LISA : principe de mesure et activités AIVT coutol Drag-free

and laser Kenents Phase Meter Phase Meter

Optical Bench

รมอารมาน

H. Halloin APC Université Paris Diderot / IN2P3 / Obs. de Paris / CEA

> [avec ARTEMIS/OCA et PASO/CNES]

Plan

Profil mission de LISA
 Principe de la mesure
 Gestion des performances et AIVT

Profil mission

Hubert Halloin - Réunion IRFU / APC - 15 Mars 2017

Paramètres clés

- Configuration équilatérale
 3 bras / 6 liens ; 2,5 Mkm
- Télescopes : Ø 30 cm
- Masses inertielles : copies de LPF
- 2 masses / satellites ; bancs optiques indépendants
- Lasers @1064 nm, 2W sortie de fibre
- Performance attendue : ~10 pm/√Hz @ 1 mHz

Configuration orbitale

Une longue histoire ...

J.E. Faller, P.L. Bender, J.L. Hall, D. Hills and M.A. Vincent, Proc. Colloquium «Kilometric Optical Arrays in Space», Cargèse (Corsica), 23-25 October 1984

We are investigating possible designs for a laser gravitational wave antenna in space using free test masses and heterodyne (interferometric) detection. One possibility is to use baselines about 10^6 km long between three spacecraft in nearly circular one-year orbits about the sun. If the orbit elements are chosen properly, the distances between the spacecraft can be kept constant to roughly 1 part in 10^3 without orbit corrections. With milliwatt-transmitted laser power levels and 50 cm diameter optics, a strain sensitivity of $10^{-19}/\sqrt{\text{Hz}}$ over at least the period range from 10 to 10^4 seconds appears feasible. The primary goal of the measurements is to observe gravitational radiation associated with present or past interactions of super-massive objects. A number of binary sources can, however, also be studied. For periods shorter than 10 seconds, the sensitivity for a baseline length of 10^6 km would degrade as a result of multiple gravitational wavelengths being contained in the arm lengths. For longer periods, the main limitation is likely to come from spurious accelerations due to forces other than the gravitational attraction of the sun and planetary bodies.

Anniliary Spacecraft

Orbites et mise à poste

On veut, pour une durée de 10 ans :

- Minimiser la déformation du triangle due aux perturbations gravitationnelles de la Terre (flexing / Doppler)
- Maintenir un débit de communication suffisant avec la Terre (donc pas trop loin...)
- Avoir une masse au décollage compatible avec un lancement Ariane 6.4 (donc pas trop de carburant pour aller à poste)
- Résultats après optimisation :
 - > Lancement avec échappement direct dans l'espace interplanétaire
 - Transfert en ~400 jours
 - Trajectoire 'balistique' : LISA se rapproche de la Terre puis s'éloigne
 - Flexing : $\pm 1 \text{ deg}$
 - Doppler : ±10 MHz

La France dans le Consortium

Hubert Halloin - Réunion IRFU - 18 Mai 2017

Principe de la mesure

Time Delay Interferometry

Problème : propagation du bruit de phase laser sur des bras inégaux

Time Delay Interferometry

Time Delay Interferometry

 $s_2(t) + s_3(t-2L_3) - [s_3(t) + s_2(t-2L_2)] = 0 \dots$

⇒ Annulation des bruits 'transportés' (essentiellement phase laser)

 \Rightarrow Modifie Ia fonction de transfert (pas de réponse aux multiples de 1/(2L) ~60 mHz)

- \Rightarrow Nécessite la connaissance de :
 - La longueur des bras à quelques mètres
 - Les dérives relatives des horloges à quelques ns

⇒ Des versions plus sophistiquées de TDI prennent en compte la vitesse relative des satellites (non réciprocité des retards)

⇒ Il existe une combinaison TDI ('Sagnac') annulant l'onde gravitationnelles à basses fréquences

Utile pour la caractérisation du bruit instrumental

Les signaux

> 3 battements sur chaque photodiodes (dont au moins 2 dans la bande passante (5-25 MHz)

