

Overview of the Higgs boson studies at Tevatron

Lidija Živković, LPNHE, Paris VI & VII

Experimental Seminar at IRFU CEA Saclay, 16 September 2013

Outline

- Current status
- Overview of the main search channels
- Tevatron results
 - Combined results
 - Constraints on couplings
- Spin/parity studies

Standard Model

- The Standard Model is defined by the symmetries of the Lagrangian:
 - $G_{SM} = SU(3)_C \times SU(2)_L \times U(1)_Y$
 - Interactions: strong, weak, and electromagnetic
 - carriers: gluons g, weak bosons W[±], Z, and photon
- matter particles:
 - leptons and quarks
- · and the pattern of spontaneous symmetry breaking
 - complex scalar field
 - breaks $G_{SM} = SU(3)_C \times SU(2)_L \times U(1)_Y \rightarrow SU(3)_C \times U(1)_{EM}$

The Higgs Mechanism

- · Essential ingredient of the Standard Model
 - Complex scalar field with potential
- Used to break the el. weak symmetry...

$$M_W = \frac{1}{2}vg$$
 $M_Z = \frac{1}{2}vg/\cos\theta_W = M_W/\cos\theta_W$

• ... and to generate fermion masses:

$$m_f = g_f v / \sqrt{2} \Rightarrow g_f = m_f \sqrt{2} / v$$

- Unitarity requires a Higgs boson or similar
 - cross section for WW scattering diverges like s/M_w^2
 - scalar Higgs boson cancels divergences

Bounds on mass

- SM Higgs boson mass is constrained indirectly through precision measurements
 - self-energy corrections to the W mass depend on the mass of the top quark and Higgs boson, which are both precisely measured at Tevatron
- Global SM electroweak fits provide upper limit
 - The best fit gives $m_H = 94^{+29}_{-24} GeV$
 - Limit from fit m < 152 GeV

with M_u measurement

Historical perspective

- LEP (1989 2000): m_H > 114.4 GeV@95% CL
- At hadron colliders:
- Tevatron Run II (2002-2011):
 - First post-LEP exclusion (2009)
 - First evidence of a Higgs-like particle decaying to a pair of b-quarks (July 2012)
- LHC (2009 2012):
 - Excluded wide mass range (111 122 GeV and 127 600 GeV)
 - Discovered the new Higgs-like boson mainly through $\gamma\gamma$ and ZZ decays (July 2012)

Current situation

As presented at the latest conferences

- LHC (2009 2012):
 - Since July 2012 progress in each channel
 - Observation confirmed in bosonic channel
 - ATLAS: $m_H = 125.5 \pm 0.2 \text{ (stat)} -0.6+0.5 \text{ (sys)} \text{ GeV}$
 - CMS: $m_H = 125.7 \pm 0.3 \text{ (stat)} \pm 0.3 \text{ (sys)} \text{ GeV}$

Current situation

As presented at the latest conferences

- LHC (2009 2012):
 - Fermionic evidence is still weak
 - Strong indication of $H \rightarrow \tau \tau$ at CMS
 - VH \rightarrow Vbb with full data (24 fb⁻¹) shows 2.1 s.d excess at CMS, and there is data deficit at ATLAS

Higgs properties from LHC

Properties measured so far confirm it is indeed Higgs boson

Experiments

• Ran for 25 years

- 9 in Run II at center of mass energy √s = 1.96 TeV
- Discovered top quark
- Excluded high mass range of the Higgs boson
- Achieved the most precise measurement of the W and top mass
- Stopped running on September 30th, 2011

The Tevatron

pp collisions

- Ran for 25 years
 - 9 in Run II at center of mass energy √s = 1.96 TeV
- Discovered top quark
- Excluded high mass range of the Higgs boson
- Achieved the most precise measurement of the W and top mass
- Stopped running on September 30th, 2011

The Tevatron

pp collisions

L. Ž. Higgs boson at Tevatron

CDF and DØ experiment in Run II

- Both detectors are upgraded in Run II
- New silicon micro-vertex trackers
- New tracking systems
- Upgraded muon chambers

Angular coverage	[η]
Muon ID	~2
Tracking	~2.5
EM / Jet ID	~4

Tevatron Data Taking

Higgs boson at Tevatron

Production at Tevatron ...

- Dominant production is gluon-gluon fusion (ggH)
- Significant contribution from associated production (VH)

... and Decay

- Dominant decay to:
 - bb for $m_{H} < 135 \, GeV (57\% \, @125 \, GeV)$
 - WW for $m_{H} > 135 \text{ GeV} (22\% @125 \text{ GeV})$

Backgrounds

- We model background processes with Alpgen+Pythia, Pythia and CompHEP
- Normalized with the highest order cross section available (NLO or better)

L. Ž. Higgs boson at Tevatron

How did we search?

