Cesox

CSTS SPP 14/11/2014

411

11/21

W.!!

and the second s

40 2

111

42/1

120

11.1

1

No.

-

25

1/20

12

133

and the second s

27

(NEN

000

and the second s

P

C'S

80 C 4

S.

1

3

19

0

51

Sec.

:57

66

Ceco,

E.

-

600

単位金

1

6

Ø

60

(B) (B) (B)

6.8

675 533

30

の子の

Son B

To Co

999

-

0

10

1

0

4

市市市

Z

1

Contraction of the second seco

(d) 13

S

ある ある 読む 読む

12

12

1.

11

1). 1).

2

S

03

BOPO S

A CORRECT

COO COO COO

1

AN AN AN AN

and the state

and and

ALL CLOCK OF ALL

(Lain)

-

ALC: NO

Co.

1. 2. 2

and the second

000

2

Th. Lasserre

Double Chooz By-Product

PHYSICAL REVIEW C 83, 054615 (2011) \rightarrow 245 citations

Improved predictions of reactor antineutrino spectra

Th. A. Mueller,¹ D. Lhuillier,^{1,*} M. Fallot,² A. Letourneau,¹ S. Cormon,² M. Fechner,³ L. Giot,² T. Lasserre,³ J. Martino,² G. Mention,³ A. Porta,² and F. Yermia²
 ¹Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Centre de Saclay, IRFU/SPhN, FR-91191 Gif-sur-Yvette, France
 ²Laboratoire SUBATECH, École des Mines de Nantes, Université de Nantes, CNRS/IN2P3, 4 rue Alfred Kastler, FR-44307 Nantes Cedex 3, France

³Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Centre de Saclay, IRFU/SPP, FR-91191 Gif-sur-Yvette, France (Received 14 December 2010; revised manuscript received 9 March 2011; published 23 May 2011)

PHYSICAL REVIEW D 83, 073006 (2011) → 374 citations

Reactor antineutrino anomaly

G. Mention,¹ M. Fechner,¹ Th. Lasserre,^{1,2,*} Th. A. Mueller,³ D. Lhuillier,³ M. Cribier,^{1,2} and A. Letourneau³ ¹CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France ²Astroparticule et Cosmologie APC, 10 rue Alice Domon et Léonie Duquet, 75205 Paris cedex 13, France ³CEA, Irfu, SPhN, Centre de Saclay, F-91191 Gif-sur-Yvette, France (Received 14 January 2011; published 29 April 2011)

The Reactor Anomaly

i) v_{emission} : Improved reactor neutrino spectra $\rightarrow +4\%$

The Reactor Anomaly

erc

The Gallium Anomaly

• ⁷¹Ga + $v_e \rightarrow {}^{71}$ Ge + e^-

- 4 calibration runs with 20-60 PBq Electron Capture v_e emitters
 - Gallex, <L>=1.9 m
 - ⁵¹Cr, 750 keV
 - Sage, <L>=0.6 m
 - ⁵¹Cr & ³⁷Ar (810 keV)

Deficit observed

- 3σ anomaly
- Supported by new ⁷¹Ga (³He,³H)
 ⁷¹Ge cross section measurement

Active Neutrinos

Th. Lasserre - CSTS - 14/11/2014

Adding Sterile Neutrinos

erc

 v_{e} disappearance (3+1)

erc

Data consistent with $v_e^{(-)}$ disappearance at L/E≈1 m/MeV

Th. Lasserre – APPEC 2014

Anomalous & Regular Results

Cea

Anomalous	Source	Туре	Signal	Channel	Significance
LSND	Meson Decay- at-Rest	$\overline{\underline{v}}_{\mu} \rightarrow \overline{\underline{v}}_{e}$	<u>Total Rate</u> , Energy	CC	3.8 <u>σ</u>
MiniBooNE	Meson Decay- in-Flight	$\underline{v}_{\mu} \rightarrow \underline{v}_{e}$	<u>Total Rate</u> , Energy	СС	3.8 g
Gallium	Electron Capture	v _e dis.	Total Rate	CC	2.7-3.0 g
Reactor	Beta-decay	v _e dis.	<u>Total Rate</u> , Energy	CC	2.7 <u>σ</u>
				_	
Regular	Source	Туре	Signal	Cł	nannel
Regular KARMEN Icarus/Opera	Source Meson Decay - at-Rest & Flight	Type _{Vµ} → V _e	Signal <u>Total Rate</u> , Energy	Cł	cc
Regular KARMEN Icarus/Opera CDHS/Minos/ MiniBooNE	Source Meson Decay - at-Rest & Flight Meson Decay- in-Flight	Type $v_{\mu} \rightarrow v_{e}$ $v_{\mu} \rightarrow v_{\mu}$	Signal <u>Total Rate</u> , Energy <u>Total Rate</u> , Energy	Cł	cc cc
Regular KARMEN Icarus/Opera CDHS/Minos/ MiniBooNE Minos	Source Meson Decay - at-Rest & Flight Meson Decay- in-Flight Meson Decay- in-Flight	Type $v_{\mu} \rightarrow v_{e}$ $v_{\mu} \rightarrow v_{\mu}$ $v_{\mu} \rightarrow v_{s}$	Signal <u>Total Rate</u> , Energy <u>Total Rate</u> , Energy <u>Total Rate</u>	Cł	cc cc cc