Puissances optiques :

- ~100 pW dans la porteuse optique,
- ~10 pW dans les bandes latérales (~2,5 GHz de la porteuse),
- ~1 pW pour la modulation de phase (PRN)

Charge utile LISA

6

Optical

SC/SC

Laser source

🔫 Ref

TM/SC

- Reference

Modulator

GRS

Front-End

Electronics

UV source

Control Unit

Phasemeter

ΤМ

Laser

Control Unit

Diagnostic Equipment

Structure

Suppor

Esteban et al., «Experimental demonstration of weak-light laser ranging and data communication for LISA.», Optics Express, 2011, vol. 19 p. 15937

Performance globale

Défis technologiques pour LISA

Free flying test mass subject to very low parasitic forces:

- Drag free control of spacecraft (non-contacting spacecraft)
- Low noise microthruster to implement drag-free
- Large gaps, heavy masses with caging mechanism
- > High stability electrical actuation on cross degrees of freedom
- > Non contacting discharging of test-masses
- High thermo-mechanical stability of S/C
- Gravitational field cancellation
- Precision interferometric, local ranging of test-mass and spacecraft:
 - pm resolution ranging, sub-mrad alignments
 - High stability monolithic optical assemblies
- Precision million km spacecraft to spacecraft precision ranging:
 - High stability telescopes
 - High accuracy phase-meter
 - High accuracy frequency stabilization
 - Constellation acquisition
 - Precision attitude control of S/C

Défis technologiques pour LISA

Free flying test mass subject to very low parasitic forces:

- **Drag free control of spacecraft (non-contacting spacecraft)**
- **Low noise microthruster to implement drag-free**
- **Large gaps, heavy masses with caging mechanism**
- High stability electrical actuation on cross degrees of freedom
- **Non contacting discharging of test-masses**
- High thermo-mechanical stability of S/C
- **Gravitational field cancellation**

Precision interferometric, local ranging of test-mass and spacecraft:

- pm resolution ranging, sub-mrad alignments
- **W** High stability monolithic optical assemblies
- Precision million km spacecraft to spacecraft precision ranging:
 - High stability telescopes
 - High accuracy phase-meter
 - High accuracy frequency stabilization
 - Constellation acquisition
 - **Precision attitude control of S/C**

Validé avec LISA Pathfinder

Défis technologiques pour LISA

Free flying test mass subject to very low parasitic forces: Drag free control of spacecraft (non-contacting spacecraft) **Low noise microthruster to implement drag-free** Large gaps, heavy masses with caging mechanism High stability electrical actuation on cross degrees of freedom **Non contacting discharging of test-masses** High thermo-mechanical stability of S/C **Gravitational field cancellation** Precision interferometric, local ranging of test-mass and spacecraft: pm resolution ranging, sub-mrad alignments **W** High stability monolithic optical assemblies Precision million km spacecraft to spacecraft precision ranging: High stability telescopes High accuracy phase-meter and frequency distribution **W** High accuracy frequency stabilization (incl. TDI) **Constellation acquisition and low jitter laser pointing Precision attitude control of S/C**

Validé avec LISA Pathfinder

Démonstrateurs au sol

Gestion des performances et AIVT 'Instrument'

Quelle contribution technique pour la France ?

Dans LISA, **tous** les systèmes des 3 satellites participent à la mesure !

- L'exploitation scientifique nécessite une caractérisation très précise de l'instrument (calibrations, bruits, fonctions de transfert, etc)
 - Prédiction fine du champ gravitationnel interne
 - Couplages thermiques
 - Couplages rotation/translation (erreurs d'alignement, distortions de front d'onde, etc.)
 - Fonctions de transfert, calibrations, ...
- Le Consortium scientifique doit pouvoir établir une modèle de performance précis et complet
 - Simulateur 'end-to-end' (en cours de développement...)
 - Dimensionnement et execution de tests de performances/validation au sol
 - Développement des bancs de test critique