How did we search?

How did we search?

- Extract tiny signal from huge background
- Use efficient and well understood triggers
- Optimize lepton ID, use multivariate techniques (MVA) to identify leptons and various lepton categories
- Optimize b-id, use MVA and multiple btagging categories
- Use advanced MVA techniques to further separate signal from background
- Validate search with measurement of known SM processes

Overview of the searches

CDF combination:

H → bb:

- Phys. Rev. Lett. 109, 111802 (2012)

All channels:

- Accepted to PRD arXiv:1301.6668

• D0 combination:

H → bb:

- Phys. Rev. Lett. 109, 121802 (2012)

All channels:

- Accepted by PRD arXiv:1303.0823

Overview of the searches

DØ	Luminosity (fb ⁻¹)	M_H (GeV)	Reference
$WH \rightarrow \ell \nu bb$	9.7	90-150	Phys. Rev. Lett. 109, 121804 (2012)
_			and Acc by PRD arXiv:1301.6122
$ZH \rightarrow \ell\ell bb$	9.7	90 - 150	Phys. Rev. Lett. 109, 121803 (2012)
			and Acc by PRD arXiv:1303.3276
$ZH o u \bar{ u} b \bar{b}$	9.5	100-150	Phys. Lett. B 716, 285 (2012)
$H o W^+W^- o \ell^+\nu\ell^-\bar{\nu}$	9.7	100-200	Acc by PRD arXiv:1301.1243
$H + X \to WW \to \mu^{\pm} \tau_h^{\mp} + \leq 1$ jet	7.3	155-200	Phys. Lett. B 714, 237 (2012)
$H o W^+W^- o \ell u q' ar q$	9.7	100-200	Acc by PRD arXiv:1301.6122
$VH \rightarrow ee\mu/\mu\mu e + X$	9.7	100-200	Acc by PRD arXiv:1302.5723
$VH \rightarrow e^{\pm}\mu^{\pm} + X$	9.7	100-200	Acc by PRD arXiv:1302.5723

Tevatron combination: accepted by PRD, arXiv:1303.6346 All latest papers will appear in a single issue of PRD

$ZH ightarrow \ell \ell b ar{b}$	9.45	90-150	Phys. Rev. Lett. 109, 111803 (2012)
$ZH ightarrow u ar{ u} b ar{b}$	9.45	90-150	Phys. Rev. Lett. 109, 111805 (2012)
			and Phys. Rev. D 87, 052008 (2013)
$H o W^+W^- o \ell^+ \nu \ell^- \bar{\nu}$	9.7	110-200	Sub to PRD, arXiv: 1306.0023
$H \to WW \to e\tau_h \mu \tau_h$	9.7	130-200	Sub to PRD, arXiv: 1306.0023
$VH \rightarrow ee\mu/\mu\mu e + X$	9.7	110-200	Sub to PRD, arXiv: 1306.0023
$H \to \tau \tau$	6.0	100-150	Phys. Rev. Lett. 108, 181804 (2012)
$H \rightarrow \gamma \gamma$	10.0	100-150	Phys. Lett. B 717, 173 (2012)
$H \rightarrow ZZ \rightarrow llll$	9.7	120-200	Phys. Rev. D 86 (2012) 072012
$t\bar{t}H \to WWb\bar{b}b\bar{b}$	9.45	100 - 150	Phys. Rev. Lett. 109 (2012) 181802
$VH o jjbar{b}$	9.45	100-150	JHEP 1302 (2013) 004

CDF combination:

H → bb:

- Phys. Rev. Lett. 109, 111802 (2012)

All channels:

- Accepted to PRD arXiv:1301.6668

D0 combination:

H → bb:

- Phys. Rev. Lett. 109, 121802 (2012)

All channels:

- Accepted to PRD arXiv:1303.0823

$$H \rightarrow WW$$

H -> WW

- The most sensitive channel for m_µ > 135 GeV
- Split according to the decay mode of the W
 - Dilepton channels have low branching ratios thus low yield, but also low backgrounds
 - Semileptonic channels must contend with large V+jets backgrounds
- Split according to the production mode ggH,
 VBF and VH
 - Split opposite-sign dilepton and semileptonic channels into different jet multiplicities
 - Include a search for the same-sign leptons,
 where one originates from associated W
 - Include final states with three leptons

Associated production with W, WH → WWW is important for coupling measurement;

It probes coupling to the W boson only!

