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4DSM/Irfu/SPP, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex,France
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ABSTRACT

We explore the cosmological constraints expected from widearea XMM-type cluster sur-
veys covering 50-200 deg2, under realistic observing conditions. We perform a Fishermatrix
analysis based on cluster number counts in combination withestimates of the2-point cluster
correlation function. The effect of the survey design is implemented through an observation-
ally well tested cluster selection function. Special attention is given to the modelling of the
shot noise and sample variance, which we estimate by applying our selection function to nu-
merically simulated surveys. We then infer the constraintson the equation of state of the dark
energy considering various survey configurations. We quantitatively investigate the respective
impact of the cluster mass measurements, of the correlationfunction and of the1 < z < 2

cluster population. We show that, with some 20 Ms XMM observing time, it is possible to
constrain the dark energy parameters at a level which is comparable to that expected from the
next generation of cosmic probes. Such a survey has also the power to provide unique insights
into the physics of high redshift clusters and AGN properties.

Key words: cosmology: observations - cosmology: theory - clusters: general - cosmological
parameters

1 INTRODUCTION

The statical properties of galaxy clusters provide independent cos-
mological information, complementary to that inferred from other
observations such as measurements of the Cosmic Microwave
Background (CMB), Supernova Type Ia (SN Ia), Baryon Acoustic
Oscillations (BAO) and weak lensing (WL) data. Clusters arethe
largest virialized objects (dark matter halos) in the universe with
mass scales corresponding to overdensities which enter in the non-
linear phase of gravitational collapse between redshifts0 < z < 3.
Consequently, their abundance and spatial distribution can poten-
tially probe both the cosmic expansion history as well as thegrowth
of cosmic structures. Theoretical considerations such as the predic-
tion of the halo mass function based on semi-analytical approaches
(Press & Schechter 1974; Bond et al. 1991) and N-body simula-
tions (see e.g. Sheth & Tormen 1999) have suggested that cluster
statistics is particularly sensitive to the normalisationof the mat-
ter power spectrumσ8 (the root-mean-square of linear fluctuations
within a sphere of8h−1 Mpc radius) and the total cosmic matter
densityΩm. These observational aspects have given a strong in-
centive to the use of clusters as cosmic probes.

Over the past decades cluster observations have greatly
evolved. After the pioneering studies of the Einstein Medium
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Sensitivity Survey (Gioia et al. 1990), the Rosat All-sky survey
(RASS) and deep ROSAT pointed observations have provided an
invaluable reservoir of clusters out to redshift∼ 1. These mea-
surements enabled the first determinations ofσ8 andΩm based on
cluster number counts alone (see Evrard 1989; Oukbir & Blanchard
1992; White et al. 1993; Viana & Liddle 1996; Eke et al. 1998;
Henry 1997, 2000; Borgani et al. 2001; Vikhlinin et al. 2003;
Allen et al. 2003) and in combination with measurements of the lo-
cal correlation function from RASS (Schuecker et al. 2003).Sim-
ilarly the Sloan Digitised Sky Survey cluster catalogue offered
the first determination using an optical dataset (e.g. Bahcall et al.
2003). Quite remarkably these measurements have always con-
sistently pointed out to a low matter density universe, in agree-
ment with results from galaxy survey data (Percival et al. 2001;
Tegmark et al. 2004) and CMB observations (De Bernardis et al.
2000; Spergel et al. 2003). With the launch of XMM and Chan-
dra a decade ago, a new era has begun: deep pointed observations
of large cluster samples, mainly extracted from the ROSAT cat-
alogues, have provided detailed insights into baryonic physics of
clusters and their morphology. This has resulted in a tremendous
burst in the modeling of the cluster properties as well as in the
determination of their mass. These advancements have led toim-
proved constraints onσ8 andΩm, as obtained for example using the
temperature function of local bright clusters (Henry et al.2009).
From the point of view of large area surveys, the XMM-LSS sur-
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vey (Pierre et al. 2004) covering some 11 deg2 performed pioneer-
ing cluster detection work, assembling a complete sample ofXMM
clusters at a sensitivity of∼ 10−14 erg cm−2 s−1 in the [0.5-2]
keV band. Moreover, it provided detailed insights about theimpact
of selection effects on cluster evolutionary studies (Pacaud et al.
2007).

The discovery of dark energy has generated a revived interest
in the use of cluster statistics as an alternative test for probing the
nature of this exotic component. Dark energy can directly affect the
cluster number counts by modifying the growth rate of structures
as well as the size of the cosmological volume probed at a given
redshift (Wang & Steinhardt 1998; Haiman, Mohr & Holder 2001;
Huterer & Turner 2001). Several works have attempted to measure
the dark energy equation of state using cluster data in combina-
tion with other probes (Henry 2004; Mantz 2008; Vikhlinin etal.
2009; Allen et al. 2008; Rozo et al. 2009). However statistical and
systematic uncertainties, as well as the presence of degeneracy be-
tween cosmological parameters remain the major limitations to ac-
curately test dark energy with current data.

From an observational point of view, the main cosmological
dependent quantities are: the redshift evolution of the cluster num-
ber counts (dn/dz) or ideally the evolution of the cluster mass
function (dn/dM/dz), the spatial distribution of clusters (e.g. the
two-point correlation function,ξ), the cluster temperature function,
the gas mass fraction in clusters as well as various scaling laws de-
scribing the evolution of cluster structural properties. There are two
key practical issues that such studies have to face: firstly the abil-
ity to assemble well characterised cluster samples, and secondly
the need for well understood mass-observable relations, since for a
given cosmology the cluster mass is the only independent variable
entering the theory. Mass estimates can be inferred from a vari-
ety of methods: optical richness, galaxy velocity dispersion, X-ray
luminosity or temperature, S-Z decrement, weak lensing signal or
from more elaborated proxies such asTX × Mgas described in
(Kravtsov et al. 2006); if X-ray temperature and gas densitypro-
files are available, masses can be calculated under the hypothesis
of hydrostatic equilibrium.

Depending on the number of cosmological parameters that
one aims at constraining and the required accuracy, the minimum
size of useful cluster samples ranges from 50-100 objects for con-
strainingσ8 andΩm only, to several hundreds or even several thou-
sands (if little information is available on masses) for constraining
the dark energy parameters.

Since clusters constrain regions of the cosmological pa-
rameter space which are complementary to that probed by
other tests such as SN Ia, CMB, BAO and WL data (see e.g.
Huterer & Turner 2001), considerable efforts have been devoted,
both theoretically and observationally, to characterize the use of
clusters in the near future. Forecasts of the dark energy parameter
uncertainties from future optical, X-ray and S-Z surveys have been
the subject of several analysis (Weller, Battye & Kneissl 2002;
Hu & Kravtsov 2003; Majumdar & Mohr 2003, 2004; Wang et al.
2004; Wu, Rozo & Wechsler 2008). These studies, generally
focusing on surveys covering a few 1 000 deg2, have shown that
precision cosmology in the context of cluster surveys is certainly
possible in the near future. Subsequently, there has been a growing
interest in evaluating the impact of systematic uncertainties of
such cluster surveys. For instance, one can mention the sensitivity
of the dark energy constraints to halo modelling uncertainties
(Cunha & Evrard 2009) or to the mass accuracy of given cluster
sub-samples such as to optimise the follow-up strategy (Wu et al.

2010).

While these dark energy prospective studies pertain to upcom-
ing or future instrumentation, we examine here the potential of
XMM, whose characteristics and capabilities are now very well es-
tablished. In fact, with its outstanding collecting area (∼ 2000 cm2

on axis at 1 keV), wide spectral range ([0.1-10] keV), good spa-
tial (∼ 6 arcsec on axis) and spectral (5-10% at 1 keV) resolution,
XMM appears to be the best suited, currently available, X-ray ob-
servatory to undertake a large cluster survey. As an example, with
10 ks exposures, XMM reaches a sensitivity which is about 1000
times greater than RASS, i.e.5 × 10−15erg cm−2 s−1 in [0.5-2]
keV for point sources. Basically, XMM has the power to unam-
biguously resolve any cluster out to redshift of 2 (2x150 kpc= 35
arcsec) provided that at least some100 photons are collected.

