity perturbations silently: this can be tested in dam

over one wavelength shows a smaller damping: 5-10 grid cdliew. An alternative would be to find a set of parameters such
are enough. This is a strong constraint for the correct ealdbat the accretor is fully embedded inside the sonic surface
lation of an advective-acoustic cycle at high frequencyohhi Sincey = 5/3 andy ~ 1 are ruled out by FR97 in 3D, an in-
involves perturbations with a wavelength comparable tathe termediate choice could be= 4/3 with M., = 3, and a small
cretor size, when the sonic surface is attached to it. The geinough accretor. The numerical issue of the absorbing bound
size should thus be at least 15-20 times smaller than the aty condition can also be solved naturally with generaliela
cretor size in order to properly describe the advectivesatio ity, for any value ofy, since the flow is bound to be supersonic
coupling in the inner regions of the flow. This example illusen the horizon of the black hole (FI98a,b).

trates the fact that the advective-acoustic instability loa im- The stable simulations analyzed in S&cil 6.1 call for new
peded in a numerical simulation with infigient resolution. simulations which would directly test theffieiency of the
Determining how these numbers depend on the numerical teablvective-acoustic mechanism in accretion flows where the
nigue is beyond the scope of the present paper. shock is detached:
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-all the axisymmetric, Newtonian simulations with= 5/3 observed in planar 2D simulations. It seems possible theat th
should be unstable iM., > 3 and a small enough accretomechanism of the transverse instability, modified by thepro
(r./ra ~ 0.005 seems to be enough according to KMS91gation of acoustic waves within the subsonic region of ths,flo
In particular, new axisymmetric, relativistic simulat®sim- leads to a global unstable mode. However, the influence of the
iliar to FI98a should become unstable when consideringshape of the accretor, demonstrated by ZWN95, may be a hint
slower accretor with a moderate shock, such.a&ight = 0.1, against this explanation of the instability.

v = 5/3, M« = 3. The axisymmetric simulations of POMOOFor the first time, the advective-acoustic instabilitiy loesn
should also be unstable if their numerical technique allfaws analyzed in the context of BHL accretion. This analysis is
the advective-acoustic cycle. based on the extrapolation of the properties established in

-2D planar simulation should be unstable through thepherically symmetric flows (FO1, FO2). For this reasonréhe
entropic-acoustic cycle if the shock is detached: compagin evance of the advective-acoustic instabilities in BHL ation
simulation withy ~ 3 (see Appendix A) and the classic flip-is convincingly demonstrated only when the shock is detache
flop obtained fory < 5/3 could help to understand the respedrom the accretor. The fierence of geometry precludes an ac-
tive influences of the entropic-acoustic cycle and the gureturate prediction of the instability threshold in BHL adioe,
acoustic transverse instability. especially since it is very sensitive to the size and shaplesof

In an unstable simulation, the advective-acoustic meclhspnic surface. Nevertheless, the analysis is predictiogigm
nism could be tested directly by measuring the incoming eto-assess that the advective-acoustic mechanism
tropy/vorticity perturbations and the outgoing acoustic flux in - must be stable in the limit of a weak shock,
the subsonic region of the flow, as measured by Blondin et al. - must be unstable for 3D accretion flows with~ 5/3,
(2004) in his simulations of spherical accretion. An indire a reasonable shock strengM. > 3 and a small enough
way of testing the instability mechanism is to measure the eiccretor size.
fect of the various physical parameters. The linear groath r Numerical artefacts have also been discussed, specifically
of the entropic-acoustic cycle should increase when theeacahe grid size and the boundary conditions. We comment on
tor size is decreased, decrease for a weak shock and sdturateow these artefacts must be circumvented to produce reliabl
strong shocks. The present understanding of the 3D adeectivumerical simulations of BHL accretion.
acoustic instability whery ~ 5/3 implies that its strength Surprisingly, it seems that all the existing numerical damu
for an accretor size. ~ 10°r, may be significantly under- tions can be reconciled in the framework of the advective-
estimated by the existing simulations fra > 1072). Tracing acoustic instability, with no striking contradiction, eveshen
the power spectrum of the mass accretion rate (e.g. R95) tl&s shock is attached to the accretor. Several numeridaldés
a function of the numerical resolution in the range accéssibhese ideas have been proposed.
to computers, could give a hint on the extrapolation to senall
accretor sizes. Besides new numerical simulations, future analytic work