H -> WW -> IVIV

- Signatures:

 - => Lepton identification improved over years to allow for more efficient selection
- Use multiple MVA to reject different backgrounds

- Remove most of the Z(+jets) → II
- Use dedicated MVA to separate samples into WW enriched and

H → WW result

- Both DO and CDF reached similar sensitivity:
 - Exclusion (expected): 149-172 (153-175) and 157-178 (155-175) GeV
 @CDF and DO
 - Sensitivity: exp 3.1; obs 2.9 and exp 2.9; obs 4.6 (@125 GeV)
 - Big gain when additional final states are included (15% at DO)
- Tevatron: Expected sensitivity @125 GeV: 2.04x5M

Log Likelihood Ratio (LLR)

$$LLR = -2\ln\frac{P(s+b)}{P(b)}$$

P - Poisson likelihood of B or S+B hypothesis

- The separation between LLR_b (background-only hypothesis) and LLR_{s+b} (signal-plus-background hypothesis) provides a measure of the discriminating power of the search
- The width of the LLR_b , distribution (1 s.d. and 2 s.d. bands) provides an estimate of how sensitive the analysis is to a signal-like background fluctuation in the data, taking account of the presence of systematic uncertainties
- The value of LLR_{obs} relative to LLR_{s+b} and LLR_b indicates whether the data distribution appears to be more like signal-plus-background or background-only.

 $VH \rightarrow Vbb$

- ZH → Ilbb 2 leptons + 2 b-jets
- Modeling of the Z+jets background;
 rejection of the tt background
- WH → lvbb 1 lepton + MET + 2 b-jets
- Modeling of the W+jets backgrounds
- Modeling and rejection of the multijet backgrounds

- ZH → vvbb MET + 2 b-jets (contribution from WH also)
- Background modeling and rejection

- Key ingredients:
 - Lepton, jet and \mathbb{E}_{T} reconstruction
 - Jet energy resolution => $\Delta m/m\sim15\%$
 - b-tagging
 - Multivariate techniques to reject

backgrounds

	Before	2 loose
	b-tagging	tags
s/b	1/7000	1/1400

- Key ingredients:
 - Lepton, jet and E_{τ} reconstruction
 - Jet energy resolution => $\Delta m/m\sim15\%$
 - b-tagging
 - Multivariate techniques to reject

backgrounds

	Before	2 med
	b-tagging	†ags
s/b	1/7000	1/400

- Key ingredients:
 - Lepton, jet and \mathbb{E}_{τ} reconstruction
 - Jet energy resolution => $\Delta m/m\sim15\%$
 - b-tagging
 - Multivariate techniques to reject

backgrounds

	Before	2 tight
	b-tagging	tags
s/b	1/7000	1/200

Validation of results

- q W, Z V, V V, Z V, Z
- Measure cross section of the known process with the same final state
 - Smaller cross section for Higgs production (~7 times)
 - Diboson signal peaks at lower masses
- Apply similar analysis
- Measured cross section: (0.68±0.21)*5M

C _S	evatro	n Run	II, L _{int} ≤	10 fb ⁻¹				
		agged						
10 (-	⊢ Data		
<u>8000</u>						WZ		
Events / (10 (ZZ		
ш ₆₀₀₀ —	•	•				Bkgd		
4000								
4000 —	•							
2000			l lel					
_				Teleferen	. .			
0								
0	50	100	150	200	250	300	350	400
					[Dijet Ma	ss (GeV	//c ²)

MH = 125 GeV	$VH \rightarrow Vbb$ [fb]	VZ →Vbb [fb]
vvbb	9	73
lvbb	16	105
llbb	3	24
Total	28	202

Decay mode combinations

- VH → Vbb:
 - Expected sensitivity at m_{μ} ~125 GeV of 1.42xSM.
 - Broad excess consistent with dijet mass resolution

- Best fit
$$(\sigma_{WH} + \sigma_{ZH}) \times \mathcal{B}(H \rightarrow bb) = 0.19^{+0.08}_{-0.09} \text{ pb @125 GeV}$$

- To be compared with SM: $(\sigma_{WH} + \sigma_{ZH}) \times \mathcal{B}(H \rightarrow bb) = 0.12 \pm 0.01 \text{ pb}$

$$H \rightarrow \gamma \gamma$$
 and $H \rightarrow \tau \tau$

$H \rightarrow \gamma \gamma$ and $H \rightarrow \tau \tau$

- H → γγ
 - Expected sensitivity @125 GeV of ~5.9*SM
 - ~ 2 s.d. excess in $H \rightarrow \gamma \gamma$

- Η → ττ
 - Expected sensitivity @125 GeV of ~5.7*SM

Combined results from Tevatron

Result of the SM combination

- Tevatron excludes (expect):
 90-109 (90-120) GeV and 149-182 (140-184) GeV @95% C.L.
- Exp. (obs) sensitivity @125 GeV: 1.06 (2.44)*SM