In this paper, we forecast the dark energy parameter errors for
an XMM cluster survey of the order of 100 deg2. Using results from
accurate survey simulations and precise model prediction,we esti-
mate the dark energy parameter errors for different survey configu-
rations. We find that the expected parameter constraints arenot only
complementary to those of other cosmological probes, but competi-
tive with respect to forecasted errors for the next generation of dark
energy dedicated experiments.

Compared with other cluster surveys, X-ray observations
have an indisputable advantage, since cluster X-ray properties
can be predictedab initio for a given cosmological model, with
observational input(e.g. mass-observable relations) being easily
implementable. In contrast, ground-based large optical cluster
surveys (e.g. SDSS Max BCG catalogue, Koester et al. 2007),
though may appear much more attractive because of their lower
cost, still requiread hoc prescriptions to evaluate the cluster
selection function with cosmological numerical simulations. A
procedure that usually relies on the optical richness as defined
by the galaxy distribution. We want to stress that computinga
cluster survey selection function in the era of precision cosmology
requires a self-consistent modeling of the selection function itself.
We will show here that this plays a critical role in the interpretation
of the cluster number counts. It is also worth mentioning that,
after 40 years of experience, X-ray cluster surveys are still much
ahead of S-Z surveys both in terms of detection rates and as tothe
evaluation of the selection function. In the following we shall refer
to the discussed survey as the XXL survey.

The paper is organised as follows. In Section 2 we introduce
the basic equations for the cluster survey observables, namely the
cluster number counts and the2-point correlation function. In Sec-
tion 3 we describe the survey configurations and selection func-
tions, while in Section 4 using numerical simulations we estimate
the expected experimental survey uncertainties. In Section 5 we de-
scribe the Fisher matrix calculation performed to infer theexpected
cosmological parameter constraints, and discuss the results in Sec-
tion 6. Finally we present our summary and conclusions in Sec-
tion 7. Throughout the paper, we consider theΛCDM cosmology
with the parameters determined by WMAP-5 (Dunkley et al. 2009)
as our fiducial cosmological model.

2 CLUSTER SURVEY OBSERVABLES

The number of clusters as function of redshift is given by

dn

dz
= ∆Ω

d2V

dΩdz
(z)

∫ ∞

0

Fs(M, z)
dn(M, z)

d logM
d logM, (1)
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where∆Ω is the survey solid angle,d2V/dΩdz is the cosmological
volume factor,Fs(M, z) is the redshift dependent survey selection
function anddn/d logM is the comoving density of halos of mass
M .

The volume factor in a flat Friedmann-Robertson-Walker
space-time reads as

d2V

dΩdz
=

c

H0

(1 + z)2d2a(z)

E(z)
(2)

with c is the speed of light,H0 the Hubble constant,
and

E(z) = [Ωm(1 + z)3 + Ωr(1 + z)4 + ΩDEIDE(z)], (3)

whereΩm,Ωr,ΩDE are the present matter, radiation and dark
energy densities in units of the critical density respectively and
da(z) is the angular diameter distance. The functionIDE(z) de-
pends on the model of dark energy, we consider three scenarios:
1) cosmological constantΛ, with IΛ(z) = 1; 2) dark energy
fluid characterized by a constant equation of statew for which
IDE(z) = (1 + z)3(1+w); 3) time evolving dark energy equation
of state parametrized in the formwDE(z) = w0 + waz/(1 + z)
(Chevallier & Polarski 2001; Linder 2003) for whichIDE(z) =
(1 + z)3(1+w0+wa) exp [−3waz/(1 + z)].

Cluster DE studies make various assumptions as to the selec-
tion function. It can be defined by a simple mass limit, depending or
not on redshift and cosmology; the limit is supposed to be step-like
or to allow for a possible dispersion and for some smooth func-
tion across the threshold (e.g. Lima & Hu 2005; Hu & Cohn 2006;
Albrecht et al. 2006; Basilakos et al. 2010). For an X-ray survey,
Mlim(z) is determined using a mass-observable relation, for in-
stance the luminosity-mass relation. Because of this, the limiting
mass depends on empirically determined parameters (parametriz-
ing the physics of the hot gas in clusters), and the luminosity dis-
tance, i.e. on the underlying cosmological model. This is animpor-
tant point, since it implies that to properly infer cosmological con-
straints from cluster data one must take into account the cosmolog-
ical dependence of the mass thresholdMlim(z). Another relevant
aspect concerns the fact that survey design, instrumental character-
istics and imaging technique analysis, cause the cluster selection
function not to behave as a step function. A departure that can af-
fect the predicted number counts and 2-point correlation statistics
for a given cosmological model. The effect of a non-step likefunc-
tion has been studied in the literature for S-Z surveys (Holder et al.
2000; Lin & Mohr 2003) and X-ray surveys (Sahlén et al. 2009).
Here we use realistic selection functions derived from accurate sim-
ulation of the XMM-LSS survey which will be discussed in Sec-
tion 3.

The comoving density of halos of massM at redshiftz reads
as

dn(M, z)

d logM
= −

ρ̄M
M

d log σ

d logM
f(σ, z), (4)

with ρ̄M the present mean matter density,σ(M, z) the root-mean-
square fluctuation of the linear density field smoothed on a scale
R = (3M/4πρ̄M )1/3, and f(σ, z) is the multiplicity function.
Here we adopt forf(σ, z) the modelling proposed by Tinker et al.
(2008). Our working assumptions are detailed in Appendix A.
The variance of the linear fluctuation field smoothed on scaleR at
redshiftz is given by:

σ2(R, z) = A2

∫

dk

2π2
kns+2T 2(k, z)W 2(kR), (5)

whereA is a normalization constant fixed so that todayσ(R =

8h−1Mpc) = σ8, ns is the scalar spectral index,T (k, z) is the
linear matter transfer function andW (kR) is the Fourier trans-
form of the real space top-hat window function. We compute
the matter transfer function using the fitting formula provided by
Eisenstein & Hu (1998), which includes the wave pattern imprinted
by the baryon accoustic oscillations.
The2-point spatial correlation function for a cluster survey cover-
ing the redshift range[zmin, zmax] is given by

ξ(R) =

∫ zmax

zmin

d2V
dΩdz

n2(z)ξ(R, z)dz
∫ zmax

zmin

d2V
dΩdz

n2(z)dz
, (6)

where

n(z) =

∫ ∞

0

Fs(M, z)
dn(M, z)

d logM
d logM, (7)

andξ(R, z) = b2eff(z)ξlin(R, z), with ξlin(R, z) the Fourier trans-
form of the matter power spectrum at redshiftz. The evolution of
the linear bias averaged over all halos reads as (Matarrese et al.
1997)

beff(z) =
1

n(z)

∫ ∞

0

Fs(M, z)b(M,z)
dn(M, z)

d logM
d logM, (8)

whereb(M, z) is the linear bias relating dark matter halos of mass
M to the mass density fluctuation, we assume the bias model intro-
duced in Tinker et al. (2010):

b(M, z) = 1−
1 + Ab

1 + σab
+ 0.183

(

δc
σ

)1.5

+Bb

(

δc
σ

)2.4

, (9)

with δc = 1.686 the critical linear overdensity given by the spheri-
cal collapse model, and the fitting parameters given by:

Ab = 0.24y exp [−(4/y)4], (10)

ab = 0.44(y − 2), (11)

Bb = 0.019 + 0.107y + 0.19 exp [−(4/y)4], (12)

wherey = log10(∆m). Our fixed value ofδc is only exact for
an Einstein-de Sitter universe - although it hardly varies with the
cosmology. Nevertheless, we prefered to follow the convention of
Tinker et al. (2010) and fix it.

3 XXL SURVEY CHARACTERISTICS

Cluster surveys are, similarly to galaxy surveys, defined bya num-
ber of parameters such as sky coverage and geometry, depth, selec-
tion function, and redshift accuracy. On the other hand, compared
to galaxies, clusters are rare objects, a characteristic that has a sig-
nificant impact on the determination of the correlation function.
Moreover, as already mentioned in the introduction, cluster mass
accuracy plays an important role in the determination of thecos-
mological parameters. In this section, we present the generic char-
acteristics of the XXL survey, while a quantitative examination of
the various sources of uncertainty will be presented in Section 4.

