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Red giants are evolved stars that have exhausted the supply of hydro-
gen in their cores and instead burn hydrogen in a surrounding shell1,2.
Once a red giant is sufficiently evolved, the helium in the core also
undergoes fusion3. Outstanding issues in our understanding of red
giants include uncertainties in the amount of mass lost at the surface
before helium ignition and the amount of internal mixing from rota-
tion and other processes4. Progress is hampered by our inability to
distinguish between red giants burning helium in the core and those
still only burning hydrogen in a shell. Asteroseismology offers a way
forward, being a powerful tool for probing the internal structures of
stars using their natural oscillation frequencies5. Here we report
observations of gravity-mode period spacings in red giants6 that per-
mit a distinction between evolutionary stages to be made. We use
high-precision photometry obtained by the Kepler spacecraft over
more than a year to measure oscillations in several hundred red
giants. We find many stars whose dipole modes show sequences with
approximately regular period spacings. These stars fall into two clear
groups, allowing us to distinguish unambiguously between hydro-
gen-shell-burning stars (period spacing mostly 50 seconds) and
those that are also burning helium (period spacing 100 to 300
seconds).

Oscillations in red giants, like those in the Sun, are thought to be
excited by near-surface convection. The observed oscillation spectra
are indeed remarkably Sun-like, with a broad range of radial and non-
radial modes in a characteristic comb pattern7–11. However, theoretical
models of red giants12–16 reveal a more complicated story for the non-
radial modes (those with angular degree l $ 1), and it has been sug-
gested that this offers a means to determine the evolutionary states of
these stars15. Owing to the large density gradient outside the helium
core, a red giant is effectively divided into two cavities. In the envelope,
the oscillations have properties of acoustic pressure modes (p modes),
but in the core, they behave like gravity modes (g modes), with buoy-
ancy as the restoring force. The models predict a very dense spectrum of
these so-called mixed modes for each value of l (except l 5 0, as radial g
modes do not exist). Most mixed modes have a much larger amplitude
in the core than in the envelope, and we refer to them as g-dominated
mixed modes. Like pure g modes, they are approximately equally
spaced in period17,18, and measuring their average period spacing
(DP) would give a valuable new asteroseismic probe of the cores of

red giants. Unfortunately, they have very high inertias (the total interior
mass that is affected by the oscillation), which leads to a very low
amplitude at the stellar surface and makes them essentially impossible
to observe. However, because of resonant coupling between the two
cavities, some of the mixed modes have an enhanced amplitude in the
envelope, making them more like p modes. These p-dominated mixed
modes have a lower inertia than the g-dominated mixed modes, and so
their amplitudes can be high enough to render them observable. We
expect their frequencies to be shifted from the regular asymptotic spa-
cing, a feature known as ‘mode bumping’19.

Figure 1a shows theoretical oscillation frequencies in a red giant of
mass 1.5M[ (where M[ is the solar mass). The dashed lines show the
radial modes (l 5 0), whose frequencies decrease with time as the
envelope of the star expands. These are pure p modes and are approxi-
mately equally spaced in frequency, with a separation of Dn. The solid
lines show the much denser spectrum of dipole modes (l 5 1). The
g-dominated mixed modes appear as upward-sloping lines whose fre-
quencies increase with time as the stellar core contracts. These modes
are approximately equally spaced in period. The downward-sloping
features that run parallel to the l 5 0 modes are produced by mode
bumping: the p-dominated mixed modes, with frequencies decreasing
with age, undergo avoided crossings19 with the g-dominated mixed
modes. (This results in deviation from their mostly parallel appear-
ance.) =A similar pattern of mode bumping and avoided crossings is
seen in models of subgiant stars13,20.