In order to better understand the instability of isothermalught to describe in more detail both the transverse irltabi
flows, it would be interesting to try to discriminate between modified by pressure forces, and tiigaency of the advective-
transverse instability (purely acoustic) and a vorticedstic acoustic cycle when the shock is attached. This could help un
cycle. The accretor size and boundary condition should alaylerstand why isothermal accretion is so much more unstable i
more important role in a vortical-acoustic cycle than inans- 2D than in 3D.
verse instability.
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The physical mechanisms underlying the longitudinal and
transverse instabilities of the accretion line have bearifigd.
The destabilizing factor for the longitudinal instability the
density dependence of the external force per unit mass. ThAd. Adiabatic index and pressure forces
transverse instability is ruled by the restoring force mmep
tional to the local inclination of the accretion line. Theakogy

Appendix A: BHL stationary flow in 2D and 3D

The sonic radius in radial Bondi accretion, deduced from the
with the instability of a flag has been outlined. Bernoulli equation and the conservation of mass flux, fitedi

The overstable amplification of longitudinal high frequyencentin 2D and 3D:
perturbations of the accretion line found by Cowie (1977) is 3-yGM

greatly afected by pressure forces. Density perturbations afé" = 2 & in 20, (A1)
propagated as acoustic waves. Those propagating outwards a 5- 3y GM

damped, whereas those propagating inwards are transiehtby = 7 2 in 3D. (A.2)
amplified. The analogy with the instability of radiation\dn ®

winds has been drawn. The existence of a sonic radius in radial accretion on a point

The transverse instability of the accretion line is limitethe like accretor requireg < 5/3 in 3D, whereas plane supersonic
finite width of the shock cone is taken into account. A fee#tbaaccretion is possible up tp < 3. This illustrates the fact that
process is necessary to explain the global flip-flop ingtgbilthe 3D convergence of flow lines produces stronger pressure
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gradients than in 2D. These pressure gradients act agaavst grewritten using the stationary flow equation Eqgs. (2.7d&pof
ity. Extending to plane flows the argument used in FR97 for 3Boker (1990), as follows:

flows, the sonic surface of a stationary BHL accretion must in iK1—v
tersect the sphere of radiug deduced from Eqs[TAMLA.2), (w — kv)* = 21 in 2D, (B.2)
with prz
ikl-v.
fo= — . (A3) =5, 3. (B.3)
1+ TMDQ

. 1.
This suggests that the shock should be detached in planar ¥ 9eometrical factor: is then clearly apparent. A closer
cretion withy close to 3. SMA89 considered plane accretiolf0K at the equations shows that the longitudinal instgbié
with y = 2 but the shock was still not detached. The ragia due to the density dependance of the force acting on the ac-
is a function ofy, M..: cretion line. Using the same normalizations of densityowity

and distances as in Soker (1990), the time dependent egsatio
o _3-y M correspond to Eq(T-2).

A 4 142002 in 2D, (A-4) A linearization of Eqs.[{{32) gives theftérential equation sat-
2 © T .
2 isfied by a perturbation of the mass flte pév + vép:
o _5-3%y M. 4 3p A5
w8 1.zt "0 A o anf, o oF  oF
] ) oz or Por o ov pap
As already noted in FR97, the sonic surface must also be at- av oF
tached to the accretor ify/ran > 1, because the sonic sur- —iwh {pa— —iw - E} =0 (B.4)
P

face cannot extending beyond the distarcea of the stag-
nation point. This concerns in particular isothermal flowsw The solution is written in Eq]3) at high frequenayusing

a strong shock, for whicho/ra o« MZ. A critical indexycrit  the WKB approximation. Contrary to the conclusions of Soker
must therefore exist, below which the shock is always atidch(1990), acceleration within the accretion line is not califor

to the accretor, whatever its size. this instability. The simplest flow in which a similar insttity
occurs would be a flow with uniform densipg and velocity

Vo, Subject to a force depending linearly on density= a(p —

po) and without any mass accretioHl (= 0). The stationary
The mass flux per unit of length, along the accretion line, fw being uniform, the uniform velocity could also be taken t
constant in 3D whereas it varies likez for a planar flow be equal to zero owing to a simple change of reference frame.
(Soker 1990). By integrating Eq(1) using Table 2, The evolution of perturbations can then be calculated pedgi

The frequencyv and the wavevectdr are related through the
following dispersion relation:

