The Reactor Antineutrino Anomaly and implications

Th. Lasserre (CEA-Saclay, Irfu APC & SPP)

New Reactor Antineutrino Spectra

T.A. Mueller, D. Lhuiller*, M. Fallot, A. Letourneau, S. Cormon, M. Fechner, L. Giot, T. Lasserre, J. Martino, G. Mention, A. Porta, F. Yermia.

CEA / Irfu & IN2P3 / Subatech

arXiv:1101.2663 [hep-ex], accepted for publication in PRC * corresponding author

v spectrum emitted by a reactor

The prediction of reactor \mathbf{v} spectrum is the dominant source of systematic error for single detector reactor neutrino experiments

CEA DSM Irfu T. Lasserre

Complementary approaches to compute the v flux Integral Ab initio measurements Sum of all fission products' activities fission product inventory (t) fission rates (t) Fission Yields (JEFF, ENDF, JENDL) I ife time Sum of all β -branches Build total spectrum from **Reference** spectrum of each fission product sum of β -branches per isotope Complete β-decays schemes (ENSDF) • || | • β-strength (Greenwood et al.) electron Theory of β-• Total β spectrum per nucleus (Rudstam et al.) data decay • Masses (Q_b) Nuclear models … **Our mixed approach** Effective **Full ab-inito**

Unique reference to be met by any other measurement or calculation

ILL data: conversion to v spectra

- Fit e⁻ spectrum with a sum of 30 effective branches
- Conversion of the effective branches to v spectra

• All theory included in these effective branches but:

- What Z? : Mean fit on nuclear data Z=f(E0) $Z(E_0) \approx 49.5 - 0.7E_0 - 0.09E_0^2, Z \ge 34$
- What A_{CW} ? : effective correction on the v-spectra $DN_n^{C,W}(E_n) \approx 0.65 \times (E_n - 4MeV) \%$
- Conversion error from envelop of numerical studies

- MURE evolution code: core composition and off equilibrium effects
- BESTIOLE code: build up database of ~800 nuclei and 10000 β -branches

→ 95+/-5% of the spectrum reproduced but still not meeting required precision → Useful estimate of ²³⁸U spectrum which couldn't be measured @ ILL

→ Measurement at FRMII ongoing (N. Haag & K Schreckenbach)

- 1. SAME ILL e- data Anchorage
- 2. Ab-Initio: "true" distribution of β -branches reproduces >90% of ILL e⁻ data.
- 3. Old-procedure: five effective anchorage-branches to the remaining 10%.

- +3% normalization shift with respect to old v spectrum
- Similar result for all isotopes (²³⁵U, ²³⁹Pu, ²⁴¹Pu)
- Stringent Test Performed Origin of the bias identified

- Define "true" e⁻ and n spectra from reduced set of well-known branches from ENSDF nuclei data base.
- Apply exact same OLD conversion procedure to true e⁻ spectrum.
- 3. Compare the converted n spectrum to the true one.
- This technique gives a 3% bias compared to the true v spectrum

 \rightarrow **OLD** effective conversion method biases the predicted v spectrum at the level of -3% in normalization

Origin of the 3% shift

 E <4 MeV: deviation from effective linear A_{C,W} correction of ILL data

$$\Delta N_v^{C,W}(E_v) \approx 0.65 \times (E_v - 4\,MeV) \quad \%$$

• **E** >4 MeV: mean fit of $Z(E_0)$ doesn't take into account the very large dispersion of Z around the mean curve $Z(E_0) \approx 49.5 - 0.7E_0 - 0.09E_0^2, Z \ge 34$

Off-Equilibrium Effects MURE evolution code (IN2P3/Subatech)

- ILL electron reference spectra : 12 hours to 1.8 days irradiation time
- Neutrino reactor experiments irradiation time >> months

BUT 10% of fission products have a β-decay life-time long enough to keep accumulating after several days

- \rightarrow need a correction through simulation
- \rightarrow Not included prior to the CHOOZ experiment

Relative change of v spectrum w.r.t. infinite irradiation time

Correction included by default in our new reference model

The Reactor Antineutrino Anomaly

G. Mention, M. Fechner, T. Lasserre, M. Cribier, Th. Mueller D. Lhuillier, A. Letourneau,*

CEA / Irfu

arXiv:1101.2755 [hep-ex], accepted for publication in PRD * corresponding author - Inverse Beta Decay: $\bar{\nu}_e + p \rightarrow e^+ + n$

- Theoretical predictions: our results agree with
 - Vogel 1984 (Phys Rev D29 p1918). Fayans 1985 (Sov J Nucl Phys 42)
 - Vogel-Beacom 1999: "supersedes" Vogel 84 (Phys Prev D60 053003)
 - Strumia-Vissani Phys. Lett. B564 (2003) 42-54

$$\sigma_{\rm V-A}(E_e) = \kappa \, p_e E_e (1 + \delta_{rec} + \delta_{wm} + \delta_{rad})$$

- The pre-factor κ (two pseudo-independent approaches)

$$\kappa = \frac{G_F^2 \cos^2(\theta_C)}{\pi} (1 + \Delta_{inner}^R)(1 + 3\lambda^2) = \frac{2\pi^2}{m_e^5 f^R \tau_n} \qquad \lambda = |\frac{g_A}{g_V}|^2$$

- κ ran down over the history, from 0.914 10⁻⁴² cm² in 1981
 - Vogel-Beacom 1999 : κ = 0.952 10⁻⁴² cm²
 - Our work is based on 2010 PDG $\tau_{\rm n}$: κ = 0.956 10^{-42} \, cm^2
 - But we anticipate 2011 κ =0.961 10⁻⁴² cm² (< τ_n > revision +0.5%)