3.1 Two survey designs

In this case study, we examine the merits of two possible XMM sur-
vey concepts:Survey-Awhich covers a total sky area of 50 deg2

with 40 ks XMM pointings; this configuration is assumed to al-
low mass measurements at the 10-50% level for the selected clus-
ter samples;Survey-B covers 200 deg2 with 10 ks XMM pointings
and provides a cluster mass accuracy of 50-80%. Possible survey
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configurations resulting from various splitting in sub-regions, are
summarized in Table B1 and discussed in Section 4.2.

To give an order of magnitude of the observing time necessary
to perform these surveys, one can imagine mosaics consisting of
XMM observations separated by 10 arcmin in RA and Dec, so that
9 observations are necessary to cover 1deg2. Consequently, both
surveys A and B correspond approximately to∼ 18 Ms net observ-
ing time, i.e. some 180 XMM (2-day) revolutions, allowing for 10
observations per revolution with the mosaic mode.

3.2 Modelling the cluster population as seen by XMM

Before detailing the survey selection function, we need to specify
the relation between the two basic observable quantities: the
X-ray countrate in a given band and the apparent size of the
cluster sources. These parameters need in turn to be relatedto
the properties of the cluster population as a function of mass and
redshift.

In the following, we assume the usual [0.5-2] keV range as
the working detection band, since it presents the optimal S/N, given
the cluster spectra, the background spectrum and the XMM spec-
tral response (Scharf 2002). Furthermore we assume the observed
cluster scaling laws between luminosity (L), temperature (T ) and
the mass within a radius containing an overdensity of 200 times
the critical density (M200c) as determined in the local universe
(Arnaud & Evrard 1999; Arnaud et al. 2005), and use the self-
similar prescription for their evolution. To account for the scatter
observed in cluster properties, we encapsulate the dispersion of the
M − T andL − T relations in theM − L relation, for simplic-
ity. Following the analysis by Stanek et al. (2006), who measured
σlnM|L = 0.37, we useσlnL|M ∼ 0.37× 1.59 ∼ 0.6, where1.59
is the slope of theirM − L relation. To assign the X-ray luminos-
ity we assume a log-normal distribution. These prescriptions allow
us to compute the flux, and finally the countrate as function ofthe
cluster mass and redshift. The impact of these hypotheses will be
discussed in Sec. 6 and 7.

Fluxes are estimated using the APEC thermal plasma model
assuming a fixed hydrogen column density of2.6 1020 cm−2, and
the heavy element abundance is set to 0.3 solar. Fluxes are sub-
sequently folded with the telescope and detector response (EPIC
response matrices) assuming the THIN optical blocking filter. This
allows us to predict the observed count-rates. We further assume for
aβ-profile of the gas distribution withβ=2/3 and a constant physi-
cal core radius of180 kpc, unless otherwise specified. This finally
yields the spatial distribution of the cluster counts on thedetectors.

3.3 The cluster selection function

We now turn to the description of the selection function. The
ability to select clusters upon well-defined X-ray criteriais a
key issue: as shown in Section 2, the selection function directly
enters into the modelling of the cluster number counts and spatial
correlation function.

In this prospective study, we adopt the C1/C2 selection
functions specifically determined for the XMM-LSS survey.
These have been extensively tested on the basis of XMM image
simulations (Pacaud et al. 2006) and applied to the XMM-LSS
sample (Pacaud et al. 2007). The selection basically operates in
the [extent, extent likelihood]X-ray pipeline parameter space,

Figure 1. The C1 cluster selection function derived from extensive simula-
tions: the probability of cluster detection is expressed inthe countrate (∼
flux ) - core radius plane. Aβ-model withβ = 2/3 is assumed.

whereextent is taken to be the core radius of theβ-model. The
procedure allows us the assemble samples of extended X-ray
sources which have a well-defined degree of contamination by
miss-classified point-source; these can be easily discarded a
posteriori by examining the X-ray/optical overlays. We define
two samples, C1 and C2, for which the contamination is 0 and
50% respectively (Pierre et al. 2006). This procedure, which
operates in a two-dimensional parameter space enables the con-
struction of uncontaminated cluster samples significantlylarger
than those obtained by a simple flux limit. The selection criteria
are subsequently converted into the probability of detecting a
source characterised by a given core radius and flux. The C1
selection probability function is displayed in Fig. 1. Using the
cluster model described in the previous paragraph, we derive the
limiting cluster mass detectable as function of redshift for C1 and
C2 respectively. Since the current C1/C2 selection criteria have
been defined for 10 ks XMM exposures, the resulting selection
corresponds to clusters havingM200c > 2 × 1014 M⊙, thus
relatively massive objects as it can be seen in Fig. 2. Moreover
we note thatMlim(C1) ∼ 1.5 × Mlim(C2) for z > 0.2, with
the C2 selection yielding about twice as many cluster as the C1
selection. Notice that the C1 sample is always a sub-sample of
the C2 selection. The number of collected cluster counts at the
detection limit is displayed in Fig. 3.

Practically, our cosmological analysis will be performed in
two stages. (i) In a first step, we consider the same cluster selec-
tion functions independently of the survey configuration (Aor B).
This means that for configuration A, the sample is defined from
sub-exposures of 10 ks. The main goal of the total 40 ks integra-
tion time is to reach the X-ray spectral accuracy enabling accurate
mass measurements. Further, at the full depth of 40 ks,Survey-A
enables the detection of deeper cluster samples. Consequently (ii)
in a second step, we investigate the added cosmological value from
clusters only detected in the 40 ks observations ofSurvey-A. We
thus define a C20 class, a scaled-down version of the C2 population
detected in 10 ks. Since the C2 selection function is well depicted
by a detection probability as a function of S/N, we simply derived
the C20 detection efficiency by extrapolating the results ofPacaud
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Figure 2. The limiting detectable cluster mass as a function of redshift. A
detection probability of 80% is assumed. Masses are expressed in terms of
M200c, the mass within a radius containing an overdensity 200 timethe
critical density.

Figure 3. Number counts (2 MOS + pn) collected in 40 ks (Survey-Acon-
figuration) from a C1 and C2 cluster in the [0.2-8] keV energy range, as
a function redshift. A detection probability of 80% is assumed, thus corre-
sponding to theMlim(z) of Fig. 2. The EPIC sensitivity has been averaged
over the innerr = 10 arcmin (mean vignetting of 0.69). Assuming that
half of the collected photons are used for the spectral analysis, our selection
ensures that at least 500 counts are available for temperature determination
with 40 ks XMM exposures.

et al. (2006) to 40ks, scaling up the source S/N1. The density in-
ferred for this population is the order of 30/deg2and comparable
to that inventoried in the 40ks COSMOS field by Finoguenov et al.
(2007). The characteristics of the C20 clusters are displayed on Fig.
4 and 5. The number densities of the C1, C2, C20 populations are
given in Table 1. Furthermore, we define the following sub-classes:
we refer to C2’ for C2 clusters not detected as C1 and, similarly, to
C20’ for the C20 clusters not detected as C2.

1 This method was already applied in Pacaud et al. (2007) to account for
the spatial variations of exposure time.

Table 1. Properties of the cluster samples selected for the cosmological
analysis

Selection Detected in configuration Number density (deg−2)
z < 1 z < 2

C1 A B 7.1 8.0
C2 A B 11.6 13.7
C20 A 23.2 28.2

Figure 4. Same as Fig. 2 for the C20 population

4 ESTIMATING MEASUREMENT UNCERTAINTIES

We provide in this section a detailed account of the uncertainties
pertaining to the measurements of clusters masses, clusternumber
counts and2-point correlation function as expected from the XXL
survey. These are the necessary ingredients for a realisticevaluation
of the cosmological parameter errors via a Fisher analysis.