CeSOX: Concept

¹⁴⁴Ce-¹⁴⁴Pr to search for a 4th ν

PRL 107, 201801 (2011)

PHYSICAL REVIEW LETTERS

week ending 11 NOVEMBER 2011

Proposed Search for a Fourth Neutrino with a PBq Antineutrino Source

Michel Cribier,^{1,2} Maximilien Fechner,¹ Thierry Lasserre,^{1,2,*} Alain Letourneau,¹ David Lhuillier,¹ Guillaume Mention,¹ Davide Franco,² Vasily Kornoukhov,³ and Stefan Schönert⁴ ¹Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre de Saclay, IRFU, 91191 Gif-sur-Yvette, France ²Astroparticule et Cosmologie APC, 10 rue Alice Domon et Léonie Duquet, 75205 Paris cedex 13, France ³ITEP, ulica Bolshaya Cheremushkinskaya, 25, 117218 Moscow, Russia ⁴Physik Department, Technische Universität München, 85747 Garching, Germany (Received 12 July 2011; published 7 November 2011)

Several observed anomalies in neutrino oscillation data can be explained by a hypothetical fourth neutrino separated from the three standard neutrinos by a squared mass difference of a few eV^2 . We show that this hypothesis can be tested with a PBq (ten kilocurie scale) ¹⁴⁴Ce or ¹⁰⁶Ru antineutrino beta source deployed at the center of a large low background liquid scintillator detector. In particular, the compact size of such a source could yield an energy-dependent oscillating pattern in event spatial distribution that would unambiguously determine neutrino mass differences and mixing angles.

DOI: 10.1103/PhysRevLett.107.201801

PACS numbers: 14.60.Lm, 14.60.Pq, 14.60.St

→ Funding through ERC-2012-StG 307184

$\overline{\mathbf{v}}_{\mathbf{e}}$ Testing $\overline{\mathbf{v}}_{\mathbf{e}}$ disappearance anomalies

GA & RAA : comparison between data and event prediction

- Search for L, E, L/E pattern (<u>shape only</u>)
- Complement with a <u>rate analysis</u>

Input from Sterile Neutrino Fits

•
$$\Delta m^2 \approx 0.1-10 \text{ eV}^2 \rightarrow L_{osc}(m) = 2.5 \frac{E(\text{MeV})}{\Delta m^2(\text{eV}^2)} \approx 1-10 \text{ m}$$

sin²(2
$$\theta_{new}$$
) \approx 0.01 – 0.2

- Experimental Specifications
 - $\Delta m^2 \approx eV^2$: <u>compact source</u> << 1m & <u>vertex resolution</u> << 1m
 - sin²(2θ_{new}) : experiment with <u>few % stat. syst. uncertainties</u>

v Generator Proposals

Туре	Detection	Background	Isotope	Production	Activity	Projects
	$\mathcal{V}_{e}\mathbf{e} \rightarrow \mathcal{V}_{e}\mathbf{e}$	Detector Radioactivity	⁵¹ Cr	n _{th} irradiation	>110 PBq	Sage LENS
ν _e	5% E _{res} 15cm R _{res}	Solar $ u$	0.75 MeV t _{1/2} =26d	in Reactor	>370 PBq	CrSOX (SNO+)
		(irreducible)		n _{fast}	>37 PBq	-
	or Radio- chemical	v generator impurities	³⁷ Ar 0.8 MeV t _{1/2} =35d	irradiation in Reactor (breeder)	185 PBq	Ricochet
	$\overline{\mathcal{V}}_{e} p \rightarrow e^{+} n$ E _{th} =1.8 MeV	reactor ν ,	¹⁴⁴ Ce E<3MeV	spent nuclear fuel	3.7-5 PBq	CeLAND CeSOX
	$(o^{\dagger} n)$ geo ν ,		t _{1/2} =285d	reprocessing	18.5 PBq	Daya-Bay
$\overline{\nu}_{e}$	5% E _{res} 15cm R _{res}	v generator impurities	⁹⁰ Sr ¹⁰⁶ Rh	+ REE extraction	-	-
	³ H→He e ⁻ ν _e EC/β-decay	Kink search	³ <mark>H</mark> E<18 keV	Irradiation in reactors	110 GBq	KATRIN (Mare/Echo)