A.2. Accretion line

oV = 2(r —a?) in 2D, (A.6)
pv = r—a in 3D, (A7)

oF

—_ 2 — I R
whereq is the distance of the stagnation point. The asympto{l‘é) kvo)” = tkeo op (85
velocity within the accretion line, deduced from Hg. (2)1fos : .
o, is different in 2D and 3D: The growth rate corresponds to the imaginary part

300

— _ B.6
v~1-2 in2p, A8) 7 2w - kv) (8:6)
s
|Ozgr _ The amplification of perturbation is thus exponential in dite
v~ 1- - 3D, (A.9) rection of the external force for a positive enhancementof-d
) sity. In the accretion line model, this amplification is weak
whered is a constant. due to the weak density dependence of the external forcegUsi
the asymptotic behaviowrec —1/r2 close to the accretor, and
Appendix B: Physical cause of the longitudinal Eq. [A3) in 3D flows leads to Eq4l{4-5). By contrast, the same
instability of the accretion line calculation using Eq[TAI8) in 2D flows leads to:
The growth rate computed by Cowie (1977) in 3D is the imadKr) « 8 exp[iwr +2(1+ i)w%/l%r%] ,
inary part of the complex frequenay. for r> a, (B.7)
dv 1 3 2. 3 1-i ;
— k)2 = ik|lv— &+ — h(r)ocr4exp[——|wr2J_r war|,
(w —kv) Ik[vdr t 53 (B.1) 3 !
1
The growth rate in 2D is given by strictly the same formula, for — <r<aea. (B.8)
although the accretion terms involve geometrical factors 1 we?

in Table[2. The absence of such factors in [EQ](B.1) led Sokemne diference of asymptotic behaviors between the 2D and
(1990) to conclude that this instability is independant of a3D cases is not significant.
cretion. This argument is inflicient, since Eq.[{BI1) can be
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Appendix C: Effect of pressure forces on the The second order flerential equation in the general case cor-
longitudinal instability responding to EqL(A8) is:
The linearization of the perturbed flow leads to define the pgpd~© 0%0 3® varv
—|-———-2iwv-B-Cv
turbationf of the Bernoulliu constant as follows: arz " ar \r ar
. A+B .
f = vov+ C25,0 (C.1) +0 (—Ia)\F/ _AT +iwC — a)z) =0. (D.3)
P

in order to obtain a simple second ordeffeliential system sat-

isfied by (f. g): Appendix E: Proof that 6K = 0in the shocked

Bondi flow
(c®- V2)— = lw(pf - vh), (C.2) Let us recall the dferential system satisfied by the perturba-
tions f, g defined in FO1 (Egs. (B18-B19)):
cz—vz)— D SR PPV LU . _
( ar v o af  iwM?f iwv?g . ,0S
V— + > = > +iwc™—, (E.2)
LR\ OFLN o 1-M  1-M Y
+{(""+ E) - pap} (€3 a9 iwrg of i ieK €2
ar A2 21— MDY or2 2.0 .
A single diferential equation is obtained: o 1-M CA-M)  or Mo
5 where the constaniK and the functionu(r, w,1) are defined
(? —vz)@ M iy + c-v by:
arz " ar 7Y ‘o3 o\ p 55
WO 0FL v oF 6K = r2v. (Vxoéw) +I(l + 1)c?—, (E.3)
—p— ¢ +iwhip———iw—-—;=0. (C.49) v
8v ap orp ov
Dy E.4
Before looking for approximate solutions to this equatitve, * = w2r2 = ( )- (E-4)

nsider a spherical adiabatic shock with incident Mach-num

er My in the radial direction. Let this shock be perturbed by

effect of pressure forces can be easily incorporated in the sig)-
ple toy model used in Appendix B, with uniform density ané’rb

velocity: a sound wave with frequeneypropagating against the flow in
23 the subsonic region, producing a displacem®f(®, ) and a
o= i OF v+ KR 4 ] kpﬁ 1 (3F) } (C.5) perturbatiomv(d, ¢) of the radial velocity of the shock. Using
20v ov the index "1” before the shock, and "2” after it, the conserva

The problem is formally identical to that idealized by Méstetion of mass flux and energy across the shock can be written as
Moore & Perry (1976) and Mathews (1976), for radiatiofP!lows:

driven winds, wheré = Ap — g. At high frequency: p1(V1 — AV) = pa(Vo + Vo — AV), (E.5)
oF poF (vi — AV)? Cf (V2 + 6V2 — AV)?2  (Cp + 6Cp)?
ki C.6 =
w ~ (V+C)+2(3v cap) (C.6) > +y—1 > + o1 (E.6)