4.1 Accuracy of the cluster mass and redshift measurements

For this study, we do not not rely on the, so far non-
observationally validated, self-calibration techniqueswhich allow
for some universal redshift-dependent mass-observable relation
(Majumdar & Mohr 2004); we discuss the relevance of this option

Figure 5. Same as Fig. 3 for the C20 population
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6 M. Pierre et al

Table 2. Adopted mass precision for each individual cluster as a function
of XMM exposure time. The numbers are the 1-σ errors onln(M). The
* indicates that this sub-population does not provide mass information for
the Fisher analysis. Last line gives the assumed precision on the luminosity
measurements.

Selection Adopted mass accuracy
Optimistic view Pessimistic view
10 ks 40 ks 10 ks 40 ks

C1 0.5 0.1 0.8 0.5
C2’ 0.8 0.5 * 0.8
C20’ not detected 0.8 not detected *

σlnLobs
negligible 0.2

in Sec. 7. We rather attribute to each cluster, a mass accuracy as
a function of its X-ray flux. The limiting collected counts for the
three cluster populations as indicated by Fig. 3 and 5, allowus to
estimate the mass accuracy reachable for each selection. Wecon-
sider a pessimistic and an optimistic situation and furtherset a limit
on the precision of the observed luminosities. These working hy-
potheses are listed in Table 2. It is not the purpose of the present
article to discuss in detail how such mass accuracy will be obtained,
but one can foresee a set of realistic observations leading to the de-
sired precision. For instance, configuration B is similar tothe well
studied XMM-LSS design, i.e. a mosaic of 10 ks exposures, which
allowed mass measurements better than 50% for the C1 popula-
tion, under the assumption of hydrostatic equilibrium (Pacaud et al.
2007). Improved cluster mass accuracy will be attained withthe ad-
dition of weak lensing and Sunyaev-Zel’dovich observations (e.g.
Mahdavi et al. (2007)). The use of several X-ray mass proxiessuch
as theYX = T × Mgas parameter can also greatly enhance the
precision of the mass estimates (Vikhlinin et al. 2009).

Experience with the Canada France Hawaii Telescope Legacy
Survey (CFHTLS2) showed that cluster photometric redshifts can
be obtained for the C1 and most of the C2 clusters at an accuracy
of ∼ 0.01−0.02 from a 5-band survey in the optical (Mazure et al.
2007). Further, with the up-coming generation of wide-fieldspec-
troscopy instruments (e.g. refurbished VIMOS and forthcoming
KMOS at the ESO Very Large Telescope) gathering redshifts of
clusters with a density of∼ 10 − 50/deg2 over an area of 100
deg2 will be easily achievable within the next decade.

4.2 Statistical significance ofdn/dz and ξ

Evaluating the impact of the survey size on the statistical sig-
nificance ofdn/dz and ξ from cluster surveys deserve special
attention. Because clusters are rare objects, the relativeeffect of
shot noise, sample variance and edge effects as function of the
survey depth and geometry are quite different from that of galaxy
or weak lensing surveys. More precisely, if splitting the survey
in several sub-regions (a strategy favoured by practical observ-
ing considerations), we need to estimate the trade-off between
averaging the sample variance and the loss of S/N in the 2-pt
correlation function at large distances. In principle, it is possible
to analytically calculate the sample variance and the shot noise for
dn/dz andξ as a function of cosmology for a given flux limited or
volume limited survey (e.g. Hu & Kravtsov 2003). Having herea

2 http://www.cfht.hawaii.edu/Science/CFHLS/

well defined selection functionMlim(z) we perform an “in situ”
and global estimate using numerically simulated cluster samples.
The corresponding calculations are detailed in Appendix B

5 FISHER MATRIX ANALYSIS

We perform a Fisher matrix analysis to quantitatively estimate
the cosmological information that can be extracted from thetwo
XMM-survey configurations (A and B).

5.1 Method

Here we briefly sketch the basic principle of the Fisher matrix
approach, interested readers may find more exaustive discussions
on its cosmological applications in (Tegmark, Taylor & Heavens
1997; Eisenstein, Hu & Tegmark 1999).

Let us consider a set of measurementsDi = {D1, ..., DN}
(for simplicity let us assume them to be uncorrelated), fromwhich
we want to derive constraints on a set of parametersθµ =
{θ1, ..., θM} in given modelM. We firstly evaluate the likeli-
hood function,L(Di|θµ,M), and assuming a prior probability
distribution for the model parameters,P (θµ|M), we construct
using Bayes’ theorem the posterior probability, i.e. the probabil-
ity of the parameters given the observed data,P (θµ|Di,M) ∝
L(Di|θµ,M)P (θµ|M). The posterior contain all statistical infor-
mation from which we derive the “confidence” intervals on thepa-
rametersθµ. Now, let us indicate withOi(θµ) the model prediction
of the observable to be confronted with the dataDi, and let beσi

the experimental uncertainties. Assuming Gaussian distributed er-
rors we can write the log-likelihood as

logL = −
χ2

2
=

1

2

N
∑

i=1

[Oi(θµ)−Di]
2

σ2
i

. (13)

If θ̂µ are the model parameter values which maximize the like-
lihood, then we can expand Eq. (13) to second order inδθµ =
θµ − θ̂µ and obtain

log

(

L

Lmax

)

= −
1

4

M
∑

µ,ν=1

(

∂2χ2

∂θµ∂θν

)

δθµδθν , (14)

where

Fµν ≡
∂2χ2

∂θµ∂θν
=

N
∑

i=1

1

σ2
i

∂Oi

∂θµ

∂Oi

∂θν
, (15)

is the Fisher matrix3. The parameter uncertainties as well as their
mutual correlations are encoded in the covariance matrix,Cµν =
F−1
µν , where the1σ model parameter errors are simply the square-

root of the diagonal elements,σθµ =
√

Cµµ. These are the
marginalized errors, in the sense that if we consider a specific pa-
rameter, e.g.θ1, then the uncertaintyσθ1 obtained by inverting the
full Fisher matrix is equivalent to that obtained by integrating the
likelihood function over theM−1 parameters, thus accounting for
all possible parameter correlations. External priors on a given pa-
rameter can be easily implemented, e.g. suppose we want to include
aσθ3 = 0.01 prior on the parameterθ3, in such a case it is sufficient

3 although we have assumed a gaussian likelihood to derive this expres-
sion, it is worth noting that the Fisher matrix has exacly thesame shape for
Poisson statistics.
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to add to Eq. (15) a matrixPµν whose only non-vanishing element
is P33 = 1/σ2

θ3
. Similarly information from other datasets can be

easily implemented by adding the corresponding Fisher matrices.
Using Eq. (15) greatly simplify the estimation of the cos-

mological parameter uncertainties for a given experiment.Then
forecasting parameter errors reduces to knowning the expected
experimental/observational uncertainties (σi), assuming a fiducial
cosmology (̂θµ) and computing the Fisher matrix by evaluating
the derivative of the observable at the fiducial parameter values
(∂O/∂θµ|θ̂µ ). The inferred errors will necessarely depend on the
fiducial cosmology assumed; this is the case even if one runs a
full numerical likelihood analysis over a set of randomly gener-
ated data. Henceforth the results of this type of analysis should
not be used for estimating the performance of experiments in
distinguishing between different models. We refer the reader to
(Mukherjee et al. 2006) for a discussion on the limitation ofthis
approach in model selection problems and the solution in thecon-
text of Bayesian statistics.

We evaluate the derivatives of the observable with the respect
to the model parameters using the five-point stencil approximation:

∂O

∂θµ
≈

2

3

O(θ̂µ + δθµ)−O(θ̂µ − δθµ)

δθµ

+
O(θ̂µ − 2δθµ)−O(θ̂µ + 2δθµ)

12δθµ
(16)

with stepsδθµ of order5% on the fiducial parameter value.
Our survey observables consist of the cluster number counts

dn/dz given by Eq. (1) in redshift bins of size∆z = 0.1 and the
two-point spatial correlation functionξ(R) given by Eq. (6). For
the cluster counts we consider detections in10 or20 equally spaced
redshift bins in the range0 < z < 1 or 0 < z < 2, while for the
correlation function we consider the10 < R (h−1Mpc) < 40
scales. For each selection function we derive the expected survey
uncertaintiesσi on dn/dz and ξ using theS/N calculated from
the simulations, described in Appendix B. These account forthe
integrated effect of the Poisson noise and sample variance.

