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Alternatives to Dark Matter (e.g. modified gravity) must:

- explain the galaxy rotation curves, distribution of gas in elliptical galaxies and clusters
- match gravitational lensing cosmic shear measurements

- satisfy classical tests of GR (Solar system tests: precession of Mercury, Shapiro time
delay, pulsar period decay, ...)

- fit LIGO’s gravitational wave signals, which already rule out many models (for DE)

- fit the background expansion (distance-redshift relationship)

- fit the CMB and large-scale structure measurements «

(Some of these features may have different explanations, but this would not be economical.
This does not matter for this paper, anyway.)



The point made by this paper:

- at recombination the baryon density power spectrum shows strong BAO oscillations

- at z~0 the baryon density power spectrum shows weak (subdominant) BAO oscillations

. It is difficult to imagine how to explain this damping of BAO
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with time, without DM !
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How this is explained in LCDM:

- the initial fluctuations are adiabatic: overdense regions have an excess of
baryons, dark matter, and photons

- baryons & photons are tightly coupled and oscillate like sound waves Cs ~ C
- DM has no self/cross interactions. It has no pressure and only feels gravity.
DM does not show acoustic oscillations,

its gravitational potential fluctuations keep growing (at a logarithmic rate)

- after recombination, baryons decouple from photons and fall into the DM
gravitational potential wells

- baryons catch up with DM, and matter fluctuations now grow as 0 X a(t)
with small (subdominant) BAO, because baryons are subdominant with respect to DM.

' The “damping” of BAO is explained by an external component (DM),
which has no BAQ, is decoupled at z>1 100 and dominant at low z.



Problem in baryons-only scenarios:

The damping of the BAO in the baryon density power spectrum
must come from the self-dynamics of the baryons themselves,
because there is no other component.

Somehow, these new dynamics (modified gravity) must include/
generate the BAO scale, to smooth the BAO features.



Let’s follow the paper:

The aim:

redshift (z ~ 0). Any successful theory for dark mat-

ter, whether it invokes particles or alternative theories of

gravity, must properly explain how the baryon density

field at 2z ~ 1100 evolves into the one at z ~ (0. These However, assumes a background
density fields are typically probed indirectly through fit- expansion close to LCDM.This is
ting the CMB power spectra and the matter power spec- assumed to be implied b)’
trum in tandem [e.g., 9, 10]. This necessarily assumes backsround data

ACDM (or some simple extension), as well as GR. The & '
test we propose here does not invoke GR nor a specific

cosmology. Instead it relies solely on small-scale physics —

Thomson scattering and the Newtonian continuity equa-

tion. Note that while similar tests have been proposed _
- - — I - small-scale physics
on BAO scales,

linear regime



Obtaining baryon spectra from observations:

(instead of using a-priori models, with CAMB and LSS software, whose predictions
are next fitted to the data)

The polarization of the CMB on small scales is ex-
clusively due to Thomson scattering, which itself only
relies on the velocities of the electrons. Because protons
and electrons are tightly coupled via Coulomb scatter-
ing at early times, we can assume that the velocities of electron velocities
the electrons exactly equals that of the protons. The

z~1100: CMB polarization spectrum then directly measures the *
velocity of the baryons at z ~ 1100. The Newtonian con-
tinuity equation, which is valid at small scales, relates
the velocities of the baryons to their density field. Thus,
the CMB polarization spectrum is a direct measurement
of the baryon velocity field at z ~ 1100. At z ~ 0,

CMB polarization

baryon power spectrum

Why CMB polarization and not CMB temperature anisotropies ?

CMB temperature: mostly depends on the energy density and the gravitational potential

== not appropriate if we modify gravity !