Reactor Electron Antineutrino Detection

- Inverse Beta Decay: $\bar{\nu}_e + p \rightarrow e^+ + n$
 - Threshold: 1.806 MeV
- Anti-v_e interaction rate $n_{\nu} = \frac{1}{4\pi R^2} \frac{P_{\rm th}}{\langle E_f \rangle} N_p \varepsilon \sigma_f$
- Experimental cross section per fission: $\sigma_{\rm f}$

$$\sigma_f^{\text{meas.}} = \frac{4\pi R^2 n_{\nu}^{\text{meas.}}}{N_p \varepsilon} \frac{\langle E_f \rangle}{P_{\text{th}}}$$

- Predicted cross section per fission: σ_{pred}

$$\sigma_f^{\text{pred.}} = \int_0^\infty \phi_f^{\text{pred.}}(E_\nu) \sigma_{\text{V-A}}(E_\nu) dE_\nu$$

CEA DSM Irfu T. Lasserre

Computing the expected rate/spectrum

Bugey-4 BenchmarkPhys Lett B 338(1994) 383

 $\cdot \tau_{n} = 887.4 \text{ s}$

- "old" spectra (30 effective branches)
- no off-equilibrium corrections

10 ⁻⁴³ cm ² / fission	²³⁵ U	²³⁹ Pu	²⁴¹ Pu
BUGEY-4	6.39±1.9%	4.18±2.4%	5.76±2.1%
This work	6.39±1.8%	4.19±2.3%	5.73±1.9%

Final agreement to better than 0.1% on best known ²³⁵U

- ν-flux: ²³⁵U +2.5%, ²³⁹Pu +3.1%, ²⁴¹Pu +3.7%, ²³⁸U +9.8% (σ_f^{pred} **7**)
- Off-equilibrium corrections now included $(\sigma_f^{\text{pred}} \nearrow)$
- Neutron lifetime decrease by a few % ($\sigma_{\rm f}^{\rm pred}$ **7**) $\sigma_{\rm V-A}(E_{\nu}) \propto 1/\tau_n$
- Slight evolution of the phase space factor ($\sigma_{f}^{pred} \rightarrow$)
- Slight evolution of the energy per fission per isotope ($\sigma_{f}^{pred} \rightarrow$)

• Burnup dependence:
$$\sigma_f^{pred} = \sum_k f_k \sigma_{f,k}^{pred} \quad (\sigma_f^{pred} \rightarrow)$$

_		old [3]	new	new/old
_	$\sigma^{pred}_{f,235U}$	$6.39{\pm}1.9\%$	$6.61{\pm}2.11\%$	+3.4%
New	$\sigma^{pred}_{f,239Pu}$	$4.19{\pm}2.4\%$	$4.34{\pm}2.45\%$	+3.6%
Results:	$\sigma^{pred}_{f,238_U}$	$9.21{\pm}10\%$	$10.10{\pm}8.15\%$	+9.6%
_	$\sigma_{f,^{241}Pu}^{ m pred}$	$5.73{\pm}2.1\%$	$5.97{\pm}2.15\%$	+4.2%

19 Experimental Results below 100m

Measured cross sections are taken at their face values

CEA DSM Irfu T. Lasserre

ROVNO-88 (5 measurements, Sov Phys JETP67, 1988)

- Rovno, Russia, VVER, 1983-1986
- Technology
 - Integral detector with PE target containing ³He counters, only neutrons are detected
 - Liquid Scintillator detector
- Baselines
 - 18 m & 25 m
- Typical fuel composition: 60.7% ²³⁵U, 27.7% ²³⁹Pu, 7.4% ²³⁸U, 4.2% ²⁴¹Pu,
- Uncertainties:
 - statistics: < 0.9%</p>
 - systematics: 7-8%
- Correlated with:
 - Bugey-4
 - Rovno91 (integral measurement only),
 - with each other

ROVNO-91 (JETP Lett., 54, 1991, 253)

- Rovno, Russia, VVER, late 80's
- Technology:
 - Upgraded integral detector : water target containing ³He counters, only neutrons are detected
- Baselines
 - 18 m
- Fuel composition:
 - 61.4% ²³⁵U, 27.4% ²³⁹Pu, 7.4% ²³⁸U, 3.8% ²⁴¹Pu
- Uncertainties:
 - statistics: <1%</p>
 - systematics: 3.8%
- Correlated with:
 - Bugey-4 (same detector)

Bugey-4 (Phys. Lett. B338, 383, 1994)

- Bugey, France, PWR, early 1990s
- Technology:
 - Integral detector : water target containing ³He counters, only neutrons are detected
- Baseline
 - 15 m
- Fuel composition:

53.8% ²³⁵U, 32.8% ²³⁹Pu, 7.8% ²³⁸U, 5.6% ²⁴¹Pu

- Uncertainties:
 - statistics: 0.04%
 - systematics: 3% (most precise exp.)
- Correlated with:
 - ROVNO-91 (same detector)
 - ROVNO-88 (50% arb.)
- Experimental cross section used to normalize the CHOOZ experiment result

Bugey-3 (3 measurements, Nucl Phys B434, 504, 1995)

- Bugey, France, PWR, 80's
- Technology
 - Liquid scintillator segmented detectors doped with ⁶Li
- Fuel composition typical of PWR
 53.8% ²³⁵U, 32.8% ²³⁹Pu, 7.8% ²³⁸U 5.6% ²⁴¹Pu
- Baselines
 - 14m, 42m and 95m:
- Uncertainties:
 - statistics: 0.4%, 1.0%, 13.2%
 - systematics: 5.0%
- Correlated with
 - each other
- Stringent shape distortion analysis disfavoring sub-eV² oscillations