5.2 Fiducial cosmology and model parameters

We assume as fiducial cosmology a flatΛCDM model best-fitting
the WMAP-5 years data (Dunkley et al. 2009), specified by the
following parameter values:Ωmh2 = 0.1326, Ωbh

2 = 0.0227,
h = 0.719, ns = 0.963, σ8 = 0.796, τ = 0.087. For this model
the expected number of clusters as function of redshift forSurvey-
A (50deg2) is shown in Fig. 6 for the three selection functions.
Fig. 7 displays the2-point cluster correlation function. Here it is
worth noticing that while the three functions have the same shape,
the C2 curve has a slightly lower amplitude than C1, and higher
than C20, consistently with the mass ranges pertaining to these
samples (less massive objects are less clustered).

We derive constraints on the following set of parameters:
Ωm,Ωb, h, ns, σ8 (ΛCDM), including a varying equation of state
w(z) = w0 + waz/(1 + z) with parametersw0 and wa

(Chevallier & Polarski 2001; Linder 2003) forw(z)CDM models.

5.3 Modelling cluster mass uncertainties in the Fisher
analysis

For the Fisher analysis, our aim is to reproduce as much as pos-
sible the observational procedure and the subsequent cosmologi-
cal analysis. To summarise the steps: (1) clusters are selected in

Figure 6. Redshift distribution of the C1, C2 and C20 populations for the
ΛCDM fiducial cosmology in theSurvey-Aconfiguration.

Figure 7. Two-point correlation function of the C1, C2 and C20 popula-
tions.

the XMM images according to a two-dimensional parameter space;
(2) correspondingdn/dz andξ are derived; (3) each cluster mass
is measured at a given accuracy - the mass measurements be-
ing cosmology-dependent; (4) for a given cosmology, we compute
dn/dz andξ, the observational selection function being yet trans-
lated in the [M,z] space following scaling laws - this is the point
where the mass accuracy enters; (5) as already specified, we en-
capsulate all uncertainties on the scaling laws in the M-L relation
for the cosmological modelling; (6) the set of cosmologicalparam-
eters giving best agreement both ondn/dz and ξ, describes the
most likely cosmological model.
Practically, in the Fisher analysis, we assume that the slope and the
dispersion of the M-L relation are known and do not depend on
redshift. We let, however, the normalisation of the relation free as
a scale factorα(z). We take one scale factor for each redshift bin
(∆(z) = 0.1), hence have 10 or 20 nuisance parameters depending
on the survey depth. The priors for the analysis are derived from
the accuracy assumed for the mass measurements of the individual
clusters (Table 2); they are displayed on Fig. 8 for the optimistic
and pessimistic cases.
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Figure 8. Priors for the Fisher analysis on the normalisation of the M-L
relation as a function of redshift, for the optimistic and pessimistic cases for
theSurvey-Aconfiguration

5.4 Planck Fisher Matrix

To estimate the full cosmological yield of an XXL-survey, we
perform a joint analysis of the cluster survey with the primary
CMB power spectra (temperature-TT, polarization-EE and cross-
correlation TE) soon to be measured by the Planck satellite.

A precise assessment of the Planck capabilities would require
to model in detail the map making and component separation pro-
cesses. To circumvent this problem, we make the simplifyingas-
sumption that the sky images in the three bands were the CMB
emission dominates (100, 143 and 217 GHz) are readily usableto
measure the power spectra, while the other bands permit a perfect
characterization of the other contaminating signals.

Following (Zaldarriaga & Seljak 2007), the noise covariance
matrix for eachl (including the cosmic variance) is then given by:

Table 3.Planck survey parameters.

Planck

Frequency (GHz) 100 143 217
φc (arcmin) 10.0 7.1 5.0
σc,T (µK) 6.8 6.0 13.1
σc,E (µK) 10.9 11.4 26.7

Cov(CTT
l , CTT

l ) =
2

(2l + 1)fsky
(CTT

l +N−2
l,TT ),

Cov(CEE
l , CEE

l ) =
2

(2l + 1)fsky
(CEE

l +N−2
l,EE),

Cov(CTE
l , CTE

l ) =
1

(2l + 1)fsky
[C2

l,TE

+ (CTT
l +N−2

l,TT )(C
EE
l +N−2

l,EE)],

Cov(CEE
l , CTE

l ) =
2

(2l + 1)fsky
CTE

l (CEE
l +N−2

l,EE)

Cov(CTT
l , CTE

l ) =
2

(2l + 1)fsky
CTE

l (CTT
l +N−2

l,TT )

Cov(CTT
l , CEE

l ) =
2

(2l + 1)fsky
C2

l,TE ,

(17)

where

N2
l,X =

∑

c

(σc,Xφc)
−2e−l(l+1)φ2

c/(8 log 2), (18)

is the contribution of the instrumental noise to the uncertainty on
the spectrumX, which results from averaging over the different
frequency channelsc, with sensitivtyσc,X and angular bean-width
φc. In Table 3, we quote the assumed experimental characteristics
for the Planck satellite, which we obtained from the missiondefi-
nition document (the so-called ‘Bluebook’)4. We adopt a fractional
sky coverage offsky = 0.8 to account for the masking of the galac-
tic plane.

The full CMB Fisher matrix for a set of cosmological param-
eters(θµ) is straightforwardly obtained as:

FCMB
µν =

∑

l

∑

X,Y

∂CX
l

∂θµ
Cov−1(CX

l , CY
l )

∂CY
l

∂θν
, (19)

whereX,Y = TT,EE,TE and we sum overl values in the range
[1,2000].

In practice, we compute the power spectra using the CMB-
FAST code and some care has to be taken in order to correctly ac-
count for the intrinsic CMB degeneracies. Indeed, the shapeof the
matter power spectrum at the recombination epoch is only a func-
tion of the primordial power spectrum and the physical densities
(ρm, ρb, ρr) in the early universe. Further, while the relative ampli-
tude of the CMB peaks depend on the details of the matter/photon
densities, the physical scale of the baryon oscillation pattern is sim-
ply proportional to the sound horizon at recombination (rs). As a
consequence, the CMB observables only depend onh, ΩDE, w0

4 available from the ESA web pages of the Planck mission:
http://www.rssd.esa.int/index.php?project=Planck
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Table 4.Fisher matrix errors on the cosmological parameters from Planck.

10% prior onh Flat universe

TT TT+TE+EE TT TT+TE+EE

h 0.0719 0.0719 0.0030 0.0017
Ωb 0.0088 0.0088 0.0007 0.0005
Ωm 0.0514 0.0513 0.0019 0.0010
ΩΛ 0.0880 0.0879 - -
σ8 0.0536 0.0361 0.0400 0.0067
ns 0.0070 0.0040 0.0070 0.0040
τ 0.0532 0.0040 0.0532 0.0040

andwa through the so-called CMB acoustic scale:

la = π(1 + zdec)
da(zdec)

rs
(20)

wherezdec is the redshift of decoupling andda the angular diam-
eter distance. [the factor(1 + zdec) comes from the fact thatrs
is measured in the comoving frame]. This exact degeneracy ofthe
CMB, known as the geometric degeneracy, prevents CMB experi-
ment from giving any constraints on the dark energy without adding
other observables. Numerical estimates of CMB fisher matrices,
based on codes such as CMBFAST, fails at accurately reproduc-
ing this degeneracy (see e.g. Kosowsky et al. (2002)) and tend to
give unrealistic results solely because of numerical uncertainties.
We therefore follow the approach of the DETF report and Rassat et
al. (2009) to estimate the fisher matrix over a ‘natural’ set of cos-
mological parameters (Ωmh2, Ωbh

2, la, ∆2
R, ns andτ ). We then

marginalize overτ and convert the Fisher matrix into our prefered
parameter set using the jacobian matrix of the transformation.
In Table 4 we quote the resulting constraints for Planck alone with
or without the use of polarization. Because of the geometrical de-
generacy, only constraints on the simplestΛCMD models can be
obtained, however we have also estimated the full Fisher Matrix for
the w(z)CDM model, since it is necessary to derive the combined
constraints from the Planck CMB spectra with the cluster observ-
ables. This is then simply achieved by adding Eq. (19) to Eq. (15).