erc

Antineutrino Source: 144Ce-144Pr

(ITEP N°90 1994, PRL 107, 201801, 2011)

- \overline{v}_e source detected via \overline{v}_e + p \rightarrow e⁺ + n (Q=1.8 MeV)
 - High IBD cross section \rightarrow 3.7 5 PBq activity
 - (e⁺,n) detected in coincidence \rightarrow low backgrounds
- ¹⁴⁴Ce-¹⁴⁴Pr
 - Abundant fission product (5%)
 - ¹⁴⁴Ce: long-lived & low-Q_β Enough time to produce, transport, use
 - ¹⁴⁴Pr: short-lived & high-Q_β
 v_e-emitter above IBD threshold

144Ce-144Pr v Spectra

erc

Oscillometry in BOREXINO

Search for an oscillation pattern inside LS target Compare observed to expected v rate

cea

Experimental layout

• Radioactive ν source in tunnel below the detector (d=8.3 m)

Detector Specifications (1 MeV)

- Energy resolution: 5%
- Vertex resolution: 15 cm

Antineutrino Generator

- •144Ce/Pr β E $_{\nu}$ < 3 MeV
- ■3.7 5 PBq
- Exposure: 1.5 yrs
- Fiducial mass: 280 tons
- Events (1.5yrs) ~10⁴

Expected $\nu_e \rightarrow \nu_s$ Oscillation Signal

Cea

¹⁴⁴Ce-¹⁴⁴Pr Antineutrino Generator (CeANG) Production

CeANG: Specifications

- ß activity (in ¹⁴⁴Ce)
 - Between 3.7 and 5.5 PBq
- Extracted from fresh spent nuclear fuel (<2 years)
- Chemical form : cerium oxyde CeO₂
- Density : between 4 and 6 g/cm³

erc

- Fitting inside a D:H=15:15 cm double capsule of Special Form of Radioactive Material (SFRM, IAEA regulation)
- Purity data from ¹⁴⁷Pm production line
 - Content of any others RE (γ -emitters) in Ce \leq 10⁻³ Bq/Bq
 - Content of Pu and TPE (*n* emitters) in $Ce \le 10^{-5} Bq/Bq$

Russian Institutions & Facilities

Spent Nuclear Fuel

- ¹⁴⁴Ce: 5.5% / 3.7% in the fission products of U / Pu
- ¹⁴⁴Ce: 411 d half-life. 3 years after last irradiation
 - m(¹⁴⁴Ce)/m(all Ce) = 1 / 130
- Selection of best SNFE at Cola NPP (fresh fuel)
 - 5 tons 1.7 y cooling
 - 66 Ci/g of Ce isotopes
- Delivery of SNF from Cola NPP to FSUE "Mayak" PA (3000 km)
 - TUK-6 container
- PA Mayak will receive fresh fuel for ¹⁴⁴Ce prod. in Feb. 2015

Overview of the process

- Radiochemical Plant
 - Standard radiochemical re-processing of SNF (Purex)
 - Separation of CeO₂
 - Primary encapsulation
 - Activity measurement (<u>5%</u>)
- Radioisotope Plant
 - Source manufacture
 - Certification ISO 9978
 - Loading into HDTAS
 - Loading into transport cask
- Upgrade of PA Mayak facilities for CeANG production ongoing

Extraction of Cerium Solution

- Complexing agent displacement chromatography for Rare Earth elements (REE)
- VVR-440 Spent Nuclear Fuel:
 - PA Mayak: 100 t SNF/y
 - 1 ton SNF:
 - 13 kg REE
 - 22 g ¹⁴⁴Ce (3 y, 70 kCi)
- Production
 - Start in Feb. 2015
 - 9 months → Nov. 2015
 - Material for up to 175 kCi
 - Schedule to be consolidated