- Gösgen PWR, Switzerland, 1981-1984
- Technology:
 - liquid scintillator segmented detector + ³He counters for neutron capture
- Baselines:
 - **37.9m**, 45.9m, 64.7m
- 3 fuel compositions. Typical: 61.9% ²³⁵U, 27.2% ²³⁹Pu, 6.7% ²³⁸U, 4.2% ²⁴¹Pu
- Uncertainties:
 - statistics: 2.4%, 2.4%, 4.7%
 - systematics: 6.0%
- Correlated with
 - ILL (same detector)
 - each other

Detector assembly

30 liquid scintillator cells

- ILL, Research Reactor, Grenoble, 80-81
- Technology:
 - Liquid scintillator segmented detector + ³He counters for neutron capture
- Baselines
 - 8.76 (15) m
- Fuel composition:
 - almost pure ²³⁵U
- Uncertainties:
 - statistics: 3.5%
 - systematics: 8.9%
- Correlated with:
 - Goesgen
- Data reanalyzed in 1995 by sub-group of collaboration to correct 10% error in reactor opwer (underestimated for 10 years)

Krasnoyarsk (3 measurements, G.S. Vidyakin et al., JETP. 93, 1987)

- Krasnoyarsk research reactor, Russia
- Technology:
 - Integral detector filled with PE+ ³He counters
- Baselines:
 - 33m, 92m from 2 reactors (1987)
 - 57.3m from 2 reactors (1994)
- Fuel composition:
 - mainly ²³⁵U
- Uncertainties (33m, 57m, 92m):
 - statistics: 3.6%, 1%, 19.9%
 - systematics: 4.8% to 5.5% (corr)
- Correlated with:
 - each other

Cen Savannah River Plant (2 measurements, PRD53, 6054, 1996)

- Savannah River, USA, long standing program initiated by F. Reines. Only the last two results are included in our work.
- Technology:
 - Liquid scintillator doped with 0.5% Gd
- Baseline
 - 18.2m and 23.8 m
- Fuel composition:
 - Difference with pure ²³⁵U below 1.5%
- Uncertainties:
 - statistics: 0.6% and 1.0%: 3.7%
 - systematics:
- Correlated with:
 - each other,
 - but the two results are is slight tension

Technology							Baseline					
												<u>></u>
#	result	Det. type	$ au_n$ (s)	$^{235}\mathrm{U}$	²³⁹ Pu	$^{238}\mathrm{U}$	²⁴¹ Pu	old	new	$\operatorname{err}(\%)$	$\operatorname{corr}(\%)$	L(m)
1	Bugey-4	$^{3}\text{He}+\text{H}_{2}\text{O}$	888.7	0.538	0.328	0.078	0.056	0.987	0.942	3.0	3.0	15
2	ROVNO91	$^{3}\text{He}+\text{H}_{2}\text{O}$	888.6	0.614	0.274	0.074	0.038	0.985	0.940	3.9	3.0	18
3	Bugey-3-I	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.988	0.946	4.8	4.8	15
4	Bugey-3-II	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.994	0.952	4.9	4.8	40
5	Bugey-3-III	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.915	0.876	14.1	4.8	95
6	Goesgen-I	3 He+LS	897	0.620	0.274	0.074	0.042	1.018	0.966	6.5	6.0	38
7	Goesgen-II	³ He+LS	897	0.584	0.298	0.068	0.050	1.045	0.992	6.5	6.0	45
8	Goesgen-II	3 He+LS	897	0.543	0.329	0.070	0.058	0.975	0.925	7.6	6.0	65
9	\mathbf{ILL}	³ He+LS	889	$\simeq 1$		—		0.832	0.802	9.5	6.0	9
10	Krasn. I	³ He+PE	899	$\simeq 1$				1.013	0.936	5.8	4.9	33
11	Krasn. II	$^{3}\text{He}+\text{PE}$	899	$\simeq 1$	—	—		1.031	0.953	20.3	4.9	92
12	Krasn. III	$^{3}\text{He}+\text{PE}$	899	$\simeq 1$		—		0.989	0.947	4.9	4.9	57
13	SRP I	Gd-LS	887	$\simeq 1$				0.987	0.952	3.7	3.7	18
14	SRP II	Gd-LS	887	$\simeq 1$		—		1.055	1.018	3.8	3.7	24
15	ROVNO88-1I	$^{3}\text{He}+\text{PE}$	898.8	0.607	0.277	0.074	0.042	0.969	0.917	6.9	6.9	18
16	ROVNO88-2I	3 He $+$ PE	898.8	0.603	0.276	0.076	0.045	1.001	0.948	6.9	6.9	18
17	ROVNO88-1S	Gd-LS	898.8	0.606	0.277	0.074	0.043	1.026	0.972	7.8	7.2	18
18	ROVNO88-2S	Gd-LS	898.8	0.557	0.313	0.076	0.054	1.013	0.959	7.8	7.2	25
19	ROVNO88-35	Gd-LS	898.8	0.606	0.274	0.074	0.046	0.990	0.938	7.2	7.2	18