Objectif prioritaire : gestion des performances système
 Modélisation du système
 Participation aux études systèmes
 Caractérisations au sol
 Prédiction des performances en vol
 Suivi des performances en vol

- Procédures de validation des performances scientifiques
 - Conversion des exigences systèmes en mesures au sol (autant que possible)
 - Exigences métrologiques pour les bancs de test
 - Exploitation des données de test au sol

- Design des bancs
- Minimisation des perturbations locales
- Fabrication des bancs
- Recette

Verification and Validation

Performance Control

Test bench design, manufacturing and commisioning

Assembly, Integration

Verification and Validation

Performance Control

Test bench design, manufacturing and commisioning

Integration

 Fabrication des équipements d'intégration

Appareillages spécifiques

Intégration physique

AIVT (Assemblage, Intégration, Validation et Tests)

- Objectifs:
 - Intégration des différents éléments de l'instrument
 - Caractérisation des éléments essentiels à la performance scientifique
- Eléments d'entrée:
 - Structure support
 - GRS
 - Banc optique
 - Télescope (TBC)
 - Electroniques de commande-contrôle et phasemètre / sources lasers

Délivrables par le Consortium

Structure support + OB + GRS (+ Telescope) intégrés

Electroniques associées

- 1^{ère} étape : reception ; montage du modèle 'électrique' et caractérisations
- Tests fonctionnels
- Calibrations électroniques, synchronisation des horloges
- Conformation aux modèles numériques

Hubert Halloin - Réunion IRFU - 18 Mai 2017

2^{ème} étape : Intégration du bancs optique sur le support

3^{ème} étape : Connexions aux systèmes auxiliaires et simulateurs optiques

Tests fonctionnels

(Re)vérification des calibrations et couplages internes, alignements

- Performances (<mrad, pm ...) sur 1s —> 1 jour
- Validation 'End-to-end'

Etapes d'intégration / caractérisation
 4^{ème} étape : Montage (et caractérisations) avec le GRS (TM bloquée)
 Vérifications fonctionnelles

Hubert Halloin - Réunion IRFU - 18 Mai 2017

5^{ème} étape (TBC) : Montage avec le télescope

Alignements, couplage angle / piston (pm/rad), couplage thermique (pm/K)

Lumière parasite

Hubert Halloin - Réunion IRFU - 18 Mai 2017

Etapes d'intégration / caractérisation 6^{ème} étape : Livraison de l'instrument intégré et des boitiers auxiliaires + système de caractérisation au Prime P/L

Conclusion

Identification des étapes d'intégration (Phase 0 avec le CNES)

- Identification des essais et bancs de tests
- Infrastructures (lieu d'intégration, plateformes techniques, moyens de tests, etc).
- Moyens humains
- Budget de performance (en particulier des bancs de test)
 Coût ...
- Mis à jour / interaction avec la phase 0 ESA en cours
 - Phase 0 'Instrument' jusqu'en Novembre
- Implication d'autres laboratoires dans la collaboration technique
 - Déjà impliqués : APC, ARTEMIS/OCA, LMA
 - Mais aussi LAL, LAM, CEA/IRFU, ...

Extras

Réponse à l'appel à mission L3 de l'ESA

Soumise le 13 janvier dernier

<u>https://</u> <u>www.elisascience.org/</u> <u>files/publications/</u> <u>LISA L3 20170120.pdf</u>

Etudes de phase 0 (CDF) à l'ESA du 8 mars au 5 mai LISA Laser Interferometer Space Antenna

A proposal in response to the ESA call for L3 mission concepts

Aspects programmatiques

* Roadmap eLISA accélérée …	
Sélection du thème eLISA en L3	20
Travail sur la 'Technology Roadmap'	20
Phase 0 CNES sur le DPC	2
Vol (réussi) de LISA Pathfinder	20
Phase 0 CNES sur l'AIVT	2
Appel à Mission par l'ESA	А
Phases 0 'Plateforme' et 'Instrument' @ESA	١
Phase A industrielles concurrentes	
Adoption de la mission	2
Réalisations industrielles (phases C à D)	
Décollage LISA	2