¹⁴⁴Ce-¹⁴⁴Pr SFRM capsule

605

CeANG Thermal Features

4.6 PBq (1000 W) CeANG temperature distribution alone in air at 38°C, lying on a massive steel supporting structure.

valeurs des isothermes (°C)

CeANG: Status

Advanced development services contract ongoing

- Finalization of specifications based on ¹⁴⁴Ce pilot extraction
- Assessment of impurity content base on 2014 fresh SNF
- Assessment of the final Ce0₂ density and thermal conductivity
- CeANG capsule manufacturing SFRM capsule certification \rightarrow 04/2015
- Ceang purchasing contract
 - Draft ready Under negotiation with PA Mayak

Risks: control the specifications (A, ²⁴⁴Cm), Schedule

¹⁴⁴Ce-¹⁴⁴Pr Antineutrino Generator (CeANG) Characterization

¹⁴⁴Ce-¹⁴⁴Pr samples spectroscopy

- 3 x 10 cm³ Ce(NO₃)₃ 59 KBq in ¹⁴⁴Ce each
- γ-spectroscopy (Bat. 538 Labo D. Motta)
 - Goal: Characterization of β/γ impurity content
- β-spectroscopy (Bat. 538 LNHB)

- Goal: Measure ¹⁴⁴Ce & ¹⁴⁴Pr β -spectra. Predict the ¹⁴⁴Pr ν -spectrum
- Realization of β-spectrometers
 Collaboration with Laboratoire National Henri Becquerel & TU Munchen
- ICPMS mass spectroscopy
 - Goal: characterization of neutron impurity content Collaboration with CEA/DEN/DPC/SECR

erc

Dario Motta Laboratory

- New shallow underground laboratory (Bat. 538)
 - Muon flux attenuation: x2 + hadronic component
 - Clean room
- Facilities: Ge-counter, Stéréo proto., β-spectrometer

Cea

¹⁴⁴Ce-¹⁴⁴Pr samples: γ spectroscopy

- Absence of impurities emitting γ's
 - <10⁻⁴ Bq/Bq of ¹⁴⁴Ce for E>500 keV
 - <10⁻³ Bq/Bq of ¹⁴⁴Ce for E<500 keV</p>
- Activity measurement
 - 01/10/2014
 - 58,9 (2.5) kBq in ¹⁴⁴Ce

Th. Lasserre - CSTS - 14/11/2014

¹⁴⁴Pr Antineutrino Spectra

• ¹⁴⁴Ce-¹⁴⁴Pr β /v spectra needed with %level precision

- Power-to-activity conversion factor: 216.0 ± 1.2 W/PBq
- Prediction of the IBD rate depends on the ¹⁴⁴Pr spectral shape
- Modeling of the ¹⁴⁴Ce-¹⁴⁴Pr β/ν spectra

• Fermi theory + nNucleus finite-size effects + screening + QED corrections + weak magnetism + recoils and mass effects \rightarrow 1% uncertainty (theory)

• But forbidden β -branches \rightarrow need for a measurement (shape factor, 10%)

Th. Lasserre - CSTS - 14/11/2014

¹⁴⁴Ce-¹⁴⁴Pr samples: β spectroscopy

¹⁴⁴Ce-¹⁴⁴Pr (Bat. 538)

- Liquid/Plastic spectro (CEA)
- Use of TUM spectro
- But low energy β's from ¹⁴⁴Ce pollute the determination of the ¹⁴⁴Pr-ν

¹⁴⁴Pr only (LNHB)

- Need chemical separation of ¹⁴⁴Pr from ¹⁴⁴Ce (LNHB)
- But ¹⁴⁴Pr mean life time: 17 min
- Move the β-spectro @LNHB
- Detection methods:
 - (¹⁴⁴Pr)_I in LS + PMTs
 - need reliable simulation
 - new (¹⁴⁴Pr)_s in PS + PMTs
 - (¹⁴⁴Pr)_s onto silicium detector
 - backscattering?