CMB polarization is a (more) robust measurement of the baryon density power spectrum !

of the baryon velocity field at z ~ 1100. At z ~ 0, galaxy power SPeCtrum

7~0: the galaxy-galaxy correlation function traces the baryon

density field at large scales. With these two direct mea- baryon power Spectrum



Green’s function (or transfer function):

a(k,t) = Fy(k)0y(k, t) + ) Fa(k, k)0 (k, )60 (K t) + ... acceleration as a function of density
k/
Since the density field is small, the linear term should
dominate the gravitational acceleration in most modified . )
gravity theories. Thus, we focus on linear modifications Wh)’ no time dependence ’
to GR in this paper. Note that this linear term acts like a (extr'a ﬁelds COUId Pla)l the role Of a CIOCk 7)

transfer function — it has no explicit time dependence and
is simply multiplied with a given density configuration in
k-space to give the resulting acceleration force.

but does not matter for the main argument

If the modified gravity theory has strong nonlinear
terms, then the theory will produce significant mode-
mode couplings that would be apparent in the large-scale
structure. The theory could evade the current strong con-
straints from Planck on non-Gaussianity [20] if the theory
is linear at early times. However, if the theory is non-

linear enough at late times to erase the baryon acoustic - nonlinear terms would PI"OCIUCG
oscillations, then these same nonlinearities would induce Slgnlﬁ cant non-G aussianities

large non-Gaussian features in the large-scale distribu-

tion of structure. These are not seen in the large-scale

distribution of structure [27] and they will be further con-

strained by upcoming missions, such as SphereX' [28].

Thus, it is unlikely that a strongly nonlinear theory could

produce the correct evolution for the baryons and evade » assume linear evolution
low-redshift non-Gaussianity constraints. Detailed cal-

culations showing this point are left to future work.

- density fluctuations are small



Green’s function

e

Ty(k,z = 0)p(k, z = 1100)

linear evolution implies (?): op(k,z = 0)

_ Pbb(k,z e O)
N Pbb(k,z — 1100) .

obtained from the observed power spectra: T(,Q (k)

This is the key quantity used in the paper.

This is based on:

- linear evolution

- there is only one relevant component: baryons
modified-gravity models usually involve other components:
* OK with this framework if these are slaved to the baryons (e.g., quasi-static

approximation) and can be integrated over (no independent degree of freedom).

* Presumably, the authors consider that truly additional degrees of freedom
are equivalent to introducing a disguised DM ?

- the Green’s function is multiplicative (Fourier modes are decoupled)

5b(kz,z — 0) 7é /dk/ Tb(k, k’/; & = 0)55(16’,2 — 1100)



Remark: if we had:  dp(k,2=0) = /dk’ Ty(k, k"5 2 = 0)d (K, z = 1100)
Such a convolution could smooth the power spectrum and explain the damping of the BAO

However, this is not allowed by homogeneity and isotropy (?):

Fourier transf.
convolution <« — multiplication

Op(x, 2 =0) = Tp(x)dp(x, z = 1100)

However, because of statistical homogeneity T;(x) cannot depend on x,
more precisely, it should be invariant under » — x4+ «a

TbI%—F@‘F--- » Tb:k—|—]€2‘|—
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The transfer function shows a series of “inverted” BAO features.
They are needed to compensate for the initial BAO oscillations,
in order to produce a flat power spectrum at low redshift.




2
Writing the transfer function in real space: Gy(r) = GO/dk ; Ty(k)jo(kr) ,

22

1.0 — Data - no extrapolation

------- Data - constant value extrapolation

assumptions: 1) T?(k > kpax) = 0 (solia, black line); 2)
T?(k > kmax) = T?(kmax) (dotted, black line). These
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Alternative gravity theories (that replace DM) must:
|) contain the BAO scale, to be able to suppress the BAO features

—>

2) have an acceleration law that changes sign around this scale (??)



Conclusion:

MOND, emergent gravity: |/r force from point sources.
This would give power-law Green’s functions.
They do not predict a special scale close to BAO scale nor oscillations.

Perhaps it is possible to use the Green’s function of
the form found above to find a modified gravity theory
that can fit cosmological constraints and all other GR
tests. However, given the extreme form of the function,

» it 1s not clear that this is possible — in particular, the sign
changes would induce quite extreme dynamics within the
local volume. CDM remains the simplest explanation for
the growth of structure.