Sensitivity of the search

Observed broad excess in data

Sensitivity of the search

- Observed broad excess in data
 - Consistent with the assumption of the presence of the Higgs boson with a $m_{_{\rm H}}\!=\!125$ GeV and a cross section of $\sim\!1.5(\pm0.6)^*SM$

p-value for background hypothesis

- p-value for background hypothesis provides information about the consistency with the observed data
- Local p-value distribution for background only expectation:
 - 3 s.d. (@125 GeV)

Signal Strength

- Best fit for the signal, signal strength, is consistent with SM within 1 s.d.
- @125 GeV: 1.44^{+0.59}_{-0.56}

Signal strengths for various decays

DØ	Luminosity (fb ⁻¹)	M_H (GeV)	Reference
$WH \rightarrow \ell \nu bb$	9.7	90-150	Phys. Rev. Lett. 109, 121804 (2012)
			and Acc by PRD arXiv:1301.6122
$ZH \rightarrow \ell\ell b\bar{b}$	9.7	90 - 150	Phys. Rev. Lett. 109, 121803 (2012)
			and Acc by PRD arXiv:1303.3276
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$	9.5	100 - 150	Phys. Lett. B 716, 285 (2012)
$H o W^+W^- o \ell^+\nu\ell^-\bar{\nu}$	9.7	100-200	Acc by PRD arXiv:1301.1243
$H + X \to WW \to \mu^{\pm} \tau_h^{\mp} + \leq 1$ jet	7.3	155-200	Phys. Lett. B 714, 237 (2012)
$H o W^+W^- o \ell \nu q' \bar{q}$	9.7	100-200	Acc by PRD arXiv:1301.6122
$VH \rightarrow ee\mu/\mu\mu e + X$	9.7	100-200	Acc by PRD arXiv:1302.5723
$VH \rightarrow e^{\pm}\mu^{\pm} + X$	9.7	100-200	Acc by PRD arXiv:1302.5723
$VH \rightarrow \ell \nu q' \bar{q} q' \bar{q}$	9.7	100-200	Acc by PRD arXiv:1301.6122
$VH \rightarrow \tau_h \tau_h \mu + X$	8.6	100-150	Acc by PRD arXiv:1302.5723
$H + X \rightarrow \ell \tau_h jj$	9.7	105 - 150	Acc by PRD arXiv:1211.6993
$H \rightarrow \gamma \gamma$	9.7	100–150	Acc by PRD, arXiv:1301.5358
CDF			
$WH \rightarrow \ell \nu bb$	9.45	90-150	Phys. Rev. Lett. 109, 111804 (2012)
$ZH \rightarrow \ell\ell b\bar{b}$	9.45	90 - 150	Phys. Rev. Lett. 109, 111803 (2012)
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$	9.45	90 - 150	Phys. Rev. Lett. 109, 111805 (2012)
			and Phys. Rev. D 87, 052008 (2013)
$H o W^+W^- o \ell^+ \nu \ell^- \bar{\nu}$	9.7	110-200	Sub to PRD, arXiv: 1306.0023
$H \to WW \to e\tau_h \mu \tau_h$	9.7	130-200	Sub to PRD, arXiv: 1306.0023
$VH \rightarrow ee\mu/\mu\mu e + X$	9.7	110-200	Sub to PRD, arXiv: 1306.0023
$H \to \tau \tau$	6.0	100-150	Phys. Rev. Lett. 108, 181804 (2012)
$H \rightarrow \gamma \gamma$	10.0	100-150	Phys. Lett. B 717, 173 (2012)
H o ZZ o llll	9.7	120-200	Phys. Rev. D 86 (2012) 072012
$t\bar{t}H \to WWb\bar{b}b\bar{b}$	9.45	100-150	Phys. Rev. Lett. 109 (2012) 181802
$VH \rightarrow jjb\bar{b}$	9.45	100-150	JHEP 1302 (2013) 004

• VH \rightarrow Vbb; H \rightarrow WW; H $\rightarrow \tau\tau$; H $\rightarrow \gamma\gamma$;

Signal strength for various decays

• Posterior probability densities for R = $(\sigma \times \mathcal{B})/SM$ from the combinations of all search channels

$m_H ({\rm GeV}/c^2)$	125
$R_{ m fit}({ m SM})$	$1.44^{+0.59}_{-0.56}$
$R_{\mathrm{fit}}(H o W^+W^-)$	$0.94^{+0.85}_{-0.83}$
$R_{ m fit}(H o bar b)$	$1.59^{+0.69}_{-0.72}$
$R_{ m fit}(H o\gamma\gamma)$	$5.97^{+3.39}_{-3.12}$
$R_{ m fit}(H o au^+ au^-)$	$1.68^{+2.28}_{-1.68}$