2015 : Première détection directe 013 des OG par les 013 - 2015 interféromètres sol! 013 - 2014016 - 2017 016 - 2017 utomne 2016 - Janvier 2017 Mars - Novembre 2017 2018 - 2020 021 2022 - ... 030 - 2034

Orbites et mise à poste

Transfer Properties				
Launch Date	18.12.2030			
Arrival Date	16.01.2032			
Breakdown				
Maneuver	SC1 [m/s]	SC2 [m/s]	SC3 [m/s]	
Post-Launch	204.1	228.5	76.4	
Inclination	147.1	407.2	433.7	
Stopping	599.9	632.9	681.3	
Navigation and Dispersion Control	73.5	73.5	73.5	
Total ΔV per S/C	1024.6	1342.1	1264.9	
Fuel Mass [kg]				
Fuel Mass at Isp = 270 s	555.1	775.5	719.5	
Total Fuel Mass [kg]	-	2050.2	-	

Time

Time

Telecommunications

Estimation des données : ~35 kbits/s (~334 Mo/jour)

Trouver une stratégie de communication qui :

Permette de transférer toutes les données …

Minimise le temps de latence

Maximise le temps entre 2 repointages d'antennes du S/C (interrompt la prise de mesures)

Source	Class	Measurement	Count	Sampling Rate [Hz]	Bits / channel	Rate [bits/s]
		Paylo	oad			
	IFO Longitudinal	Science IFO	2	3.3	32	213.3
		Test Mass IFO	2	3.3	32	213.3
		Reference IFO	2	3.3	32	213.3
		Clock Sidebands	2	3.3	32	213.3
Phasemeter	IFO Angular	S/C θ,η	4	3.3	32	426.6
I hasemeter		TM θ, η	4	3.3	32	426.6
	Anciliary	Time Semaphores	2	3.3	96	639.9
		PAAM Longitudinal	2	3.3	32	213.3
	Optical Monitoring	PAAM Angular	4	3.3	32	426.6
		Optical Truss	6	3.3	32	639.9
GRS FEE	GRS Cap. Sensing	TM x, y, z	6	3.3	24	480.0
	one oup othoning	ΤΜ θ,η,φ	6	3.3	24	480.0
	DFACS	TM applied torques	6	3.3	24	480.0
		TM applied forces	6	3.3	24	480.0
Payload Computer		S/C applied torques	3	3.3	24	240.0
		S/C applied forces	3	3.3	24	240.0
	Payload HK	e.g. Temperature, Power Monitors <i>etc</i> .				2613
Total Payload						8639
		pl . (
		Platte	orm			1100
Housekeeping (based on LPF)					1189	
Total Platform						1189
Totals						
Raw rate per S/C					9828	
Paketisation overhead [10%]					983	
Packaged rate per S/C					10811	
Packaged rate for Constellation					32433	

Table 7: LISA Data Generation Rate Breakdown.

Telecommunications

Solution proposée

- Utilisation la bande X (8,4 GHz) plutôt que Ka (32 GHz): faisceau plus large => la Terre est 'visible' pendant ~3 jours pour chaque S/C
 - Communication entre S/C => un seul S/C communicant à la fois => 9 jours entre les repointages d'antennes
 - Transmission >108 kbits/s => ~7 heures de communication/jour

Budget de masse

- Masses "sèches" reprises de LPF et mise à l'échelle des études NGO : 1175 kg / satellite
- Carburant pour les modules de propulsion (par satellite) : 1025 / 1260 / 1340 kg
- Gaz froids pour la compensation de trainée (précisément connu grâce à LPF) : 20 g/jour => 90 kg sur 10 ans (avec marges...)
- > => 6 076 kg au décollage (avec marges, 7 000 kg max)

e	Parameter	Value	Comment
Υ	Scaling Factor	1.53	Ratio of LISA and LPF solar array areas
Γ	Mean Thrust per DOF	16.2 μN	Scaled from LPF
	DFACS Consumption	20.3 g/day	Scaled from LPF usage of 10 g/day
Γ	Mission Duration	10 years	Extended Mission
	DFACS Cold Gas Mass	73.98 kg	
Г	Maneuvers Cold Gas Mass	1 kg	De-spin, antenna rotation etc. From NGO
	Total CG Mass	75 kg	
	Total CG Mass with margin	90 kg	With 20% Margin

Table 5: LISA cold gas mass budget.