Baryon power spectrum at z~0

The baryons at low redshift and large scales (2

10 Mpc) are well-traced by galaxies. Thus, we can take
the 3D power spectrum of galaxies as the baryon power galaxy power spectrum
spectrum. This is given by:
Pyp(k,z ~0) = bgngg(k, z~0), (5) *
where by, is the bias of baryons relative to galaxies and baryon power spectrum

P, is the 3D galaxy-galaxy power spectrum.
In reality, the galaxies are a biased tracer of the
baryons. Most of the baryonic mass in the universe is
in gas [29]. However, we expect that for k& < 0.1 Mpc™*
the bias, by,, approaches some constant value. This is
seen in numerical simulations [e.g., 30] and violating this , , ,
would require moving baryons large distances. Thus, the approximation: constant bias
galaxy-galaxy power spectrum should be a good measure
of the shape of the baryonic power spectrum at these
large scales.



Baryon power spectrum at z~1100 Zaldarriaga & Harari (1995)

CMB polarization » electron velocities » baryon density power spectrum

Expand photons temperature and polarization fluctuations over multipoles:

AR, k) = (20 + 1) APy ()
l

n: dil’ection Of the Photon pr‘opagation (direction tO the SkY) k: wave number Of the temperature ﬁeld

Evolution egs.: Ar +ikp(Ar + O) = —® — &{A7 — Ao — pVs — sPa(p)[Arz + Apa — Apol}

Ap +ikuAp = —k{Ap + L[1 — Pa(u)][AT2 + Ap2 — Apol} ,

Eq. of motion of the baryons: Ve = —ng — kW + %(3AT1 — W)

K = weneUTa/ao differential optical depth \

the photon dipole pushes the electrons

(Thomson scattering), hence the baryons

(electrons and protons tightly coupled by
Coulomb scattering)



Integral form: (Ar + @) = / dreikn(T—70) g—r(70,7)
0
x{&(Azo + ¥ + uVs + 1 Po(u)[Ars + Apz — Apo]) — & + ¥},

TO .
Ap —/0 dretkr(T=m0) ge=r(r0.m) 111 — Py(u)][Ar2 + Apz — Apo] ,

To

Kk(To,T) = / LeNeOT a(7) dr 1is the optical depth to photons emitted at conformal time
T a(7o) 7. The combination Ke™" is called the conformal time
visibility function. It is the probability that photons last
scattered within d7 of 7. For standard recombination this
function has a sharp peak at the conformal time of de-
coupling 7p [34]. Thus, the integral for Ap in Eq. (2.4)
is dominated by the value of the integrand around decou-
pling. In other words, for standard recombination histo-
ries, with no reionization, the polarization of the CMB

we observe today was produced just before decoupling.

Compute the polarization source term within the tight-coupling approximation: A — oo

The interpretation of these formulas is very simple. In

— 1 — :
- order O: Aty = 5V, (A =0 if [>2), the lowest order approximation the photons and baryons
are so strongly coupled that the photon distribution is
Ap=0 . isotropic in the baryon’s rest frame. The photon dis-

tribution being isotropic, Thomson scattering does not
polarize the CMB.

- order |: to first order in ¢ = &1, These equations also have a simple interpretation.
The polarization of the CMB is proportional to the
quadrupole of the photon distribution function (a dipole

Apy = —LApo = iArs | Apy = —LikrecA
S R Sl 2 1" CHT does not induce polarization). The quadrupole in the
Ary = E(ATO + @), temperature fluctuation, in its turn, is produced by the
k « < . . .
A — Ao =0 if 1>3 Ao — 0 free streaming” of the dipole between collisions. We
= =pt—= = p1="" see this from the relation Ary o k7cApi. The tight
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Fig. 6.9 (a) Isotropy implies that the Thomson scattering does not generate any polarization.
The polarization amplitude of the waves propagating in the directions z and y are equal. The
polarization of the outgoing wave carries away the y-component of the incoming wave that
propagates along x and the z-component of the incoming wave propagating along y, which
have the same amplitude. (b) Case of dipolar anisotropy: the polarization of the outgoing
wave is the sum of the y-components of the incoming waves propagating along = (coming
from a hot zone) and —x (coming from a cold zone) that, on average, has the same amplitude
as the z-components of the incoming wave propagating along y. It is thus also unpolarized.
(c) Case of a quadrupole anisotropy: the outgoing wave has a polarization along y, inherited
from the incoming wave along z that comes from a hot region, larger than that along z,
jnherited from the incoming wave along y thaf comes from a cold region.