1st measurements in 2014. Need by 2016

CEA spectrometer (under construction)

TUM spectrometer (PRL. 112, 122501)

High-Density Tunsten Alloy Shielding (HDTAS)

Gamma Backgrounds of ¹⁴⁴Ce-¹⁴⁴

- γ rays produced by the decay through excited states of ¹⁴⁴Pr erc • Intensity $\gamma > 1 \text{ MeV}$ • Intensity $\gamma > 2 \text{ MeV}$ 1380 keV – 0.007 %

 - 1489 keV 0.3 %

Cea

- 2185 keV 0.7 %
 - (2.10¹⁰ γ /sec for 3.7 PBq)

I(%) - Log(ft)

HDTAS: Mechanics

HDTAS: Drawings

HDTAS: Thermal Features

4.6 PBq (CeANG)-W temperature distribution alone in air at 38°C. Assuming a temperature of 20°C. The temperature of the shield surface will be 80°C.

valeurs des isothermes (°C)

5.23E+02 5.03E+02 4.82E+02 4.62E+02 4.41E+02 4.21E+02 4.01E+023.80E+02 3.60E+02 3.40E+02 3.19E+02 2.99E+02 2.78E+02 2.58E+02 2.38E+02 2.17E+02 1.97E+021.77E+02 1.56E+02 1.36E+02 1.16E+02

valeurs des isothermes (°C)

T°C max in Cerium 526 HDTAS Averaged T°C in cerium 398

T°C max of inner capsule 434

	HDTAS + Capsule
T°C max of external	T°C max of
capsule	HDTAS
338	153

External HDTAS T°C 119 erc

HDTAS: Radiation Dose

Computation by CEA/SPR

- Code Mercurad v1.10
- Code MCNPX v2.7.0

Hypothesis

- 5.5 PBq in ¹⁴⁴Ce
- γ-emitters in Ce < 10⁻³ Bq/Bq
- n emitters in Ce < 10⁻⁵ Bq/Bq

Gamma Radiation dose

- at contact <120 µSv/h</p>
- at 1 m <7 µSv/h
- Source: ¹⁴⁴Pr de-excitation

Neutron Radiation dose

- 'at contact' <100 nSv/h</p>
- at 1 m <4 nSv/h
- Source: ²⁴⁴Cm SF (2.10⁴ n/s)

HDTAS: Status

- Design completed by July 2014 (Irfu/SIS/SPP)
- Call for Tender sent on October 8th (30 days)
 - Plansee & Xiamen answered
- Risks: Delivery schedule / Review of design by ASN

			1, 20	14					1	Tri 1, 2	2015						Tri 2,	2015	;					Tr	ri 3, 2(015						Tri 4
			obre	1	Nove	mbre	Déc	embre	2 J	lanvie	r	Fév	rier	M	lars	_	Avril		Mi	ai 	-	Juin		Ju	illet	-	Août		S	eptemb	ore	Octo
Shielding	308 iours?	Lun 16/06/14	IVI			MIF	וטן	IVI		DIN		D		. D		F	DIN	1 1		IVI	F	ון ט		. [ון ט		- L		F	
Final design	1 jour?	Lun 16/06/14												6	3																	
Tender	23 jours	Mer 08/10/14			b .																											
Choice of the manufacturer	16 jours	Lun 10/11/14			1		ի																									
Order	5 jours	Mar 02/12/14					, 🍅																									
Manufacturing	60 jours	Mar 09/12/14							_						_ 1			0	200	C												
Control and blank mounting in production site	2 jours	Mar 17/03/15													៍																	
Delivery in Munich	5 jours	Jeu 19/03/15													Ľ	h				-	2											
Tightness test + calo tests + handling tests	30 jours	Jeu 26/03/15														č																
Shielding transportation to Saclay	5 jours	Jeu 07/05/15																	i	Δ.					\sim	7			3			
Test in Saclay calo	30 jours	Jeu 14/05/15																		1				1			S	-				
Shielding transportation to Gran Sasso	5 jours	Jeu 25/06/15																				RUL	Ĩ	٦				V				
Handling tests in GS + calorimetry	30 jours	Jeu 02/07/15																		T		2		Ľ				-	_ 1			
Transportation To Marcoule or Cad.	5 jours	Jeu 03/09/15																		V									ľ			
Handling with TN MTR + Mayak teo training + deployment tests	10 jours	Jeu 10/09/15																			•							200		—	۲.	
	I	1			1																											

¹⁴⁴Ce-¹⁴⁴Pr Antineutrino generator transportation

cea

AREVA

Custom AREVA spreader

TN MTR Licensing Extension

- Suitable Container for Nuclear Fuel
 - Current certificate valid until 31/01/2016
 - Renewal of the certificate ongoing
 - One cask own by CEA
- Dedicated extension of the certification
 - Engineering by AREVA TN
 - Dedicated basket to hold the HDTAS
 - Thermal & Radioprotection studies
- Schedule
 - Request submitted to ASN/IRSN on 7/11/14
 - Validation expected by April 2014
 - Need a validation by Italy (+4 months)