Technology Readiness Levels

- Evaluation de la maturité technologique des éléments principaux de la mission :
 - TRL 4 : demonstration en labo
 - TRL 6 : modèle 'élégant' testé en environnement représentatif
 - TRL 9 : héritage direct d'un modèle de vol
 - Tous les éléments LISA doivent être à (au moins...) TRL 6 en 2020/2024 ...
- LISA est déjà une mission déjà très mature à ce stade ...

Core functionality

Technology	Status	TRL
	Gravitational Reference Sensor Technologies	
Test mass electrostatic readout and actuation	On-orbit LPF performance used to develop sensitivity curve. Some flexibility al-	9
Caring on Ladron machanism	lowed in Phase-A.	0
Caging and release mechanism	Launch-lock, release, and re-grabbing functions demonstrated on LPF.	9
Charge Management System	UV Charge control demonstrated on LPE	9
- UV Source: Hg lamps	LPF Heritage (lifetime to be investigated).	6
- UV Source: LEDs	Development efforts in UK and US. Charge control demonstrated on torsion pen- dulum.	4
Drag	-free Attitude and Control System (DFACS) Technologies	
DFACS control algorithms	18 DoF control demonstrated on LPF by both DFACS (ESA) and DRS (NASA)	7
°	algorithms, performance meets LISA specs, LISA version will add constellation	
	pointing requirements, performance simulated in prior LISA studies.	
Cold Gas Micropropulsion	Thrust noise requirement demonstrated on LPF. Additional heritage from GAIA	9
	and Microscope.	
Colloidal Micropropulsion	Thrust noise requirement demonstrated on LPF. Additional development re-	7 (head), 5
	quired for redundancy and lifetime.	(feed system)
miniRIT & HEMP Micropropulsion	Laboratory work ongoing	4 & 3
* *	Laser System Technologies	
Master Oscillator - TESAT NPRO	Full heritage (TESAT) on LPF and GRACE-FO. All requirements met.	9
Fiber Amplifier - TESAT	Significant flight heritage at required power levels (NFIRE, TerraSAR, AlphaSat,	5
	Sentinel). Laboratory campaign to verify phase fidelity underway (CFI compo-	
	nent).	
Fiber Amplifier	Ongoing development effort at GSFC. Meets noise requirements including side-	4
1	band stability. Partial environmental testing done. 2.5 W output power (CFI	
	component).	
Frequency Reference Cavity	Flight Optical cavities for GRACE-FO delivered and demonstrated in laboratory	8
1 1	(US) to meet all LISA requirements. Equiv. European development ongoing	
Master Oscillator - ECL	Ongoing development effort at GSFC in partnership with US industry.	4
	Optical Bench Technologies	
Bonding Technology	Alignment stability and displacement noise requirements demonstrated on-orbit	9
0 0/	with LPE	
Fibre injectors	Pointing stability and beam quality requirements demonstrated on-orbit with	5
	LPF. Prototype for LISA has been raised to bread-board level.	
Manufacturing	Efforts underway (UKSA & ESA funded) to optimize manufacture process to re-	4
	duce construction time and schedule risk.	
Photoreceivers - US	Two parallel efforts at JPL and GSFC in partnership with US industry. Laboratory	4-5
	prototypes demonstrate improved noise performance.	
Photoreceivers - DLR/Adlershof	Heritage from GRACE-FO (TRL 8), requires moderate performance improve-	4
	ments.	
Interferometric phase reference	Several variants studied in laboratory environment. Design and testing consoli-	4
	dated under ESA-funded activity.	
Pointing Mechanisms	Two prototype Point-Ahead Angle (PAA) mechanisms developed (TNO &	4
	RUAG) and tested in a laboratory environment.	
	Telescope Technologies	
Optomechanical Stability	Pathlength stability of a representative metering structure demonstrated in labo-	4
	ratory.	
Optical Truss	Risk mitigation against insufficient optomechanical stability. Some heritage from	4
	GAIA but requires adaptation to LISA requirements.	
Pointing - Articulated Telescope	Four-optic fixed mirror design developed and prototyped. Candidate articulation	4
	actuator noise performance validated in NASA laboratory study.	
Pointing - In-field Guiding	Optical design completed and prototyped (Airbus DS), including candidate opti-	3
	cal bench interface.	
	Phase Measurement System Technologies	
Complete functionality	German / Danish Phasemeter from ESA CTP and JPL lab work	4