History of Tevatron results

Data of 2008; up to 4.2 fb⁻¹

Data of mid 2009; up to 5.4 fb⁻¹

Time

Data of mid 2010; up to 5.9 fb⁻¹

Data of mid 2011; up to 8.6 fb⁻¹

Full data set; up to 10 fb-1

Higgs boson couplings to bosons and fermions

- Several production and decay mechanisms contribute to signal rates per channel => interpretation is difficult
- Simplified model, SM-like with the following:
 - Hff couplings are scaled together by $\kappa_{_{\rm f}}$
 - HWW coupling is scaled by $\kappa_{\rm w}$
 - HZZ coupling is scaled by $\kappa_{_{\!Z}}$
- For some studies, we scale the HWW and HZZ couplings by $\kappa_w = \kappa_z = \kappa_v$
- Standard Model is recovered if $\kappa_f = \kappa_W = \kappa_Z = 1$

Higgs boson couplings to bosons and fermions

- Follow the prescription from LHC Higgs cross section working group: arXiv:1209.0040
- Basic assumptions:
 - There is only one underlying state at $m_{H} \sim 125 \text{ GeV}$
 - It has negligible width
 - It is a CP even scalar (only allow for modification of coupling strengths, leaving the Lorentz structure of the interaction untouched)
 - No additional invisible or undetected Higgs decay modes

Constraining couplings

Scale cross sections for each process according to couplings

$$\sigma(gg \to H) = \sigma_{SM}(gg \to H)(0.95\kappa_f^2 + 0.05\kappa_f\kappa_V)$$

$$\sigma(VH, VBF) = \sigma_{SM}(VH, VBF)\kappa_V^2$$

Recompute all Higgs boson decay branching ratios from scaled partial widths

$$\Gamma(H \to VV) = \Gamma(H \to VV)_{SM} \kappa_V^2; (V = W, Z)$$

$$\Gamma(H \to ff) = \Gamma(H \to ff)_{SM} \kappa_f^2$$

$$\Gamma(H \to gg) = \Gamma(H \to gg)_{SM} (0.95 \kappa_f^2 + 0.05 \kappa_f \kappa_V)$$

$$\Gamma(H \to \gamma\gamma) = \Gamma(H \to \gamma\gamma)_{SM} |\alpha\kappa_V + \beta\kappa_f|^2$$

$$\alpha$$
=1.28; β =-0.28;

from Spira et al. arXiv:hep-ph/9504378

- => $H \rightarrow \gamma \gamma$ from destructive interference between the two contributions
- If any of the couplings is negative, interference becomes constructive
- => Larger rate of the H → yy

- Posterior probability distributions (a) vary κ_w ($\kappa_z = \kappa_f = 1$)
 - A negative sign of $\kappa_W^{}$ is preferred by the Tevatron data due to the excess in $H\to\gamma\gamma$
 - Best fit: $\kappa_w = -1.27$

(b) vary
$$\kappa_Z (\kappa_W = \kappa_f = 1)$$

- Searches at the Tevatron are sensitive almost exclusively to $(\kappa_Z)^2$ so the posterior density is nearly symmetric
- Best fit: $\kappa_7 = \pm 1.05$

(c) vary
$$\kappa_f (\kappa_W = \kappa_Z = 1)$$

- Asymmetry due to H → YY
- Best fit: $\kappa_f = -2.64$ (large due to the excesses in $H \rightarrow \gamma \gamma$ and $VH \rightarrow Vbb$)

- Both κ_w and κ_z vary independently
 - κ_{f} integrated over
 - Best fit: $(\kappa_w, \kappa_7) = (1.25, \pm 0.90)$
- The point $(\kappa_W, \kappa_Z) = (0, 0)$ corresponds to no Higgs boson production or decay in the most sensitive search modes at the Tevatron and is excluded at more than 95% C.L. region due to the significant excess of events in the SM Higgs boson searches @ 125 GeV

- Probe $SU(2)_v$ custodial symmetry by measuring the ratio $\lambda_{wz} = \kappa_w / \kappa_z$
 - Measure θ_{WZ} =tan⁻¹(κ_Z/κ_W)=tan⁻¹($1/\lambda_{WZ}$)
 - Measure: $|\theta_{WZ}| = 0.68^{+0.21}_{-0.41} \rightarrow \lambda_{WZ} = 1.24^{+2.34}_{-0.42}$
- Consistent with Standard model and with LHC measurements: 95% CL interval for Λ_{WZ} : [0.62,1.19] (CMS) 68% CL interval for Λ_{WZ} : [0.61, 1.04] (ATLAS)