TN MTR : Thermal Features

Temperatures of the CeANG, its shield and the TN-MTR during transportation

T°C max in

cerium

512

HDTAS

T°C max of

capsules

419

Averaged T°C of

cerium

380

valeurs des isothermes (°C)

4.68E+02 4.48E+02 4.29E+02 4.09E+02 3.89E+02 3.69E+02 3.50E+02 3.30E+02 3.10E+02 2.91E+02 2.71E+02

TN-MTR transport container T°C max of External T°C of TN-MTR **TN-MTR** 97

valeurs des isothermes (°C)

99.

97.

94.

92.

90.

88.

85.

83. 81.

79.

76.

74.

72.

69.

67.

65.

63.

60.

58.

56.

54.

52

Th. Lasserre - CSTS - 14/11/2014

T°C max of

HDTAS

127

External

HDTAS T°C

97

erc

Transport Routes

- IAEA Regulations for the Safe Transport of Radioactive Material
- Train / Dedicated vessel / Truck : AAPC published on 15/10/2014

Transport Routes: Logistics

- Empty cask + HDTAS from Marcoule to Mayak
 - CEA-Cadarache to St Petersburg (resp. CEA)
 - St Petersburg to Mayak (resp. Mayak)
- CeANG in HDTAS, HDTAS in cask, cask to LNGS
 - Mayak to St Petersburg (resp. Mayak)
 - St Petersburg to Le Havre (resp. CEA)
 - Le Havre to CEA (resp. CEA)
 - Temporary storage at CEA-Saclay (resp. CEA)
 - CEA to Gran Sasso (resp CEA + INFN)
- Empty cask from LNGS to CEA-Marcoule (resp. CEA)
- CeANG disposal (resp. CEA)
 - In France
 - In Russia

Storage of the (CeANG)-W in Saclay

- Possible temporary of the CeANG in Saclay
- Authorization request sent to the prefecture on Oct. 24th 2014

Alternative solution at INB 72 under study with CEA/DEN

Transportation: schedule

Arrival of the CeANG at LNGS

cea

Moving the CeANG in Hall C

HDTAS manipulation on trolley

Safe unloading of the CeANG

- Risk of HDTS fall on the floor
- Impact FE Analysis done by Nucleco /CCRI
- Penalizing configuration
 - 2 m fall
 - 45° incidence angle
 - ~6.3 m / s (free fall)
- Design of a carpet absorber
- HDTAS and bolts do not undergo plastic deformation due to the impact
- Carpet absorber could be used in Saclay (if any storage)

Inserting the CeANG beneath BX

erc

Neutrino Activity Measurement

CeANG inside SOX pit @ LNGS

CEA Calorimeter

Calorimeter: Thermal Features

ea

Temperature in the calorimeter during the measurement

valeurs des isothermes (°C)

cerium

352

cerium

487

90

External HDTAS Т°С 62

Th. Lasserre - CSTS - 14/11/2014

valeurs des isothermes (°C)

Calorimeter: Thermal Features

cea

Temperature in the calorimeter if cooling is lost for 10 h (incident)

HDTAS

Averaged T°C in

cerium

422

T°C max in

cerium

546

valeurs des isothermes (°C)

T°C max of

HDTAS

187

valeurs des isothermes (°C)

External T°C of HDTAS 159

Th. Lasserre – CSTS – 14/11/2014

T°C max of

external capsule

359

T°C max of

intermediate capsule

453

Calorimeter: Status

- Mechanical / Thermal design completed by November 2014
- Instrumental Prototype
 - Vacuum, insulation, thermometers, fluxmeters, DAQ, ...
 - Delivery: 12/2014