Neutron lifetime

#	result	Det. type	τ_n (s)	²³⁵ U	²³⁹ Pu	²³⁸ U	²⁴¹ Pu	old	new	err(%)	corr(%)	L(m)
1	Bugey-4	³ He+H ₂ O	888.7	0.538	0.328	0.078	0.056	0.987	0.942	3.0	3.0	15
2	ROVNO91	$^{3}\text{He}+\text{H}_{2}\text{O}$	888.6	0.614	0.274	0.074	0.038	0.985	0.940	3.9	3.0	18
3	Bugey-3-I	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.988	0.946	4.8	4.8	15
4	Bugey-3-II	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.994	0.952	4.9	4.8	40
5	Bugey-3-III	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.915	0.876	14.1	4.8	95
6	Goesgen-I	³ He+LS	897	0.620	0.274	0.074	0.042	1.018	0.966	6.5	6.0	38
7	Goesgen-II	³ He+LS	897	0.584	0.298	0.068	0.050	1.045	0.992	6.5	6.0	45
8	Goesgen-II	³ He+LS	897	0.543	0.329	0.070	0.058	0.975	0.925	7.6	6.0	65
9	ILL	³ He+LS	889	$\simeq 1$	—		—	0.832	0.802	9.5	6.0	9
10	Krasn. I	³ He+PE	899	$\simeq 1$	—	—	_	1.013	0.936	5.8	4.9	33
11	Krasn. II	³ He+PE	899	$\simeq 1$	—		—	1.031	0.953	20.3	4.9	92
12	Krasn. III	³ He+PE	899	$\simeq 1$	—		—	0.989	0.947	4.9	4.9	57
13	SRP I	Gd-LS	887	$\simeq 1$	_	—	_	0.987	0.952	3.7	3.7	18
14	SRP II	Gd-LS	887	$\simeq 1$	—	-	—	1.055	1.018	3.8	3.7	24
15	ROVNO88-1I	³ He+PE	898.8	0.607	0.277	0.074	0.042	0.969	0.917	6.9	6.9	18
16	ROVNO88-2I	³ He+PE	898.8	0.603	0.276	0.076	0.045	1.001	0.948	6.9	6.9	18
17	ROVNO88-1S	Gd-LS	898.8	0.606	0.277	0.074	0.043	1.026	0.972	7.8	7.2	18
18	ROVNO88-2S	Gd-LS	898.8	0.557	0.313	0.076	0.054	1.013	0.959	7.8	7.2	25
19	ROVNO88-3S	Gd-LS	898.8	0.606	0.274	0.074	0.046	0.990	0.938	7.2	7.2	18

Averaged Fuel Composition

#	result	Det. type	τ_n (s)	285U	²³⁹ Pu	²³⁸ U	²⁴¹ Pu	old	new	err(%)	corr(%)	L(m)
1	Bugey-4	³ He+H ₂ O	888.7	0.538	0.328	0.078	0.056	0.987	0.942	3.0	3.0	15
2	ROVNO91	³ He+H ₂ O	888.6	0.614	0.274	0.074	0.038	0.985	0.940	3.9	3.0	18
3	Bugey-3-I	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.988	0.946	4.8	4.8	15
4	Bugey-3-II	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.994	0.952	4.9	4.8	40
5	Bugey-3-III	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.915	0.876	14.1	4.8	95
6	Goesgen-I	³ He+LS	897	0.620	0.274	0.074	0.042	1.018	0.966	6.5	6.0	38
7	Goesgen-II	³ He+LS	897	0.584	0.298	0.068	0.050	1.045	0.992	6.5	6.0	45
8	Goesgen-II	³ He+LS	897	0.543	0.329	0.070	0.058	0.975	0.925	7.6	6.0	65
9	ILL	³ He+LS	889	$\simeq 1$	—		—	0.832	0.802	9.5	6.0	9
10	Krasn. I	³ He+PE	899	$\simeq 1$	—	—	_	1.013	0.936	5.8	4.9	33
11	Krasn. II	³ He+PE	899	$\simeq 1$	—		_	1.031	0.953	20.3	4.9	92
12	Krasn. III	³ He+PE	899	$\simeq 1$	—	-	—	0.989	0.947	4.9	4.9	57
13	SRP I	Gd-LS	887	$\simeq 1$	_	—	—	0.987	0.952	3.7	3.7	18
14	SRP II	Gd-LS	887	$\simeq 1$	—	-	—	1.055	1.018	3.8	3.7	24
15	ROVNO88-1I	³ He+PE	898.8	0.607	0.277	0.074	0.042	0.969	0.917	6.9	6.9	18
16	ROVNO88-2I	³ He+PE	898.8	0.603	0.276	0.076	0.045	1.001	0.948	6.9	6.9	18
17	ROVNO88-1S	Gd-LS	898.8	0.606	0.277	0.074	0.043	1.026	0.972	7.8	7.2	18
18	ROVNO88-2S	Gd-LS	898.8	0.557	0.313	0.076	0.054	1.013	0.959	7.8	7.2	25
19	ROVNO88-3S	Gd-LS	898.8	8,606	0.274	0.074	0.046	0.990	0.938	7.2	7.2	18

OBSERVED/PREDICTED ratios: OLD & NEW (this work)

-												
#	result	Det. type	τ_n (s)	²³⁵ U	²³⁹ Pu	²³⁸ U	²⁴¹ Pu	old	new	err(%)	corr(%)	L(m)
1	Bugey-4	$^{3}\text{He}+\text{H}_{2}\text{O}$	888.7	0.538	0.328	0.078	0.056	0.987	0.942	3.0	3.0	15
2	ROVNO91	³ He+H ₂ O	888.6	0.614	0.274	0.074	0.038	0.985	0.940	3.9	3.0	18
3	Bugey-3-I	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.988	0.946	4.8	4.8	15
4	Bugey-3-II	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.994	0.952	4.9	4.8	40
5	Bugey-3-III	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.915	0.876	14.1	4.8	95
6	Goesgen-I	³ He+LS	897	0.620	0.274	0.074	0.042	1.018	0.966	6.5	6.0	38
7	Goesgen-II	³ He+LS	897	0.584	0.298	0.068	0.050	1.045	0.992	6.5	6.0	45
8	Goesgen-II	³ He+LS	897	0.543	0.329	0.070	0.058	0.975	0.925	7.6	6.0	65
9	ILL	³ He+LS	889	$\simeq 1$	_		—	0.832	0.802	9.5	6.0	9
10	Krasn. I	³ He+PE	899	$\simeq 1$	—	—	_	1.013	0.936	5.8	4.9	33
11	Krasn. II	³ He+PE	899	$\simeq 1$	_		_	1.031	0.953	20.3	4.9	92
12	Krasn. III	³ He+PE	899	$\simeq 1$	-	-	—	0.989	0.947	4.9	4.9	57
13	SRP I	Gd-LS	887	$\simeq 1$	—	—	—	0.987	0.952	3.7	3.7	18
14	SRP II	Gd-LS	887	$\simeq 1$	_	_	—	1.055	1.018	3.8	3.7	24
15	ROVNO88-1I	³ He+PE	898.8	0.607	0.277	0.074	0.042	0.969	0.917	6.9	6.9	18
16	ROVNO88-2I	³ He+PE	898.8	0.603	0.276	0.076	0.045	1.001	0.948	6.9	6.9	18
17	ROVNO88-1S	Gd-LS	898.8	0.606	0.277	0.074	0.043	1.026	0.972	7.8	7.2	18
18	ROVNO88-2S	Gd-LS	898.8	0.557	0.313	0.076	0.054	1.013	0.959	7.8	7.2	25
19	ROVNO88-3S	Gd-LS	898.8	0.606	0.274	0.074	0.046	0.990	0.938	7.2	7.2	18