JPL Phase measurement, DWS angle sensing, closed-loop laser frequency control

demonstrated on CRACE EO flight units

Arbre produit

Schématise les principaux délivrables du Consortium, de la NASA, de l'ESA.

Hubert Halloin - Réunion IRFU - 18 N

Autres contributions

Hubert Halloin - Réunion IRFU / APC - 15 Mars 2017

Structure support

- Assure la liaison mécanique entre le GRS, le banc optique, la plateforme (et le télescope ?)
- Contrainte principale : stabilité mécano-thermique et pivot avec la plateforme

Structure en fibres de carbone (a priori...)

- Interfaçage (mécanique et/ou optique) complexe avec la plateforme (resp. ESA / Prime Industriel) et (probablement) NASA (télescope)
 - La contribution française dépendra des détails du design et du partage des responsabilités

Détecteurs gamma auxiliaires

- La constellation LISA offre une configuration très favorable à une triangulation par temps de vol
 - Base triangulaire de 2,5 Mkm de côté connue avec une précision décimétrique
 - Synchronisation des horloges des satellites à ~1 ns
 - Position absolue des satellites connue à <1 km</p>
 - Mieux à posteriori (reconstitution orbitographique)
- Idée : embarquer des détecteurs gamma pour étudier les (éventuelles) contreparties haute énergie des coalescences d'objets compacts
 - Contrainte : simple, mature, robuste, peu de télémétrie, aucun impact sur la mission principale
 - Design 'conservateur' : BGO + PM ; évolution possible vers des SiPM ?
- Pas plus qu'une idée pour l'instant
 - Proposée par F. Lebrun et P. Laurent (CEA/APC)
 - Doit être précisée (notamment le coût !) et soutenue par un laboratoire / institut expert du domaine...
 - Doit également être revue et approuvée par le Consortium avant d'être proposée aux agences

Hubert Halloin - Réunion IRFU / APC - 15 Mars 2017

Identification des étapes d'intégration (Phase 0 avec le CNES)

- Bancs et équipements supports
- Infrastructures
- Moyens humains
- Budget de performances (en particulier des bancs de test)
 Coût ...
- Mis à jour / interaction avec la phase 0 ESA en cours
- Implication d'autres laboratories dans la collaboration technique
 - Aujourd'hui : APC, ARTEMIS/OCA, LMA
 - Probable : LAL
 - En discussions : LAM, CEA/IRFU ...

- Suivi de la définition des interfaces et partage de responsabilités avec les partenaires hors Consortium
 - Quelles responsabilités pour la réalisation de l'interface mécanique ?
 - Interface charge utile et plateforme : ESA et/ou Prime industriel
 - Interface optique (et mécanique ?) télescope : ESA et/ou NASA et/ou ?
- Proposition de partage de responsabilités au sein du Consortium (par rapport aux activités AIVT)
 - Philosophie générale : un 'contributeur' (pays membre ou industriel) est responsable de
 - La réalisation et la validation de son équipement seul
 - La livraison à l'intégrateur instrument des moyens de test unitaires (bancs de test et, si nécessaire, opérateur)
 - La livraison à l'intégrateur instrument des bancs de simulations électroniques / optiques (SCOE)
 - Le développement et la livraison des modèles numériques de simulation de l'équipement