6 PREDICTED CONSTRAINTS ON THE
COSMOLOGICAL PARAMETERS

Results from the Fisher analysis for the equation of state ofthe
dark energy are presented in Tables 5 and 6 for the A2 and B0
survey configurations. We display the ultimate accuracy which
can be reached for the most general general, non flat, w(z)CDM
cosmology. We outline below the main outcome of the study.
(1) The comparison between the C1 and C2 populations (limited
to 0 < z < 1) shows an improvement onw0, wa of about 20,
10% for the C2 sample. The C2 clusters are roughly twice as
numerous as the C1, but less massive in average so that their
impact on cosmological measurements is expected to be indeed
relatively smaller. (2) Focussing on theSurvey-A configuration,
the C20 clusters are four times more numerous than the C1 and
some 250 of them are between1 < z < 2. The net effect is an
improvement better than a factor of two onwa andw0. (3) The
comparison between the B and A survey designs for the C2 and
C20 populations respectively shows comparable constraints when
dn/dz, ξ and Planck are combined (optimistic and pessimistic
cases). However, the total number of clusters involved is 2320 for

B compared to only 1400 for A. This stresses the efficiency of the
1 < z < 2 clusters for characterising the dark energy (see also
Baldi & Pettorino (2010)). (4) Table 7 lists the constraintsexpected
after the first scan of survey A, thus at 1/4 of its nominal depth
(C2 population only and measured in pessimistic conditions): the
accuracy is about half of that at full depth, hence along the line of
thesignal ∝

√

(time) ratio.
We have further investigated the role of various hypothesesthat
were made in the prescription of the Fisher analysis. (5) This study
is amongst the first ones to qualitatively consider the addedvalue
of the cluster spatial distribution in the determination ofthe DE pa-
rameters (see also Majumdar & Mohr 2004; Hütsi 2010). This is a
remarkable results given that the regions considered forSurvey-A2
are only 3.5 deg aside, but should not be considered as unexpected.
In fact ξ is particularly sensitive toΩm andσ8, thus it strongly
contributes to breaking model parameter degeneracy. Furthermore
the mass dependence of the halo clustering is opposite to that of
the number counts. On the one hand, less massive halos are less
clustered than the massive ones; on the other hand, the former are
more numerous. Thus a combined measurement allows for a better
mass determination of the cluster sample and directly improves
the parameter inference. This is a clear advantage of dedicated
cluster surveys over serendiptous searches. (6) Introducing a prior
of 10% on the Hubble constant does not significantly improvewa,
w0 for the finaldn/dz + ξ + Planck settings but some 40, 20%
better constraints are predicted when onlydn/dz + Planck are
considered. (7) We have examined the case where the M-L relation
is perfectly known at all redshifts: we observe an improvement
of less than 15% both onw0 and wa for the C20 population
with the optimistic assumption. (8) We have further investigated
what happens if the dispersion in the M-L relation (which canbe
interpreted as the dispersion in any mass-observable relation) is
decreased from 0.6 to 0.1, re-computing the priors accordingly.
In this case, the improvement is∼ 10%; assuming in addition
that the M-L relation is perfectly known leads to a negligible
improvement. (9) We have assumed that the cluster luminosities
evolve self-similarly, which tends to be supported by the current
observations (Maughan et al. 2008). Other scaling laws can be
assumed like, for instance, no evolution which implies thatdistant
clusters are less-luminous than in the self-similar hypothesis:
this would decrease the number of detected high-z clusters.The
impact of the cluster evolution hypothesis can be bracketedby the
extreme case were noz > 1 clusters are detected; in this case, the
optimistic constraints onw0, wa would change from 0.40, 1.29
to 0.51, 1.67. (10) Finally, assuming a flat w(z)CDM cosmology
improves the determination ofw0 and wa by about 5%. For a
flat wCDM, we predict a precision of 0.040 forw with the C20
optimistic configuration (Survey-A) .

A general summary of the expected dark energy parameter un-
certainties from future cluster surveys has been presentedin the
Dark Energy Task Force (DETF) document (Albrecht et al. 2006).
This review study classifies the projected performances of cluster
surveys into stage II, III and IV. Stage II corresponds to surveys
of 200 deg2 with a mean mass threshold of1014h−1M⊙ detect-
ing approximately4000 − 5000 clusters, and for which the ex-
pected errors on the dark energy parameters areσw0

= 1.1 and
σwa = 3.2. Stage III consists of surveys covering4000 deg2 with a
mean threshold of1014.2h−1M⊙ detecting∼ 30, 000 clusters. Fi-
nally Stage IV corresponds to surveys covering20, 000 deg2 with
a mass threshold of1014.4h−1M⊙ and providing also30, 000.The
DETF predictions for stage III and IV are recalled in Table 8;they
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are comparable for both stages as each of them appear to be domi-
nated by systematics.
These projections have been derived under a number of assump-
tions which differ from ours. Firstly, the halo mass function has
been assumed in the fitting form provided by Jenkins et al. (2001),
Second, the settings of the Fisher analysis are also slightly differ-
ent: while both studies involve the same number of parameters,
the analysis presented by Albrecht et al. (2006) assumes a prior of
∼ 10% on the Hubble constant - we do not (they also consider the
δζ parameter (k3Pζ/2π

2) in place ofσ8). Conversely, they use only
number counts - we consider, in addition, the correlation function.
The DETF adopt a constant mass selection, and masses are sup-
posedly determined through “self-calibration”, i.e. a functional de-
pendence between flux (or richness), mass and redshift is assumed
(see Majumdar & Mohr 2004). The DETF has further assumed a
root mean square error in the mean/variance of mass per redshift
bin ranging from2−14% for stage III and1.6−11% for stage IV.
Despite these differences, it is worth comparing the performances
advocated by the DETF with our predictions. A quick glance at
Tables 5 and 8 immediately reveals that the XXL pessimistic pre-
dictions outperform the DETF pessimistic ones and that XXL op-
timistic lays between the optimistic and pessimistic DETF calcula-
tions. This is a somewhat unexpected result given the ratio of the
surveyed areas (a factor of 80-400) but is readily understandable
as the effect of the mass accuracy and of the presence ofz > 1
clusters, a direct consequence of the XMM deep exposures. We
further compare the virtue of the XXL cluster population with the
other cosmological probes examined by the DETF, namely : baryon
acoustic oscillations, supernovae and weak lensing measurements.
The comparisons are displayed on Fig. 9.

7 DISCUSSION AND CONCLUSIONS

We have shown through a Fisher matrix calculation that the XXL
Survey-A (andB) can provide measurements of the cluster num-
ber counts and2-point correlation function of sufficient precision
to provide useful constraints on the equation of state of thedark
energy. In our analysis, special care has been devoted to there-
alistic modelling of the statistical uncertainties (sample variance
and shot noise) due to the small size of the surveyed area (50
or 200 deg2) and of the cluster mass measurements. Our experi-
ence gained with XMM has allowed us to consider realistic clus-
ter selection functions and to apply priors on individual cluster
mass measurements. We have favoured this approach against the
use of ‘self-calibration’ techniques, intended to by-passthe cur-
rent ignorance about the evolution of the cluster scaling law by
simultaneously fitting its functional form with cosmology.After
all, self-calibration has not been observationally testedyet, and as
shown by Sahlén et al. (2009), it is hampered by the fact thatit
introduces a latent degeneracy between the dispersion in the scal-
ing laws and their redshift evolution. Moreover, it has beenpointed
out by Pacaud et al. (2007) that, in the case of X-ray flux measure-
ments, emission lines produce discontinuities which cannot be sim-
ply accounted for by the parametrized functional dependence. On
the basis of these considerations we have deliberately assumed to
individually measure cluster masses, and improve the X-raymass
derivation by means of S-Z and weak lensing observations. This is
a reasonable working assumption given the relatively limited size
of the surveyed area and the results will form the ideal basisfor in-
vestigating, a posteriori, self-calibration techniques.In the present
analysis we have let the normalisation of the scaling relation to be