The stability of high frequency acoustic waves depends en tiwhere quantities are measured at the positigh AZ. Keeping
sign of the quantity between parenthesis. In a non uniform flothe first order terms, and using the defnitionfof), together
a similar conclusion can be reached at high frequency througith the entropy equation, we obtain:

a WKB analysis, leading to EQ1(8).

f = (v2—Vv1)Ay, (E.7)
. . . 1 1
Appendix D: Transverse instability of the g= (V_z - V_l) Av + 8S. (E.8)

accretion line . _ _
A third equation relatingS to Av, A could be deduced us-

The diferential equation satisfied i6yis: ing the conservation of impulsion, in the spirit of Nakayama
2 2 : 1 (1994). A more direct derivation can be obtained by notirag th
g + 66—6 {6loagr v_2w 11 (1 + —)} entropy is conserved before and after the shock, and that the
or r r Vioorawp v entropy jump across the shock depends only on the local value
C) Fow? 4 Doy + iwr : 3 0 (D.1) of the incident Mach numbeM; in the frame of the shock
- wl?2 — = . .
T2 [P T dwp o (Eq. [E)):
The WKB approximation is thus: Mi(tsn+ A2) = Ma(rsn) + Av + Ag&Ml’ (E.9)
(ov)? f iw 1 i
~ = _ nVv2\ AV
© rs &P v Zr%Vp o = Ma(rsn) + (1 + or ) o (E.10)
expiltlw%f 1d[ 5, for w> 3—V (D.2) n = dlogM (E.11)
23 ripzvz 2r dlogr
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Using the Rankine-Hugoniot jump conditions, we obtain ~ Replacing these derivatives in EJS{EZTIE.2), we obtain:

Ay(M?2 - 1)% 2 [ 1- M?
b5 = XM -1 L 1—;(1+ @)A—V. €12) 5 - M2 205 (F.5)
(y + 12M2 2 wr ) v 1-p2M5 vy
. . 2
Equations[[EJI=EI8) thus become: o ~ ;4_2 (s (F6)
26 o AV ¢
= B 1( 1 )V_l’ (E-13)  Acoustic waves are described by EGSIETE.2) in the alesenc
5 @M -1 5 : A of entropy perturbations, i.e. whés® = 0. Using the WKB ap-
g = A2 Y- )21 2V (g.14) proximation of FO1, the radial derivative 6f is approximated
y+1lcs Mz +1 wr | vy by:
The perturbation of non radial velocigy, 6v, immediately 5+ jo, Mz
after the shock is deduced from the conservation of the ngez — ~ =712 '+ (F.7)
tial component of the velocity across the shock, in thespfri
Landau & Lifschitz (1987). g* is deduced from EqsL.{H.1) arld{F.7):
_ 4 M
Sy = Vi : Vo % (E.15) g iMCZ f,. (F.8)
Vi — Vo OAL The linear syster THI=H.2) can be transformed using[E§s.(F
OV = rsing dg (E.16) [E8) and[[EB), in order to express the acoustic pertunba(fit:
The vorticity immediately after the shock is deduced from th.. _ 1 M, s
non radial component of the linearized Euler equations{B.1 2 fx—reg—(1=pMI. (F.9)
and (B.12) of FO1, together with EG{E.7) and E!ECH:EH’E'lQJSing this equation immediately after the shock, with
w, = 0, (E.17) Egs. [EXIPR) to[ET4):
2
o= = 90£j§’ (E18) (o y+1 CHS My (1% 2Mou+ My? (F.10)
rvsing dg y dy 1-M2 u 15 uM, ’ '
c? 9 6S
W, = N8y (E-19) From Egs.[EB) and{ELO),
Immediately after the shock, the constafit defined by f5 4 u  (1-M)(1-M?) (F11)
Eq. (EXB) is computed using EqE(H.18) and (E.19): = Y+ 1Mo (- uMR)(? + 2uMo + M2 '
oK =0. (E.20) At high frequency such that ~ 1,
SincesK is conserved through the Bondi flogK is uniformly  ¢s 4 1+ M, 1- M;?
equal to zero. As a consequence, using the integrated exprEs = 77 a0 ME My (F12)
sion of the vorticity (Egs. (B5) to (B7) in FO1), the vortigit
perturbation is described by EqQE.(H.17) [0 (F.19) througho 1__MZ (F.13)
the flow. M;

Appendix G: Entropic-acoustic coupling in 3D for
Yy ~5/3

he value ofQ| deduced from FO1 foy close to 33 increases

Appendix F: Advective-acoustic coupling at the
shock

. T
The perturbationd, g after the shock are decomposed as fol-
P & P with frequency likew® (Egs. 28-29 of FO1), up to a maxi-

lows:

S mum reached near the cuffdrequency. This behaviour can
f=f+f"+f> (F1) be understood in the framework of FT00, which argued that
g=9+g"+g° (F.2) the dficiency of the entropic-acoustic coupling is related to the

increase of enthalpy between the shock and the sonic point.