- Assuming that custodial symmetry holds, Λ_{WZ} = 1, allow both κ_{V} and κ_{f} to vary
- Asymmetry is from the excesses in the H → yy
- Two minima: $(\kappa_{V}, \kappa_{f})=(1.05, -2.40)$ and $(\kappa_{V}, \kappa_{f})=(1.05, 2.30)$
- The integral of the posterior density in the (+,+) quadrant is 26% of the total, while the remaining 74% of the integral of the posterior density is contained within the (+,-) quadrant

Summary on couplings

- Couplings to fermions: $\kappa_f = -2.64^{+1.59}_{-1.30}$
- Couplings to bosons:

$$\kappa_W = -1.27^{+0.46}_{-0.29}$$
; second interval 1.04 $< \kappa_W < 1.51$
 $\kappa_Z = \pm 1.05^{+0.45}_{-0.55}$

- if varied together: $(\kappa_w, \kappa_z) = (1.25,\pm0.90)$
- For custodial symmetry: $|\theta_{WZ}| = 0.68^{+0.21}_{-0.41} \rightarrow \lambda_{WZ} = 1.24^{+2.34}_{-0.42}$
- If custodial symmetry is preserved: $(\kappa_{v}, \kappa_{f})=(1.05,-2.40)$ and $(\kappa_{v}, \kappa_{f})=(1.05,2.30)$

Spin (J) and Parity (P)

Motivation

- Standard Model predicts Higgs boson with $J^P = O^+$
 - The $H \rightarrow \gamma\gamma$ excludes J=1 (Landau-Yang theorem)
- J^P are studied at LHC
 - Results favor $J^P=0^+$ over $2^+,0^-$, ... in $H\to ZZ$, $H\to WW$, $H\to \gamma\gamma$ under various hypotheses for production
 - No results yet for the bb decay mode
- Important to build a consistent picture in all expected Higgs boson decay modes

Spin and Parity at Tevatron

- Different spin and parity states manifest in various ways
 - Angles of decay products
 - Cross section behavior at threshold:
 - s-wave for 0^+ : $\sigma \sim \beta$
 - p-wave for 0-: $\sigma \sim \beta^3$
 - d-wave for 2^+ : $\sigma \sim \beta^5$

- VH production at Tevatron is sensitive to threshold effects
 - Paper by Ellis et al. http://arxiv.org/abs/1208.6002
 - Differential cross-sections depend strongly on J^{P} of the new particle

Spin and Parity at Tevatron

Use published VH → Vbb analyses and compare SM process

with the new hypothesis

- Main discrimination variable: total mass of the V+X system (X is 0+, 0- or 2+)
 - In a case of $V \rightarrow lv$ or $V \rightarrow vv$ total transverse mass is a better choice
- Assume $\sigma x \mathcal{B}$ of SM Higgs boson in a first step
 - 2+: Standard RS graviton in Madgraph
 - 0-: Model by Ellis et al. implemented in Madgraph

Background rejection

 Divide samples into low and high purity based on dijet invariant mass or MVA output from the published analysis

Final variable

• Total (transverse) mass as final discriminating variable

Results

- Build log-likelihood ratio test: LLR= -2 log(H₁/H₀)
 - H_0 is the SM Higgs (0⁺) + Bkg
 - H_1 is either 2^+ + Bkg or 0^- + Bkg
- Compute for 2 different signal scale factors μ on SM $\sigma \times \mathcal{B}$
 - 1.00 (SM shown here)
 - 1.23 (D0 measured rate)

Results

- CL_s=CL_{H1}/CL_{H0}
- Cl_x=P(LLR ≥ LLRobs|x)
- Interpret 1-CLs as C.L. for exclusion of 2+ in favor of 0+
- Exclude 2+ model at >99.2% C.L.
- Expected exclusion is $3.2\sigma (\mu=1.0)$
- Competitive with LHC single-channel measurements

	Combined result	Result in σ
1 - Cls Exp. (μ=1.00)	0.9992	3.16
1 - Cls Obs. (μ=1.00)	0.9922	2.42
1 - Cls Exp. (μ=1.23)	0.9999	3.72
1 - Cls Obs. (μ=1.23)	0.9988	3.04

Signal Admixtures

- Allow possibility of both a 2+ and 0+ signal in data
- Vary 2+ fraction f₂₊ from 0 to 1

- H1:
$$\mu \times (\sigma \times \mathcal{B})_{SM} \times [2^+ \times f_{2+} + 0^+ \times (1 - f_{2+})] + Background$$

- HO: $\mu \times (\sigma \times \mathcal{B})_{SM} \times O$ + Background (pure O+)
- Fix μ to 1.00 or 1.23, compute LLR, Cls, etc