free for each∆z = 0.1 redshift bins. Alternatively, taking larger
bins (e.g.∆z = 0.2) decreases the number of free parameters by a
factor of two. This would allow the introduction of e.g. two more
free parameters such as to enable the simultaneous fit of the evo-
lution of the slope and of the dispersion of the relation. These hy-
potheses will be discussed in a subsequent article (paper II, Pacaud
et al, in prep.) In this forthcoming work, we shall also compare the
relative efficiency of various cluster selection functions(such as the
those presented here and a fixed mass limit at any redshift), inves-
tigate the role of plausible evolution laws other than self-similarity,
examine the impact of the DE inhomogeneities in the halo mass
function, discuss the added value of the evolution ofξ and, espe-
cially, that of the cluster mass function (dn/dM/dz) in constrain-
ing the DE equation of state.
In any case, our analysis demonstrates that a medium deep 50
deg2 survey with XMM - a modest project compared to the DETF
stage IV requirements - is in a position to fulfil competitiveexpec-
tations in terms of cluster cosmological studies, while providing
constraints which are complementary to those expected fromother
probes. Moreover, from a practical point of view, compared to the
cluster surveys advocated by the DETF (Stage III and IV) the XXL
survey contains some 20 times less clusters, which makes thesam-
ple much more tractable.

We have shown that theSurvey-A and Survey-B configu-
rations provide equivalent constraints on the DE for a similar
amount of XMM observing time (∼ 20 Ms). Pratically, we favour
configuration A over B as, besides constraining the properties of
dark energy, it is observationally more advantageous. There are
also a number of compelling arguments as to the “legacy value” of
Survey-A, which make it more appealing. Let us review them in
some detail.
- The aimed mass accuracy (to be complemented by a joint analysis
of S-Z and weak lensing surveys), for all clusters entering the
analysis will have an unvaluable scientific potential for the study
of baryon physics. In particular, it will provide the long expected
scaling law evolution out to a redshift of∼ 1.5 and to mass
M200 ∼ 1014M⊙. XMM pointed observations cannot achieve
such an efficient determination for the simple reason that few X-ray
clusters, and only massive ones, are known atz ∼ 1. In contrast
the Survey-A configuration has the ability to detect and reliably
measure the signal from these objects in one single shot. This
will provide very usefull calibration data for other surveys (e.g.
DES, eRosita) which are expected to cover much larger areas but
at lower depth and poorer X-ray angular resolution (Predehlet al.
2006). Then the self-calibration method will be easily testable.
- The spatial distribution of X-ray AGNs, which will constitute
more than 90% of the sources of the planed survey, will be studied
on very large scales as a function of their spectral properties.
- For visibility reasons and observation programming, we favour
the splitting ofSurvey-Ain two or four sub-regions spread in right
ascension. Furthermore, the XMM observations can be scheduled
over four years, with each field being entirely covered by 10 ks
XMM observations every year. The first year scan could already
provide the full C1 + C2 cluster catalogue, hence measurements
of ξ and dn/dz and constraints on the DE to an accuracy half
of the final value. The three subsequent scans will then increase
the number of X-ray photons down to the nominal 40 ks depth,
thus providing the spectral accuracy and, finally, the cluster mass
accuracy required for the full cosmological analysis.
- Spreading the XMM observations over four years can provide
unrivalled information about AGN variability over large timescales
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Figure 9. Right: the 1-σ contours in thew0-wa plane for the various DETF probes at stage III (pessimistic assumptions) along with the XXL predictions
for the C1 and C20 populations (pessimistic case from Table 5). The contours for the DETF probes have been derived using the Fisher matrix data from the
DETFast code, including the Planck priors in the same way as for XXL. Left, same asRight for the DETF stage IV and optimistic assumptions.

as a function of the spectral properties and environment.

Finally, in addition to the important added value ofξ, we
mention a number of arguments leading to favour contiguous
surveys with respect to serendipitous cluster searches:
- Operationally it is much more efficient to perform a joint X-ray +
optical/lensing + S-Z survey than to undertake a pointed follow-up
of X-ray clusters. And obviously, a joint optical survey renders the
X-ray source identification straigthforward.
- Homogeneous wide surveys, compared to serendipitous searches,
highly simplify the derivation of the selection functions which, as
shown here, play a critical role for cosmological studies.
- Using XMM archival data would only allow the determination
of dn/dz and it is moreover important to note that the situation is
different from that of the ROSAT serendipitous searches. ROSAT
had a two-degree diameter field of view (against 30 arcmin for
XMM) and a significant fraction of the known cluster population
has been imaged by XMM5. This introduces complex biases that
cannot be removed by simply discarding the central target or
ignoring the target clusters as was routinely assumed in thepast; it
is especially serious at high redshift since only the X-ray brightest
known clusters were considered as targets.
- The proposed homogeneous survey will also enable the deter-
mination of the structure of the X-ray background on very large
scales at energies ranging from 0.1 to 10 keV. In addition, once
the cluster population is detected and the redshifts measured, their
3-D distribution will enable the identification of putativecosmic
filaments. Staking the X-ray data corresponding to the location of
many filaments then could lead to the first detection of the Warm

5 Over 1 000 cluster observations performed. Out of the some 1600 obser-
vations available with exposure time longer than 40ks (any type of targets),
about 400 useful images remain when considering only high galactic lati-
tude public observations and assuming a flaring rate of 25% (status of the
XMM archive by September 2010)

Hot Intergalactic Medium in emission (Soltan 2008).

One of the interesting outcomes of the present study is to have
quantitatively estimated the impact of the cluster-cluster correla-
tion function in dark energy studies. We leave to future studies the
possibility of measuring the evolution of the cluster mass function
dn/dM/dz rather thandn/dz with the XXL survey, as well as
the combination with the low-z REFLEX correlation functionand
the Planck cluster number counts + correlation function. Inthe fu-
ture, one can also well imagine, constraining cosmology directly
by applying the X-ray selection function on a large set of hydrody-
namical simulations - when these become achievable - and match
the properties of the resulting simulated cluster catalogues to that
of the observed XXL one. Such methods, which are already ap-
plied on the Lyα forest (Viel & Haehnelt 2006) would allow one
to totally by-pass the determination of the cluster mass-observable
relations as a function of redshift.
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Table 5.Cosmological constraints. Survey configuration A2 - 50 deg2 full depth (40 ks XMM exposures) 1-σ errors onw0 / wa

Pessimistic mass measurements Optimistic mass measurements
Selection Redshift range dn/dz + Planck dn/dz +ξ + Planck dn/dz + Planck dn/dz +ξ + Planck

C1 0 < z < 1 2.38 / 5.08 0.88 / 2.71 1.98 / 4.15 0.78 / 2.32
C2 0 < z < 1 2.00 / 4.64 0.72 / 2.36 1.70 / 3. 89 0.65 / 2.06
C20 0 < z < 2 1.19 / 2.59 0.45 / 1.46 0.87 / 1.82 0.38 / 1.18

Table 6.Cosmological constraints. Survey configuration B0 - 200 deg2 full depth (10 ks XMM exposures) 1-σ errors onw0 / wa

Pessimistic mass measurements Optimistic mass measurements
Selection Redshift range dn/dz + Planck dn/dz +ξ + Planck dn/dz + Planck dn/dz +ξ + Planck

C1 0 < z < 1 1.58 / 3.30 0.54 / 1.71 1.33 / 2.72 0.48 / 1.47
C2 0 < z < 1 1.42 / 3.29 0.47 / 1.60 1.13 / 2.52 0.40 / 1.29

Table 7.Cosmological constraints. Survey configuration A2 - 50 deg2 1/4 depth (10 ks XMM exposures) 1-σ errors onw0 / wa

Selection Redshift range dn/dz + Planck dn/dz +ξ + Planck

C2 (pessimistic) 0 < z < 1 2.00 / 4.64 0.72 / 2.36

Table 8.Cosmological constraints from clusters following the DETFsurvey designs 1-σ errors onw0 / wa

Stage Pessimistic Optimistic

III 0.70 / 2.11 0.26 / 0.77
IV 0.73 / 2.18 0.24 / 0.73

c© 0000 RAS, MNRAS000, 000–000
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APPENDIX A: ADOPTED HALO MASS FUNCTION