A slight correction, however, should be made. Rather than th
aive gues$)® « sor1/c§h of Eq. (23) in FT0O0, one must take

into account the fact that the coupling of entropy perttidvest

to acoustic waves must occur before the sonic radius in eoder

S<I:1'ffow significant outgoing acoustic flux. Th&ective radius of
couplingres was computed analytically in Appendix E of FO1

where fS, g° correspond to the entrofyorticity wave associ-
ated to the entropy perturbati@i® with 6K = 0, andf*, g*
correspond to the purely acoustic waves propagating inithe
rection of the flow (index+) or against the flow (index).
Neglecting the coupling between the entropic and acou
waves in the vicinity of the shock, the entropy wak®& g° is

advected at the velocity of the fluid: (Egs. E6 and E13):

ofs iw

o~ s, (F3) g oy, (G.1)
S cA(r 2

09w Fay 1Q7 o ST F (G.2)

or v C2(rsh)
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The dficiency@? deduced from the analytical calculations oFont, J.A., Ibanez, J.M.A. 1998a, ApJ 494, 297 (F198a)
FO1 indeed scales like the ratio of enthalpies between thekshFont, J.A., Ibanez, J.M.A. 1998b, MNRAS 298, 835 (FI98b)
and the &ective point of couplingeq. The radiuger coincides Font, J.A., Ibanez, J.M.A., Papadopoulos, P. 1999, MNRAS 80

with the wavelengthv/wc,; of an entropy perturbation with
a frequencyw, close towct: the enthalpy ffectively "seen”

by this perturbation is not the enthalpy at the sonic raditts
rather at the ective radiug . From this point of view, using Hor

(FIP99)
Fryxell, B.A., Taam, R.E. 1988, ApJ 335, 862 (FT88)

d:ryxell, B.A., Taam, R.E., McMillan, S.L.W. 1987, ApJ 3153%

(FTM87)
edt, G.P. 2000, ApJ 541, 821

the same notations as in FOds|i-1 > |Qsli-o is a natural con- Hoyle, F., Lyttleton, R.A. 1939, Proc. Cam. Phil. Soc., 3854

sequence of$" > wS": non radial perturbationstiectively

Hunt, R. 1971, MNRAS 154, 141 (H71)

"see” regions of higher enthalpy. The mosli&@ent entropic- Hunt, R. 1979, MNRAS 188, 83 (H79)
acoustic coupling is reached at frequencies close to thaaef |shii, T., Matsuda, T., Shima, E., Livio, M., Anzer, U., Biar, G.

tion cut-df, whereu ~ 1.

Appendix H: Artificial acoustic feedback from the
boundary condition on the accretor

1993, ApJ 404, 706 (IMS93)

Koide, H., Matsuda, T., Shima, E. 1991, MNRAS 252, 473 (KMB91

Landau, L.D., Lifshitz, E.M. 1987, Fluid Mechanics, Vol.Bergamon
Press

Livio, M., Soker, N., de Kool, M., Savonije, G.J. 1986, MNRAZ32,
235 (LSK86)

The perturbed velocity in the direction perpendicular te th iio M. Soker. N. Matsuda. T.. Anzer. U. 1991 MNRAS 2633
flow is deduced from the linearized Euler equations, usi®g thyathews, W.G. 1976, ApJ 207, 351 '

vorticity given by Eqs.[[EZI&E19):
1 of
= —— H.1
oo iwr 90° (H-1)
1 of
Ny = iwr sind dg’ (H-2)

A combination of these equations involves the eigenvallliesl\gfe

the Laplacian in spherical coordinates:

10+ 1)f = —% %(sirﬂ&vg) + %M . (H.3)
Imposingsv, = 0 onthe boundary consequently requifes 0
there, if the perturbation is not spherically symmettie=(0).
The acoustic feedback™ associated to the entrofyprticity
perturbationfS passing through the boundary conditi&n =
0, is deduced from the decompositi@a{F.1), with= 0 and

f=0:

(t) =-1if [#0.
fs
boundary
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