19 Experimental Results Revisited (L<100m)

OBSERVED/PREDICTED ratios: OLD & NEW (this work)

result	Det. type	τ_n (s)	²³⁵ U	²³⁹ Pu	²³⁸ U	²⁴¹ Pu	old	new	err(%)	corr(%)	L(m)
Bugey-4	$^{3}\text{He}+\text{H}_{2}\text{O}$	888.7	0.538	0.328	0.078	0.056	0.987	0.942	3.0	3.0	15
ROVNO91	$^{3}\text{He}+\text{H}_{2}\text{O}$	888.6	0.614	0.274	0.074	0.038	0.985	0.940	3.9	3.0	18
Bugey-3-I	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.988	0.946	4.8	4.8	15
Bugey-3-II	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.994	0.952	4.9	4.8	40
Bugey-3-III	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.915	0.876	14.1	4.8	95
Goesgen-I	³ He+LS	897	0.620	0.274	0.074	0.042	1.018	0.966	6.5	6.0	38
Goesgen-II	³ He+LS	897	0.584	0.298	0.068	0.050	1.045	0.992	6.5	6.0	45
Goesgen-II	³ He+LS	897	0.543	0.329	0.070	0.058	0.975	0.925	7.6	6.0	65
ILL	³ He+LS	889	$\simeq 1$	—	-	—	0.832	0.802	9.5	6.0	9
Krasn. I	³ He+PE	899	$\simeq 1$	—	—	_	1.013	0.936	5.8	4.9	33
Krasn. II	³ He+PE	899	$\simeq 1$	—	_	_	1.031	0.953	20.3	4.9	92
Krasn. III	³ He+PE	899	$\simeq 1$	—	—	—	0.989	0.947	4.9	4.9	57
SRP I	Gd-LS	887	$\simeq 1$	—	—	—	0.987	0.952	3.7	3.7	18
SRP II	Gd-LS	887	$\simeq 1$	—	—	—	1.055	1.018	3.8	3.7	24
ROVNO88-1I	³ He+PE	898.8	0.607	0.277	0.074	0.042	0.969	0.917	6.9	6.9	18
ROVNO88-2I	³ He+PE	898.8	0.603	0.276	0.076	0.045	1.001	0.948	6.9	6.9	18
ROVNO88-1S	Gd-LS	898.8	0.606	0.277	0.074	0.043	1.026	0.972	7.8	7.2	18
ROVNO88-2S	Gd-LS	898.8	0.557	0.313	0.076	0.054	1.013	0.959	7.8	7.2	25
ROVNO88-3S	Gd-LS	898.8	0.606	0.274	0.074	0.046	0.990	0.938	7.2	7.2	18
	result Bugey-4 ROVNO91 Bugey-3-I Bugey-3-II Bugey-3-II Bugey-3-II Bugey-3-II Goesgen-I Goesgen-I Goesgen-II Goesgen-II Krasn. I Krasn. I Krasn. I Krasn. II Krasn. II Krasn. III SRP I SRP I SRP I SRP II ROVNO88-1I ROVNO88-1S ROVNO88-2S ROVNO88-3S	result Det. type Bugey-4 ³ He+H ₂ O ROVNO91 ³ He+H ₂ O Bugey-3-I ⁶ Li-LS Bugey-3-II ⁶ Li-LS Bugey-3-III ⁶ Li-LS Goesgen-I ³ He+LS Goesgen-II ³ He+LS Goesgen-II ³ He+LS Krasn. I ³ He+PE Krasn. II ³ He+PE Krasn. III ³ He+PE SRP I Gd-LS SRP II Gd-LS ROVNO88-1I ³ He+PE ROVNO88-1S Gd-LS ROVNO88-1S Gd-LS ROVNO88-2S Gd-LS ROVNO88-3S Gd-LS ROVNO88-3S Gd-LS	result Det. type τ_n (s) Bugey-4 ${}^{3}\text{He}+\text{H}_2\text{O}$ 888.7 ROVNO91 ${}^{3}\text{He}+\text{H}_2\text{O}$ 888.6 Bugey-3-I ${}^{6}\text{Li}\text{-LS}$ 889 Bugey-3-II ${}^{6}\text{Li}\text{-LS}$ 889 Bugey-3-III ${}^{6}\text{Li}\text{-LS}$ 889 Bugey-3-III ${}^{6}\text{Li}\text{-LS}$ 889 Goesgen-I ${}^{3}\text{He}+\text{LS}$ 897 Goesgen-II ${}^{3}\text{He}+\text{LS}$ 897 Goesgen-II ${}^{3}\text{He}+\text{LS}$ 897 ILL ${}^{3}\text{He}+\text{LS}$ 897 ILL ${}^{3}\text{He}+\text{PE}$ 899 Krasn. II ${}^{3}\text{He}+\text{PE}$ 899 Krasn. III ${}^{3}\text{He}+\text{PE}$ 899 SRP I Gd-LS 887 SRP II Gd-LS 887 ROVNO88-1I ${}^{3}\text{He}+\text{PE}$ 898.8 ROVNO88-1S Gd-LS 898.8 ROVNO88-2S Gd-LS 898.8 ROVNO88-3S Gd-LS 898.8 ROVNO88-	result Det. type τ_n (s) $^{2.5}$ U Bugey-4 3 He+H ₂ O 888.7 0.538 ROVNO91 3 He+H ₂ O 888.6 0.614 Bugey-3-I 6 Li-LS 889 0.538 Bugey-3-II 6 Li-LS 889 0.538 Bugey-3-III 6 Li-LS 889 0.538 Goesgen-I 3 He+LS 897 0.620 Goesgen-II 3 He+LS 897 0.543 ILL 3 He+LS 897 0.543 ILL 3 He+PE 899 $\simeq 1$ Krasn. II 3 He+PE 899 $\simeq 1$ SRP I Gd-LS 887 $\simeq 1$ ROVNO88-1I <	resultDet. type τ_n (s) 235 U 239 PuBugey-4 3 He+H ₂ O888.70.5380.328ROVNO91 3 He+H ₂ O888.60.6140.274Bugey-3-II 6 Li-LS8890.5380.328Bugey-3-III 6 Li-LS8890.5380.328Bugey-3-III 6 Li-LS8890.5380.328Bugey-3-III 