In Fig. 1b we show the period spacings between adjacent l 5 1
modes in one of the models, indicated in Fig. 1a with the vertical line.
The dips in Fig. 1b correspond to bumped modes that are squeezed
together. The period spacing of the g-dominated modes (DPg) can be
measured from the upper envelope but cannot be observed directly
because only the bumped modes have enough p-mode character to be
detected, by virtue of their reduced mode inertias6,12–14. Observations
will detect only a few modes in each p-mode order, and the average
spacings of those observable sequences (DPobs) will be less than the
true g-mode spacing by up to a factor of two (the actual value depends
on the number of modes detected, which is a function of the signal-to-
noise ratio in the data, and on the strength of the coupling between the
g- and p-mode cavities20). Figure 1c shows the mode frequencies of the
model in Fig. 1b displayed in échelle format, where the spectrum has
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been divided into segments that are stacked one above the other. Note
that the abscissa shows the period modulo DPg (that is, the remainder
after dividing by DPg), whereas a conventional échelle diagram plots
frequencies modulo the p-mode frequency spacing, Dn.

Sequences of l 5 1 modes with approximately constant period spa-
cings were first observed in the red giant KIC 6928997 (ref. 6), and we
have found similar patterns in several hundred more stars. The obser-
vations were obtained with the Kepler satellite over the first 13 months
of its mission and were sampled every 29.4 min in the long-cadence
mode21. Figure 1d shows the period échelle diagram for KIC 6928997,
and allows us to estimate the spacing of the g-dominated modes to be
DPg 5 77.1 s, which is the value required to produce a vertical align-
ment. Remarkably, we have been able to estimate DPg despite the fact
that g-dominated modes are not observed (the average spacing of the
observed modes6 is DPobs < 55 s).

Figure 2 compares observed power spectra of two red giants that
have similar p-mode spacings (Dn < 8mHz) but very different l 5 1

period spacings. We note that the outermost peaks in each l 5 1 cluster
(values of l are given above the peaks), which we expect to be the closest
in character to the g-dominated modes, appear to be the narrowest.
This observation is consistent with theoretical calculations of mode
inertias and lifetimes13–16. Once again, we have detected enough modes
to determine DPg unambiguously using échelle diagrams (right
panels). We find DPg for the two stars to differ by about a factor of
two, implying they have very different core properties.

Inferring DPg in this way using the period échelle diagram is not
possible for most of the stars in our sample, because it requires at least
3–4 modes to be detected in several of the l 5 1 clusters, which is only
possible for the stars with the best signal-to-noise ratio. Therefore, we
have instead measured the average period spacing of the observed l 5 1
modes (DPobs) by using the power spectrum of the power spectrum. In
this method, the power spectrum was first expressed in period rather
than frequency and then set to zero in regions not containing power
from the l 5 1 modes, as determined using the methods of ref. 10. The
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Figure 1 | Mixed modes and avoided crossings in red giant stars.
a, Evolution with time of oscillation frequencies in a model of a hydrogen-shell-
burning red giant with a mass of 1.5M[ and solar metallicity, calculated using
the Aarhus stellar evolution code ASTEC27. Dashed lines show radial modes
(l 5 0) and solid lines show dipole modes (l 5 1). The models span ranges in
radius and luminosity of 6.3–6.7 R[ and 19.1–21.4 L[, respectively (here R[ is
the solar radius, and L[ the solar luminosity). b, Period spacings between
adjacent l 5 1 modes for the model marked with a vertical line in a. The period
spacing of the g-dominated modes (DPg) can be seen from the maximum values
to be about 75 s. Note that model frequencies were not corrected for near-

