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Quantum harmonic oscillator
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Quantum harmonic oscillator
• Consider a quantum harmonic oscillator:
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• The canonical position and momentum are quantised:
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• Non adiabatic change,                  : the final state is not in the vacuum, many particles created!!̇ � !2
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• Let us rapidly (non-adiabatically) change the frequency:

Changing the frequency

a(tf )|0i 6= 0



Quantum harmonic oscillator

• Evolution of the annihilation and creation operators at transition:
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• Let us rapidly (non-adiabatically) change the frequency:



Quantum harmonic oscillator

• The canonical position and momentum uncertainties are queezed:
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• Let us rapidly (non-adiabatically) change the frequency:
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Quantum harmonic oscillator
• Time-evolution of annihilation and creation operators after transition:
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• Quantum: mathematically, variables do not commute. 
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• From a “corse-grained” experimental point of view they commute and the evolution 
follows the classical (deterministic) solution. Decoherence: no correlation between 
“growing” and “decaying” modes.



 where     is a Gaussian stochastic variable with zero average,       , and unit variance:

Classical stochastic H.O.

x(t) = êA sin!f t

p(x) = êA!f cos!f t

hêê⇤i = 1ê hêi

• If we neglect the “decaying” mode, the quantum harmonic oscillator is indistinguishable from a 
classical stochastic one.
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Metric (4x4 symmetric) = 10
Gauge freedom =            - 4
Constraints =                  - 4

Total =                               2 tensors (gravity waves polarisations)

• We can count the number of degrees of freedom:

Why gravity waves

• Gravity waves are traceless and transverse (helicity-2). Expand around FRW:
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Quantising gravity
• Expand Einstein-Hilbert action around FLRW:
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• Two helicity-2 states. In Fourier space, for each polarisation: 
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Comoving scales vs comoving Hubble
1.3 The Shrinking Hubble Sphere 13
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Figure 1.3: Solution of the horizon problem. Scales of cosmological interest were larger than the
Hubble radius until a ⇠ 10�5 (where today is at a(t

0

) ⌘ 1). However, at very early times, before
inflation operated, all scales of interest were smaller than the Hubble radius and therefore susceptible to
microphysical processing. Similarly, at very late times, the scales of cosmological interest are back within
the Hubble radius.

where

⌦(a) ⌘ ⇢(a)

⇢crit(a)
, ⇢crit ⌘ 3M2

plH
2 . (1.3.27)

The deviation of the normalized density parameter ⌦ from unity is a measure of the curvature

of the universe. From observations we know that today |1 � ⌦(a0)| . 0.01. However, if there

was some amount of spatial curvature in the early universe, we have to worry that it will grow

with time. Conversely, in order to explain the flatness of the universe today, we have to explain

a much more extreme flatness at early times, e.g. |1 � ⌦(aGUT)| . 10�55. From eq. (1.3.26)

we see that the time evolution of the curvature parameter |1 � ⌦(a)| again relates to the time

evolution of the comoving Hubble radius (aH)�1. Whenever (aH)�1 is an increasing function

of time, curvature grows. In contrast, during inflation, when (aH)�1 decreases, the universe is

driven towards flatness. This solves the flatness problem. The solution ⌦ = 1 is an attractor

during inflation.

Exercise. Show that

d⌦

d ln a
= (1 + 3w)⌦(⌦ � 1) . (1.3.28)

This makes it apparent that ⌦ = 1 is an unstable fixed point if the strong energy condition is satisfied,
but becomes an attractor during inflation.

1.3.3 Conditions for Inflation

Decreasing comoving horizon. I like the shrinking Hubble sphere as the fundamental definition

of inflation since it most directly relates to the horizon problem and is key for the inflationary

mechanism of generating fluctuations.

However, before we move to a description of the physics that can lead to a shrinking Hubble

sphere, we show that this definition of inflation is equivalent to other popular ways of describing

k � aH k ⌧ aH



Quantising gravity
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• On sub-Hubble scales, vacuum normalisation:

• On super-Hubble scales, freeze in at                    :
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Quantum of classical?

• No other field than gravity is involved. Gravity waves treated as a quantum field.

• Squeezing: a corse-grained experiment which is only sensitive to the growing mode will see a 
classical evolution:

• Mathematically, gravity wave polarisations do not commute with their momenta: quantum.
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