6 Li-LS8890.5380.328Goesgen-I 3 He+LS8970.6200.274Goesgen-II 3 He+LS8970.5430.329ILL 3 He+LS8970.5430.329ILL 3 He+PE899 $\simeq 1$ Krasn. I 3 He+PE899 $\simeq 1$ Krasn. III 3 He+PE899 $\simeq 1$ SRP IGd-LS887 $\simeq 1$ SRP IIGd-LS887 $\simeq 1$ ROVNO88-1I 3 He+PE898.80.6030.276ROVNO88-1SGd-LS898.80.6060.277ROVNO88-2SGd-LS898.80.6060.274ROVNO88-3SGd-LS898.80.6060.274	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	resultDet. type τ_n (s) 235 U 235 U 238 U 241 PuoldBugey-4 3 He+H ₂ O888.70.5380.3280.0780.0560.987ROVNO91 3 He+H ₂ O888.60.6140.2740.0740.0380.985Bugey-3-I 6 Li-LS8890.5380.3280.0780.0560.994Bugey-3-III 6 Li-LS8890.5380.3280.0780.0560.994Bugey-3-III 6 Li-LS8890.5380.3280.0780.0560.994Bugey-3-III 6 Li-LS8890.5380.3280.0780.0560.994Bugey-3-III 6 Li-LS8890.5380.3280.0780.0560.915Goesgen-I 3 He+LS8970.6200.2740.0740.0421.018Goesgen-II 3 He+LS8970.5430.3290.0680.0501.045Goesgen-II 3 He+LS8970.5430.3290.0700.0580.975ILL 3 He+LS8970.5430.3290.0700.0580.975Krasn. II 3 He+PE899 $\simeq 1$ 1.031Krasn. III 3 He+PE899 $\simeq 1$ 0.989SRP IGd-LS887 $\simeq 1$ 0.987ROVNO88-1I 3 He+PE898.80.6070.2770.0740.0420.969ROVNO	resultDet. type τ_n (s) 233 U 239 Pu 238 U 241 PuoldnewBugey-4 3 He+H ₂ O888.70.5380.3280.0780.0560.9870.942ROVNO91 3 He+H ₂ O888.60.6140.2740.0740.0380.9850.940Bugey-3-II 6 Li-LS8890.5380.3280.0780.0560.9880.946Bugey-3-III 6 Li-LS8890.5380.3280.0780.0560.9940.952Bugey-3-III 6 Li-LS8890.5380.3280.0780.0560.9150.876Goesgen-I 3 He+LS8970.6200.2740.0740.0421.0180.966Goesgen-II 3 He+LS8970.5430.3290.0700.0580.9750.925ILL 3 He+LS8970.5430.3290.0700.0580.9750.925Krasn. I 3 He+PE899 $\simeq 1$ 1.0130.936Krasn. III 3 He+PE899 $\simeq 1$ 0.9870.952SRP IGd-LS887 $\simeq 1$ 0.9870.952SRP IIGd-LS887 $\simeq 1$ 0.9870.952SRP IIGd-LS887 $\simeq 1$ 1.0551.018ROVNO88-11 3 He+PE898.80.6070.2770.0740.0420.9690.917<	resultDet. type τ_n (s) 235 U 235 U 235 U 238 U 241 Puoldnewerr(%)Bugey-4 3 He+H ₂ O888.70.5380.3280.0780.0560.9870.9423.0ROVNO91 3 He+H ₂ O888.60.6140.2740.0740.0380.9850.9403.9Bugey-3-II 6 Li-LS8890.5380.3280.0780.0560.9880.9464.8Bugey-3-III 6 Li-LS8890.5380.3280.0780.0560.9940.9524.9Bugey-3-III 6 Li-LS8890.5380.3280.0780.0560.9150.87614.1Goesgen-I 3 He+LS8970.6200.2740.0740.0421.0180.9666.5Goesgen-II 3 He+LS8970.5840.2980.0680.0501.0450.9926.5Goesgen-II 3 He+LS8970.5430.3290.0700.0580.9750.9257.6ILL 3 He+LS8970.5430.3290.0700.0580.9750.9257.6ILL 3 He+LS899 $\simeq 1$ 0.8320.8029.5Krasn. II 3 He+PE899 $\simeq 1$ 1.0130.95320.3Krasn. III 3 He+PE899 $\simeq 1$ 0.9870.9523.7SRP IIGd-LS88	resultDet. type τ_n (s) 233 U 233 U 233 U 241 Puoldnewerr(%)corr(%)Bugey-4 ${}^{3}\text{He}+\text{H}_2\text{O}$ 888.70.5380.3280.0780.0560.9870.9423.03.0ROVNO91 ${}^{3}\text{He}+\text{H}_2\text{O}$ 888.60.6140.2740.0740.0380.9850.9403.93.0Bugey-3-II ${}^{6}\text{Li}\text{LS}$ 8890.5380.3280.0780.0560.9880.9464.84.8Bugey-3-III ${}^{6}\text{Li}\text{-LS}$ 8890.5380.3280.0780.0560.9940.9524.94.8Bugey-3-III ${}^{6}\text{Li}\text{-LS}$ 8890.5380.3280.0780.0560.9940.9524.94.8Bugey-3-III ${}^{6}\text{Li}\text{-LS}$ 8890.5380.3280.0760.0421.0180.9666.56.0Goesgen-I ${}^{3}\text{He}+\text{LS}$ 8970.6200.2740.0740.0421.0180.9666.56.0Goesgen-II ${}^{3}\text{He}+\text{LS}$ 8970.5430.3290.0700.0580.9750.9257.66.0ILL ${}^{3}\text{He}+\text{LS}$ 8970.5430.3290.0700.0580.9750.9257.66.0Krasn. I ${}^{3}\text{He}+\text{PE}$ 899 $\simeq 1$ 1.0130.95320.34.9Krasn. II ${}^{3}\text{He}+\text{PE}$ 899 $\simeq 1$ 0.9890.947