Signal Admixtures

- Allow possibility of both a 2+ and 0+ signal in data
- Vary 2+ fraction f₂₊ from 0 to 1
 - H1: $\mu \times (\sigma \times \mathcal{B})_{SM} \times [2^+ \times f_{2+} + 0^+ \times (1 f_{2+})] + Background$
 - HO: $\mu \times (\sigma \times \mathcal{B})_{SM} \times O + Background (pure O+)$
- Fix μ to 1.00 or 1.23, compute LLR, Cls, etc

Summary

- Tevatron has ended its 25 years' run on September 30th 2011
 - It ran more than 9 years at $\int s = 1.96 \text{ TeV}$
 - It delivered almost 12 fb⁻¹ during that period
 - We are grateful for all these data
- In 2009, Tevatron published first exclusion since LEP, pointing to a low mass Higgs (115-140 GeV), when combined with the indirect limits.
- In July 2012, Tevavatron published first (so far only) evidence for fermionic decay of the Higgs (H->bb)
- DO and CDF finalized publications of all search channels in 2013
- Both experiments performed very well

- Improvements over the years led to the 95% C.L. exclusion sensitivity $<\!\!\sim\!\!1.0\times\!\!$ for $m_{_{\! H}}$ $<\!\!$ 185 GeV when combining two experiments

Summary

- 3 s.d. excess @125 GeV observed in data when combining from both experiments, consistent with LHC observation
- Signal strengths in all analyzed decay channels are consistent with SM Higgs expectation
- Results on Higgs couplings are also consistent with the SM predictions
- Spin and parity studies in VH → Vbb are underway
 - Exclude 2+ model at >99.2% C.L.
- It is unlikely that $H \rightarrow bb$ is established before 2015, except if the results from all experiments are combined

Backup

Couplings prospects

Combining all CDF and DO channels: What does combined signal look like?

• Distribution of $log_{10}(s/b)$, for the data from all combining Higgs boson decay channels

Validation with diboson measurement

- Use identical selection and similar MVA
 Use WW process as a signal in training
- Measured cross section: (1.02±0.06)*5M

VH - Vbb

- Key ingredients:
 - Lepton, jet and \mathbb{E}_{τ} reconstruction
 - Jet energy resolution (15%)
 - b-tagging: eff 50-80%; mis id 1-10%
 - Multivariate techniques to reject backgrounds
 - Either to split into two regions or to remove background

VH → Vbb results

Exp (obs) @125 GeV at DO and CDF:

DO combination

DO H - WW

VH → Vbb results

- 3.9(4.3)*SM
- DØ, 9.5 fb⁻¹ Observed Limit
- ····· Expected Limit Expected ±1 s.d. Expected ± 2 s.d.
- Limit / $oldsymbol{\sigma}(poldsymbol{
 ot} o ([W/Z]H) imes Br(H o boldsymbol{b})$
 - $ZH \rightarrow \nu \nu bb$

M_H (GeV)

- Exp (obs) @125 GeV: Exp (obs) @125 GeV:
 - 4.7(4.8)*SM
 - $V(\rightarrow lv)+2$, 3 jets with 1 tight+2 b-tags WS / timit 10² DØ, 9.7 fb Observed (a) Expected Expected ± 1 s.d Expected ± 2 s.d 95% CL 90 100 110 120 130 140 150
 - $WH \rightarrow lvbb$

M_H (GeV)

- Exp (obs) @125 GeV:
 - 5.1(7.1)*SM

Validation of results

- Measure cross section of the known process with the same final state
 - Smaller cross section for Higgs production (~7 times)
 - Diboson signal peaks at lower masses
- Apply similar analysis
- Measured cross section: $(0.73\pm0.32)*SM$

	MH = 125 GeV	$VH \rightarrow Vbb [fb]$	VZ →Vbb [fb]	ш́ ₂₅₀₀
	vvbb	9	73	2000 1500
,	lvbb	16	105	1000
)	llbb	3	24	500
	Total	28	202	0(

H, Z

≥ 5000

Ŭ 4500 ≈4000

<u>ഴ</u>3500 3000 et

 $W(\rightarrow \ell v)+2$ jets, Single and Double Tags

DØ. 9.7 fb⁻¹

Data

V+hf

Multiiet

single t

150 200 250 300 350 400 Dijet Mass (GeV)

■M_H=125 GeV

 $(\times 100)$

VH → Vbb results

• Expected sensitivity @125 GeV: 2.3*5M; observed 3.5*5M

Combining all D0 channels: What does combined signal look like?