Calorimeter Schedule

Calibration summer 2015

					Tri 4, 2014								Tri	1, 2	2015							Tri	2,	
				tembr	re (Octo	bre	N	ovem	bre	Dé	cem	ore	Jar	nvie	r	Fév	rier		Mars	5		Avr	il
				M	F	D	MF	[D M	F	D	M	F	D	N	1 F	D	М	F	D	M	F	D	1
Calorimeter	351 jours?	Lun 25/11/13	Lun 13/04/1		_	_		_		_	_	_	-	_	_	_		_	_	_	_	_	_	-
Saclay	351 jours?	Lun 25/11/13	Lun 13/04/1		_	_				_	_	_	-	-	_	_		_		_	_	_		
Procurement phase	340 jours	Lun 25/11/13	Ven 27/03/1	-				_			_		-	-	_				_			-		
Circulation loop design	220 jours	Lun 25/11/13	Ven 26/09/1		⊳_2	6/0	9																	
Circulation loop tender	15 jours	Lun 29/09/14	Ven 17/10/1		Ľ.																			
Circulation loop realization	41 jours	Ven 24/10/14	Ven 19/12/1				Ľ.							h										
Circulation loop tests	60 jours	Lun 05/01/15	Ven 27/03/1											ľ										_
Vacuum vessel design	54 jours	Lun 01/09/14	Jeu 13/11/14						Ել															
Vacuum vessel tender	15 jours	Ven 14/11/14	Jeu 04/12/14						Č															
Vacuum vessel realization	60 jours	Ven 05/12/14	Jeu 12/03/15								Ì		-	-										

Data Taking

Experimental Parameters for a Cerium 144 Based Intense Electron Antineutrino Generator Experiment at Very Short Baselines

J. Gaffiot,¹,^{*} T. Lasserre,^{1, 2} G. Mention,² M. Cribier,^{1, 2} E. Dumonteil,³ M. Durero,² V. Fischer,² A. Letourneau,² and M. Vivier²

¹Astroparticules et Cosmologie APC, 10 rue Alice Domon et Léonie Duquet, 75205 Paris cedex 13, France ²Commissariat a l'énergie atomique et aux énergies alternatives, Centre de Saclay, IRFU, 91191 Gif-sur-Yvette, France ³Commissariat a l'énergie atomique et aux énergies alternatives, Centre de Saclay, SERMA, 91191 Gif-sur-Yvette, France (Dated: November 13, 2014)

The standard three-neutrino oscillation paradigm, associated with small squared mass splittings $\Delta m^2 \ll 0.1 \,\mathrm{eV}^2$, has been successfully built up over the last 15 years using solar, atmospheric, long baseline accelerator and reactor neutrino experiments. However, this well-established picture might suffer from anomalous results reported at very short baselines in some of these experiments. If not experimental artifacts, such results could possibly be interpreted as the existence of at least an additional fourth sterile neutrino species, mixing with the known active flavors with an associated mass splitting $\Delta m_{new}^2 \gg 0.01 \,\mathrm{eV}^2$, and being insensitive to standard weak interactions. Precision measurements at very short baselines (5–15 m) with intense MeV $\bar{\nu}_e$ emitters can be used to probe these anomalies. In this article we study the $\bar{\nu}_e$ signal and the backgrounds of a generic experiment deploying an intense β^- radioactive source inside or in the vicinity of a large liquid scintillator detector. We identified the challenges to search for neutrino oscillations inside the detector, reviewing the possible source and detector induced systematics, and quantifying their impact on the sensitivity.

CeANG inside SOX pit @ LNGS

- Use the base of the Cr-Calorimeter as trolley & cooling device
- Slide the CeANG into the pit Radiation dose controls (0.5 y)

Deployment

Th. Lasserre – CSTS – 14/11/2014

Gamma Background

- Random coincidence between two γ's from CeANG
- IDB-like event:
 - Prompt: E_y > 1 MeV
 - Delayed: E_d in [2 2.4] MeV
 - Time window: 1 ms (3 τ)
- Simulations
 - GEANT4 (limited)
 - TRIPOLI-4

Results:

- 2 10⁻⁴ event/day (w/o E cut)
- O(10⁻⁵⁾ event/day (w E cut)
- 50% uncertainty
- Negligible (HDTAS design)

Neutron Background

Traces of minor actinides

- Am, Cm, Bk, Cf,...
- Spontaneous fission (SF)
 - Few neutrons released
- (α, \mathbf{n}) reaction
 - 2 orders of magnitude lower than SF rate (MePHI/SCALE 5)

Most dangerous nuclei: ²⁴⁴Cm

- ²⁴⁴Cm ~ all Cm after 3 years
- T =18,1 y ; I_{SF} =1.4.10⁻⁶ ; 2,7 n/SF
- Heavier minor actinides
 - Higher branching ratio to SF
 - But much less produced during irradiation