Our guiding principles: Be conservative - Be stable numerically (SRP case)

Reactor Antineutrino Sources

- 2% systematic on v-flux 100% correlated over ALL measurements
 - 1.8% corresponds to the normalization error on the ILL e- data
- Detector: Non-flux systematic error correlations across measurements:
 - Same experiment with same technology: 100% correlated
 - ILL shares 6% correlated error with Goesgen although detector slightly different. Rest of ILL error is uncorrelated.
 - Rovno88 integral measurements 100% corr. with Rovno 91 despite detector upgrade, but not with Rovno88 LS data
 - Rovno91 integral meas. 100% correlated with Bugey-4
 - Rovno88 integral meas. 50% correlated with Bugey-4

Experiments correlation matrix

- Main pink color comes from the 2% systematic on ILL β-spectra normalization uncertainty

The experiment block correlations come from identical detector, technology or neutrino source

The reactor antineutrino anomaly

0.6 0.7 0.8 0.9 1.1 1.2 1.3 1.4 1 t. ±0.008 ±0.068 ROVNO88_3S 0.938 18.2 m ROVNO88_2S ±0.009 ±0.075 -0.959 25.2 m ROVNO88_1S ±0.009 ±0.076 н 0.972 18.2 m ±0.009 ±0.065 **ROVNO88_21** 0.948 18.0 m ROVNO88_11 ±0.008 ±0.063 0.917 18.0 m ±0.010 ±0.038 SRP-II 23.8 m 1 1 A 1.019 SRP-I 18.2 m ±0.006 ±0.035 0.953 ±0.010 ±0.046 Krasnovarsk-III 0.954 ±0.190 ±0.053 Krasnovarsk-II 0.960 92.3 m • Krasnovarsk-I ±0.034 ±0.052 0.944 33.0 m ±0.059 ±0.048 ILL 8.76 m 0.801 ±0.043 ±0.055 Goesgen-III 0.924 65.0 m Goesgen-II 46.0 m ±0.024 ±0.059 0.991 -±0.023 ±0.058 Goesgen-I 0.966 38.0 m ±0.115 ±0.044 Bugey3 0.873 95.0 m ±0.009 ±0.047 Bugey3 0.948 -40.0 m Bugey-3/4 ±0.004 ±0.047 H 0.943 1 ROVNO91 ±0,023 ±0,028 0.940 ±0.000 ±0.028 Bugey-3/4 0.943 1 τ**"=885.7s** ±0.022 Average 0.943 0.6 0.7 0.8 0.9 1.1 1.2 1.3 1.4 1 $v_{
m Measured}$ / $v_{
m Expected}$

$$\chi^2 = \left(r - \overrightarrow{\mathbf{R}}\right)^T W^{-1} \left(r - \overrightarrow{\mathbf{R}}\right)$$

- Best fit : μ = 0.943
- Uncertainty : 0.023
- χ^2 = 19.6/19
- Deviation from unity
 - Naïve Gaussian : 99.3% C.L.
 - Toy MC: 98.6% C.L. (10⁶ trials)
- No hidden covariance
 - = 18% of Toy MC have χ^2_{min} <19.6

Are the ratios normally distributed?

- Our data points are ratios of Gaussians:
 - Numerator: measurement, Gaussian with stat & syst error, partially correlated
 - Denominator: common prediction, assumed to have Gaussian fluctuation of 2%
- Toy MC with correlated denominator with 2% fluctuation \rightarrow 10 6 events
 - Estimate weighted average R of 19 random points with correlations around 0.943.
 - P-value for (R >= 1): 1.4% (2.2σ)
 compared to naive Gaussian 2.4σ.
 - Our contours are reweighted by (2.2/2.4)²
 to take this slight non-normality into account

Hidden Covariance

• χ^2_{min} of data to straight line in the 18% quantile \rightarrow Data not incompatible with fluctuations

- 18/19 short baseline experiments <100m from a reactor observed a deficit of anti-v_e compared to the new prediction
- The effect is statistically significant at more 98.6%
- Effect partly due to re-evaluation of cross-section parameters, especially updated neutron lifetime, accounting for off equ. effect
- At least three alternatives:
 - Our conversion calculations are wrong. Anchorage at the ILL electron data is unchanged w.r old prediction
 - Bias in all short-baseline experiments near reactors : unlikely...
 - New physics at short baselines, explaining a deficit of anti-v_e:
 - Oscillation towards a 4th, sterile v ?
 - a 4th oscillation mode with θ_{new} and Δm^2_{new}

- Reactor at ILL with almost pure ²³⁵U, with compact core
- Detector 8.76(?) m from core. Any bias?
- Reanalysis in 1995 by part of the collaboration to account for overestimation of flux at ILL reactor by 10%... Affects the rate only

Large errors, but a striking pattern is seen by eye ?