surface effects6,28, which would have a small effect on the period spacings.
c, Échelle diagram of l 5 1 modes for the same model as shown in b. Here, the
oscillation spectrum has been divided into segments of fixed length that are
stacked one above the other. Note that the abscissa is the period modulo the
g-mode period spacing, DPg (whereas a conventional échelle diagram plots
frequencies modulo the p-mode frequency spacing, Dn). d, Échelle diagram of
observed l 5 1 frequencies in the star KIC 6928997. We conclude that the true
g-mode spacing is DPg 5 77.1 s, whereas the average spacing of the observed
modes6 was found to be DPobs < 55 s.
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Figure 2 | Oscillation power spectra and échelle diagrams of two red giant
stars observed with Kepler. Top, KIC 6779699; bottom, KIC 4902641: left,
power spectra; right, échelle diagrams. The difference in the spacings of the
l 5 1 modes indicates that KIC 6779699 is undergoing hydrogen-shell-burning

on the red giant branch, while KIC 4902641 is also burning helium in its core
(see Fig. 3). Observations of KIC 6779699 were made over the first 13 months of
the Kepler mission (quarter (Q)0–Q5), while those of KIC 4902641 were made
over the first 10 months (Q0–Q4).
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power spectrum of this power spectrum was then calculated in order to
determine the most prominent period spacing. For the reasons men-
tioned above, we expect DPobs to be less than DPg and we have mea-
sured the ratio between them to be in the range 1.3–1.6 in the few cases

where DPg can be estimated unambiguously. Two other methods to
measure DPobs gave comparable results. The first was simply to mea-
sure pairwise separations of the strongest l 5 1 peaks in the power
spectrum. The other was to calculate the autocorrelation of the time
series22 with narrow filters centred on the l 5 1 clusters.

Observed period spacings for about 400 stars are shown in Fig. 3a,
which clearly demonstrates the existence of two distinct populations
with different core properties. A comparison with model calculations
confirms that the two groups coincide with hydrogen-shell-burning
stars on the red giant branch (blue circles) and those that are also
burning helium in the core (red diamonds and orange squares). We
conclude that DPobs is an extremely reliable parameter for distinguish-
ing between stars in these two evolutionary stages, which are known to
have very different core densities15 but are otherwise very similar in
their fundamental properties (mass, luminosity and radius). We note
that other asteroseismic observables, such as the small p-mode separa-
tions, are not able to do this10,15.

Our ability to distinguish between hydrogen- and helium-burning
stars makes it possible to investigate their properties as separate popu-
lations. One example is the parameter e, which specifies the absolute
position of the p-mode comb pattern10,11. As shown in Fig. 3b, there is a
systematic offset between the two populations. This may indicate a
difference in the surface layers, given that e is sensitive to the upper
turning point of the modes23. However, the difference may also arise
because the envelope of oscillation power is centred at different fre-
quencies in the two types of stars (see below). This result is clearly
worthy of further study.

A very important application for the helium-burning stars is to
distinguish between the so-called red clump and the secondary
clump24,25. The red clump comprises low-mass stars that suffered from
electron degeneracy in their hydrogen-shell-burning phase and ignited
helium in a flash (that is, all the helium ignited more or less simulta-
neously) once the core attained a critical mass. This common core mass
explains why the red clump (known as the horizontal branch when
seen in metal-poor clusters) spans a very narrow range of luminosities.
The secondary-clump stars, meanwhile, are too massive to have under-
gone a helium flash and so have a range of core masses, and hence of
luminosities. The mass threshold that divides these two populations
depends on metallicity, and also on core overshoot24 (the phenomenon
in which the motion of convection cells extends beyond the nominal
boundary of the convective zone).

Among the helium-burning stars in Fig. 3a we can indeed see this
division into a compact group (the red clump; red diamonds) and a
dispersed group (the secondary clump; orange squares). It is even more
apparent when we examine the quantity nmax

0.75/Dn, which is approxi-
mately independent of luminosity10 (nmax is the frequency at which the
oscillation envelope has its maximum26). This quantity is shown in
Fig. 3c, and the comparison with evolutionary models having solar metal-
licity implies a helium-flash threshold of around 2M[. Refinement of
this result, using data from more detailed studies of individual stars near
the boundary between the red clump and the secondary clump, should
test predictions of convective-core overshoot.
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