Early modeling of the mass function relied on semi-analytical
approaches (Press & Schechter 1974; Bond et al. 1991), however
comparison with N-body simulations showed discrepancies with
the numerically estimated function, and a simulation calibrated for-
mula was proposed by Sheth & Tormen (1999). Over the years the
increasing resolution of numerical simulations has lead tomore ac-
curate estimations of the halo mass function, and the standard of
accuracy has been set by the analysis of Jenkins et al. (2001). The
authors of this study have provided a ‘universal’ (hence applica-
ble to different cosmologies and at different redshifts) fitting for-
mula which is accurate to within20%. Recent studies have cast
doubts on the universality of the mass function. In particular the
analysis by Tinker et al. (2008) has shown important deviations in
the high mass end and at high redshift. Nonetheless the authors
have been able to provide a fitting formula accurate to< 5% at
z = 0 and to< 20% at z = 1.25, while degrading to50% only at
z = 2.5. In our analysis we assume their fitting halo mass function
parametrized in terms of the halo mass enclosed in a radius con-
taining 200 times the critical density of matter,M200c, with the
following functional form:

f(σ, z) = A

[

(σ

b

)−a

+ 1

]

e−c/σ2

, (A1)

whereA = A0(1+z)−0.14, a = a0(1+z)−0.06, b = b0(1+z)−α

andlog10 α = − [0.75/ log10 (2.67/Ωm(z))]1.2, (see Eqs. (3)-(8)
in Tinker et al. 2008). In table 2 of the same paper, values of the pa-
rametersA0, a0, b0 andc are provided for several density contrasts
∆m, defined with respect to the mean matter density. Following the
guidelines of their Appendix B, we perform spline interpolation be-
tween the individual parameter values to match our mass overden-
sity convention∆m = 200/Ωm(z) at any given z. This ensures
that the mass definition of our cosmological modelling matches the
convention used for cluster scaling relations and thus for our selec-
tion function.
It has recently been pointed out that DE leaves characteristic im-
prints on the non-linear phase of collapse of halos. These imprints
manifest in the non-linear power spectrum as well as in the halo
mass function and may yield up to 20% deviations from LCDM
predictions (Courtin et al. 2010). In paper II (Pacaud et al,in prep.)
we shall investigate how this would impact the predicted DE con-
straints.

APPENDIX B: EVALUATING THE SIGNIFICANCE OF
DN/DZ AND ξ FOR VARIOUS SURVEY
CONFIGURATIONS

We use the publicly available Pinocchio package (Monaco et al.
2002a,b; Taffoni et al. 2002) to generate 3D cluster catalogues
for a given initial density field realisation and cosmology.We
use the 2.2-beta version, that is now entirely paralleled and
available from the authors on demand. Pinocchio, while following
the procedure of N-body simulations, works in the Zel’dovich
approximation, allowing for faster computation by severalorder of
magnitude with respect to equivalent N-body simulations (in terms
of mass resolution and volume probed). Confronting the Pinocchio
realisations with the high resolution full-sky Horizon simulations
(Teyssier et al. 2009) (in the case of aΛCDM model best-fit to
WMAP-3 years data) we have checked that the Pinocchio cluster
mass function is accurate to 10%, and that the2-point correlation
function can be reliably estimated down to10h−1Mpc scale. We

Table B1.Surveys extracted from thePinocchiosimulations. Fields A0, A1,
A2 pertains to different configurations ofSurvey-Atotalling 50 deg2. Field
Z1 covers 10 000 deg2 and is used for statistical comparison.

survey configurations A0 A1 A2 Z1

Total surveyed area (deg2) 50 50 50 10 000
number of sub-fields 1 2 4 4
sub-field side (in deg) 7.07 5 3.54 50
number of independent
simulated sub-fields 190 215 230 30

observe however, a slight increase ofξ around this scale, as the
unresolved clusters tend to accumulate at this point. We illustrate
below our procedure considering the C2 selection for various
configurations totalling the 50 deg2 of Survey-A.

Using Pinocchio we generate 5 cosmic volumes with dif-
ferent random initial conditions for aΛCDM model best-fitting
WMAP-5 years data (Dunkley et al. 2009). Each volume is a box
of 3500×3500×3500 comobileMpc3 observed from the corners
providing 8 past-lightcone octant. These octants are combined,
using the periodicity of the volumes, to finally provides 5 full-sky
past-lightcones independant one from each other. The physical
position of each simulated halo is corrected for its peculiar velocity
since the correlation function is computed in redshift space. In
order to estimate halo 2-points correlation function 5 bootstrap
full-sky lightcones are generated from the data. The angular
position of each halo is randomized 10 times to artificially create
lightcones containing 10 times more halos than the originaldata.
The redshifts of the original Pinocchio simualted data as well as
the mass probability distribution function are conserved in these
“random” lightcones.
From these lightcones we extract a large number of XXL survey
realisations. We considered several survey configurations: a single
7.07 × 7.07 deg2 field, and configurations consisting of two
5 × 5 deg2 and four3.54 × 3.54 deg2 patches respectively. The
last two configurations are more likely to correspond to actual
observations since spreading patches in right ascension ensures a
more efficient observation scheduling. Also splitting the survey
into several sub-fields is usually expected to decrease the impact
of the sample variance; an effect that we quantitatively estimate
hereafter. In order to avoid large scale correlations, edges of the
extracted sub-fields are separated by at least 30 deg in RA andDec.
We also extracted survey fields covering 50x50 deg2 for statistical
comparison. The characteristics of the different survey realisations
are given in Table B1.

In each simulated sub-field, we computedn/dz andξ, for a
given selection. The2-point correlation fuction is measured using
the estimator introduced by Landy & Szalay (1993). The results are
then combined according to each of the survey configurationsil-
lustrated in Table B1; e.g. for the A2 design, individualdn/dz are
summed over the4 patches, while individualξ are averaged over
the ensemble. Then for each configuration, the resulting quantities
are averaged over all realisations. The1σ errors about the average
dn/dz andξ are computed as a function ofz andR for each of
the 4 survey configurations, including the signal-to-noiseratio. As
we will describe in Section 5 we use the estimated values of S/N to
determine the experimental uncertainties necessary for the Fisher
matrix analysis. Results are summarized in Fig. B1 and B2. Asit
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Figure B1. Signal-to-noise ratio fordn/dz as function of redshift obtained
for different realisations ofSurvey-Aand the C2 selection using Pinocchio
simulations; bin size∆z = 0.1

can be appreciated from Fig. B1, the cluster number counts turn out
to be insensitive to the sub-field splitting of the survey design, i.e. a
single7.07× 7.07 deg2 field (A1), two5× 5 deg2 sub-fields (A1)
or four 3.54 × 3.54 deg2 sub-fields (A2). The2-point correlation
function appears to be slightly dependent on the size of the sub-
fields but the impact on the S/N is negligible. The50× 50 deg2 Z1
reference realisation indicates that it is possible to reliably compute
ξ at least out to 40 Mpc/h for the A0, A1 or A2 configurations. We
note that 40 Mpc/h is slightly smaller than the comoving length en-
compassed by the A2 realisation at the survey maximum sensitivity
(3.54 deg atz = 0.3 corresponds to 53 Mpc/h scale). We sample
ξ with a scale separation> 10Mp/h because of the limited resolu-
tion of the Pinocchio simulations. Now, given the fact that cluster
virial radii are of the order 1 Mpc/h, this implies that we maybe
loosing some power on scales of∼ 5-10 Mpc/h, where mergers are
expected to occur.
The Pinocchio experiment indicates the A0, A1 and A2 configura-
tions are equivalent in terms of S/N both fordn/dz andξ. In the
paper we consider the A2 configuration, which is for observational
reason the easiest to perform, when presenting the results of the
cosmological analysis.
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Figure B2. Top: 3D averaged2-point correlation function for different
Survey-A realisations extracted from the Pinocchio simulations using the
C2 selection function. The bin size isdlogR = 0.1. Bottom: Correspond-
ing signal-to-noise ratio.
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