Measurement of MA traces

- Mass spectrometry
- CEA/DEN DPC/SECR

Isotope	Half-life	$I_{ m SF}~(\%)$	Specific neutron activity (n/g)
$^{241}\mathrm{Am}$	$432.2\mathrm{y}$	$4.0 \ 10^{-10}$	1.2
$^{242m}\mathrm{Am}$	$141\mathrm{y}$	$4.7 \ 10^{-9}$	46
^{243}Am	$7370\mathrm{y}$	$3.7 10^{-9}$	0.72
$^{243}\mathrm{Cm}$	$29.1\mathrm{y}$	$5.3 \ 10^{-9}$	$2.6 10^2$
244 Cm	$18.10\mathrm{y}$	$1.4 \ 10^{-4}$	$1.6 10^7$
245 Cm	$8.510^3{ m y}$	$6.1 \ 10^{-7}$	$1.1 10^2$
246 Cm	$4.73 \ 10^3 \text{ y}$	$3.0 \ 10^{-2}$	$1.0 \ 10^{7}$
248 Cm	$3.40 \ 10^5 \ y$	8.39	$4.2 10^7$

Neutron Background

- Minor actinides SF fission
 - 10⁻⁵ Bq ²⁴⁴Cm / Bq ¹⁴⁴Ce
- 2 neutrons captured in BX releasing 2 γ's
- IDB-like event:
 - Prompt: E_y > 1 MeV
 - Delayed: E_d in [2 2.4] MeV
 - Time window: 1 ms (3 τ)
- Simulations
 - TRIPOLI-4
- Results:
 - < O(10⁻²) event/day
 - 50% uncertainty

Exclusion contour

Cea

erc

Th. Lasserre - CSTS - 14/11/2014

Cea

erc

3.7 PBq ¹⁴⁴Ce (σ_N =1.5%) @ 8.2 m from Bx center – 1.5 y – 99.000 % CL

erc

CeANG Disposal

- Agreement by Rosatom & FUSE PA Mayak
- Pros: Disposal done right after data taking
- Cons: Russian facilities being created
- Cons: Cost for transportation
- Option B: in France
 - 14 years storage at CEA (INB ATALANTE in Marcoule)
 - Final disposal at ANDRA
 - Pros: No expensive transportation
 - Cons: Unloading of the CeANG and handling on site
 - Cons: Management of the CeANG during 14 years
 - Cons: Need ASN approval

Legal authorizations

Item	Authorization	Responsability	Implemented by	Subcontractor	Competent regulation authority	Submission Date	Expected Review Time	Expected Agreement Date
CeANG	CeANG SFRM certificate	CEA	PA Mayak	none	Rosatom	déc-14	3 months	march-2015
g	CeANG importation in France	CEA	CEA	none	ASN	26/10/2014	3 months	january-2015
	CeANG exportation to Italy	CEA	CEA	none	ASN	26/10/2014	3 months	january-2015
	Hosting CeANG at CEA	CEA	CEA	none	ASN/Prefecture	26/10/2014	3 months	january-2015
	CeANG use at LNGS	INFN	INFN	SRS	ISPRA / Minister of Economic Activities	nov-14	1 y?	?
Transportation:	CeSOX TN-MTR Licensing in France and Russia	CEA / INFN	AREVA / CEA	AREVA	ASN	31/10/2014	5 months	march-2015
TN-MTR	Validation of the CeSOX TN-MTR Licensing in Italy	CEA / INFN	AREVA / CEA	MIT	ISPRA	31/03/2015	6 months ?	sept-15
	Transportation authorization from Mayak to St Petersburg	CEA / INFN	PA Mayak	SPB-Izotop	Rosatom	< 05/2015	6 months ?	sept-15
Transportation: Logistic	Transportation authorization from St- Petersburg to France	CEA / INFN	AREVA / CEA	NSC or ASPOL (boat) / LBU (road)	ASN	< 05/2015	6 months ?	sept-15
	Transportation authorization in Italy	CEA / INFN	AREVA	MIT / LBU (road)	ISPRA/Minister of Transportation	< 05/2015	6 months ?	sept-15

Conclusion

- Cerium Antineutrino Generator
 - >3.7 PBq ¹⁴⁴Ce-¹⁴⁴Pr production in 2015 Negotiation ongoing
- Shielding: Designed Tender closed To be ordered in November
- **Logistic:** TNMTR licensing ongoing. AAPC published for logistics
- Activity Calibration: Calorimeter being realized
- Host Detector Deployment: Borexino is getting ready
- CeSOX Collaboration
 - CEA: DSM-Irfu / DEN / SPR / LNHB
 - Borexino Collaboration + Hawaii Univ.
- Goal: Start Data Taking by December 2015
- Risks: CeANG specifications, authorizations, schedule