Our ILL re-analysis (reproduce no-oscillation claim) CED

- 1981: Try to reproduce published contour
- 1995: Reproduce claim that global fit disfavors oscillation at 2σ
- How ? We add uncorrelated systematic in each bin until it's large enough Needed error : 11%, uncorrelated, in each bin.

Spectral shape analysis of Bugey-3

Combined Reactor Rate+Shape contours

œ

The Gallium Neutrino Anomaly

Based on PRD82 053005 (2010)

C. Giunti & M. Laveder

- 4 calibration runs with intense MCi neutrino sources:
 - 2 runs at Gallex with a ⁵¹Cr source (750 keV v_e emitter)
 - I run at SAGE with a ⁵¹Cr source
 - 1 run at SAGE with a 37 Ar source (810 keV v_e emitter)
 - All observed a deficit of neutrino interactions compared to the expected activity. Hint of oscillation ?
- Our analysis for Gallex & Sage:
 - Monte Carlo computing mean path lengths of neutrinos in Gallium tanks
 - **NEW** : Correlate the 2 Gallex runs together & the 2 SAGE runs together

The Gallium anomaly

- Effect reported in C. Giunti & M. Laveder in PRD82 053005 (2010)
- Significance reduced by additional correlations in our analysis
- No-oscillation hypothesis disfavored at 97.7% C.L.

 $\hat{\mathcal{A}}$

Implication for θ_{13}

Implication for θ_{13} at 1-2 km baselines

• The choice of normalization is crucial for reactor experiments looking for θ_{13} without near detector

 $\sigma_{f}^{pred,new}$: new prediction of the antineutrino fluxes

 σ_{f}^{ano} : experimental cross section (best fitted mean averaged)

The Normalization Dilemma

- Experiments with baselines > 500 m
- How do you normalize the expected flux, knowing the fuel composition?
- If near + far detector, not an issue anymore

CHOOZ reanalysis

- The choice of σ_f changes the limit on θ_{13}
- Chooz original choice was σ_f^{exp} from Bugey-4 with low error
- If $\sigma_{f}^{pred,new}$ is used, limit is worse by factor of 2
- If σ_f^{ano} is used with 2.7%, we obtain the original limit
 - \rightarrow But which error should we associate to σ_{f}^{ano} (burnup up error?)

Reanalysis of KamLAND's 2010 results

arXiv:1009.4771v2 [hep-ex]

Systematics

	Detector-related	(%)	Reactor-related (%)				
$\overline{\Delta m^2_{21}}$	Energy scale	1.8 / 1.8	$\overline{\nu}_e$ -spectra [<u>31</u>]	0.6/0.6			
Rate	Fiducial volume	1.8/2.5	$\overline{\nu}_e$ -spectra	2.4/2.4			
	Energy scale	1.1 / 1.3	Reactor power	2.1 / 2.1			
	$L_{cut}(E_{\rm p})$ eff.	0.7 / 0.8	Fuel composition	1.0 / 1.0			
	Cross section	0.2/0.2	Long-lived nuclei	0.3 / 0.4			
	Total	2.3/3.0	Total	3.3/3.4			

Reproduced KamLAND spectra within 1% in [1-6] MeV range

CEA DSM Irfu T. Lasserre

CHOOZ and KamLAND combined limit on θ_{13}

Our interpretation (different from Arxiv:1103:0734 for KamLAND-σ_f^{pred,new}, T. Schewtz's talk)

- No hint on θ_{13} >0 from reactor experiments : sin²(2 θ_{13})<0.11 (90%C.L., 1dof)
- CHOOZ 90 % CL limit stays identical to Eur. Phys. J. C27, 331-374 (2003)
- Multi-detector experiments are not affected

Need for new experimental inputs !

CEA DOMINU T. Lasserre

Conclusion and perspectives

New Reactor Antineutrino Anomaly Discovered

- Experimental bias to be deeply investigated
- New physics hypothesis tested: 4th neutrino
 - no-oscillation hypothesis disfavored at 99.8%

Clear experimental confirmation / infirmation is needed:

L/E ≈ few m/MeV or km/GeV

New Experiment at Reactor

- Short Baseline Shape + Rate Analysis
- Mci neutrino generator in/close to a large liquid scintillator

IikeSNO+, Borexino, KamLAND

- New neutrino beam experiment probing for electron GeV neutrino disappearance at 100 m & 1 km
 - C. Rubbias's proposal at CERN-PS
 - Fermilab workshop in May

NUCIFER in Saclay

- Osiris-Saclay: Core Size: 57x57x60 cm
- Nucifer Detector Size : 1.2x0.7m (850I)
- Baseline distribution
 - <L>=7.0 m, σ =0.3 m \rightarrow eV² oscillations are not washed out
- Folding Nucifer Geant4 Monte Carlo detector response
- Δm² = 2.4 eV² & sin²(2θ)=0.15
- No backgrounds. Thus to be taken with a grain of salt ...

Such pattern could not be seen at Bugey-3 (extended core & 14 m baselin

³⁷Ar Neutrino Generator Experiment

- A strong 1 Mci v source in the middle of a large LS detector
- Elastic scattering on electrons (few 10000 evts, 150 days, >250 keV)
- A good resolution in position (15cm) Low Backgrounds