• Distribution of $log_{10}(s/b)$, for the data from all contributing Higgs boson search channels

Sensitivity of the search

 Observe a broad excess between ~115 GeV and ~145 GeV consistent with a SM Higgs expectation

p-value for background hypothesis

- p-value for background hypothesis provides information about the consistency with the observed data
- Local p-value distribution for background only expectation:
 - DO: 1.7 s.d. (@125 GeV)

Signal Strength

- Best fit for the signal, signal strength, is consistent with SM within 1 s.d.
- @125 GeV: 1.40^{+0.92}_{-0.88}

Signal Strength

Best fit for the signal, signal strength, is consistent with SM within

1 s.d.

• @125 GeV: 1.40^{+0.92}_{-0.88}

Combined	$1.40^{+0.92}_{-0.88}$
$H o \gamma\gamma$	$4.20^{+4.60}_{-4.20}$
$H \rightarrow W^+W^-$	$1.90^{+1.63}_{-1.52}$
$H o au^+ au^-$	$3.96^{+4.11}_{-3.38}$
$H o bar{b}$	$1.23^{+1.24}_{-1.17}$

$$H \rightarrow \gamma \gamma$$

- Updated data quality requirement
- Narrow resonance on top of a smoothly falling background in the $m_{\nu\nu}$ spectrum: Measured mass resolution 3.1 GeV @ m_H =125 GeV
- Multiple stages of MVA:
 - Neural Network to select loose photons, and then to define two independent samples, γ -enriched and jet-enriched
 - Boosted Decision Trees to further separate signal from backgrounds
- Exp. (obs.) sensitivity @125 GeV: 8.7*SM (12.8*SM)

$$H \rightarrow \tau \tau$$

- Combine analyses with $H \rightarrow \tau \tau$:
 - VH $\rightarrow \mu \tau \tau$ added ~20% more data, optimized
 - $H+X \rightarrow I\tau + 2 \text{ jets}$ added
- They include some contribution from H→WW
 - Use dedicated MVA to separate different contributions
- Exp. (obs.) @125 GeV: 7.25 (10.84)*SM (~60% improvement from ICHEP'12)

Other H -> WW searches

- Included semileptonic decays of W, and also associated production:
 - H→ WW → Ivjj added ~80% of data
 - VH → VWW → lv+4 jets optimized
 - $VH \rightarrow VVV \rightarrow III+X$ added ~12% of data
 - $VH \rightarrow VWW \rightarrow e^{\pm}\mu^{\pm}+X$ optimized

Signal strength for various decays

L. Ž. Higgs boson at Tevatron

Comparison of Tev and LHC Methods

- Signal scaling
 - Tevatron: signals fixed in both hypotheses
 - 2+ normalization does vary when setting 95% C.L. upper limits
 - Exclude μ > 0.73 at 95% C.L. in this case
 - LHC: signals fixed to best fit values in each hypothesis (need not be equal)
- Systematic uncertainties
 - Tevatron varies systs. in pseudoexperiments
 - LHC does not vary systs. in PEs
 - Allow systematic uncertainties to vary in pseudoexperiments
 - (LHC first fits signals to data for normalization, thereby constraining systematics)

Tevatron $H \rightarrow bb$ Results PRL 109,071804(2012)

- Last Summer:
 - σ_{VH} =0.23±0.09 pb (SM: 0.12±0.01pb) @125 GeV
- Now:
 - $-\sigma_{VH}$ =0.19+-0.09 pb, consistent with the summer results
 - The shift in this result is due to the updated ZH → vvbb analysis from CDF and corresponds to a change in the central value of 0.6 times the total uncertainty, consistent with the difference expected given the observed changes in the CDF ZH → vvbb

Interpretation in non SM

• a

H->tautau

Systematics

- Luminosity: 6.1%
- b-tagging rate: 1-10%
- JES and JER ~7%
- Lepton id and similar: 1-9%
- Simulated backgrounds cross sections 4-30%
- MJ background 10-30%

An example of limits settings

 Compare Poisson likelihood of B hypothesis to S+B hypothesis, and calculate their negative log likelihood ratio (LLR):

L(B)	L(S+B)	LLR
$\prod_{i} \frac{b_i^{d_i} \exp(b_i)}{d_i!}$	$\prod_{i} \frac{(s_i + b_i)^{d_i} \exp(s_i + b_i)}{d_i!}$	$2 \cdot \sum_{i} s_i - d_i \cdot \log(1 + s_i/b_i)$

 d_i events observed in bin i with S and B expectations s_i and b_i .

- Sum over all bins gives observed LLR
- Repeat calculation but with pseudo-data obtained by a Poisson fluctuation of b_i in each bin (B) or s_i+b_i in each bin (S+B)
- Repeat many times to obtain LLR distribution: median is Expected LLR

S+B p-values