Peter & Uzan



Thus, we had:

1 1 8 .
Apz = —3Apo = Q12 , Ar2 = —35tkTcAT]1 Aty = 3V,

tom free streaming of tom barvon
polarization €— P- <€— the dipole between ~MP- ye
quadrupole dipole velocity

\ collisions /

Substitute into the integral form. Use that the visibility function is strongly peaked
around the time of decoupling,

B w m -
Ap = %(1 - #z)ez’c“(m—m)%ikATl(TD)ATD/ dme“%“/ —C-lfe—%”" =(1- uz)e'k"("D_"°)O.51ikAT1(TD)ATD
0 1

=0 A,(7,k)~ 0.17Ar,ikv, = Pun(k) = (0.17A7.) K vi (k) .

Thus, we obtain the baryon velocity power spectrum from the polarization power spectrum.
This is only kinematics (and scatterings), no dependence on gravity nor on DM !

We now need to relate the velocity power spectrum to the density power spectrum.



Prior to recombination, the baryons and photons can
be treated as a single fluid. In a universe with no DM,
the behavior is simple inside the horizon:

. In ACDM, there would be an additional forcing term on
51) —+ 02 k2 5() =0 the right-hand side, —3®, where ® is the cold dark matter
S )
potential.

For adiabatic initial conditions, this admits the solu-
tion:

dp = A(k) COS(/{TS) ; rs = /dn Cs rs i1s the sound horizon
The density can be related to the velocity via the continu-
ity equation. At small scales, we can ignore any changes
in the potential and simply treat the baryon-photon fluid

as a normal Newtonian fluid. Then the continuity equa-
tion in Fourier space is:

Sy (k) + ikuvy (k) =0 . vp = %Sb(k) = —ics A(k) sin(krs) .

Wehad:  Ppp(k) ~ (0.17A7,)2k%02 (k) . ==  Pup(k) ~ (0.17A7,)22K | A(k) [ sin® (kr,)

Then: from the observed Pgrg(k) we obtain A(k). This gives (k) and next Py (k) .

Peg(k) == Py(k)



For the FE bovifer spectrum, we use the Planck 2018
[35] and the Atacama Cosmology Telescope ACTPol Two
Season [38] angular power spectra. We add the data in

quadrature.

The data is given as multipoles, CF¥ of

the 2D power spectrum. We must convert this to the 3D
power spectrum, Prp(k). We approximate | = kn, — %,
where 1, is the conformal distance to the last scattering

surface™[39)].

Then, to order unity, the 3D power spec-

trum is [39, 40]:

Pbb(k) [MpC3]

10° 5

b o o o o o
o
=5
yow—

104

103é
102é
10t
100é
1071
I CAMB

10725 ¢ Pu(k,z=0.38)
1 & Pu(k,z=1100)

10-2
k [Mpc™']

our peaks do not precisely line up with the CAMB®-
derived peaks at low-k. This occurs because we ignore
the cold dark matter driving-term in the continuity equa-
tion, which is more prominent at low-k (i.e. velocity
overshoot; cf. [21, 41, 42]).

We also indicate the acoustic scale by the dashed, black
line on all plots in this paper. We use the Ref. [10]
value for the sound horizon size at the drag epoch, rq4 =
147.09 Mpc and the comoving distance to this time, 7,
to set I, = 7. /rs. Finally, we obtain the k value using
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FIG. 2. Baryon transfer function from z = 1100 to z = 0.38.
The black line shows the transfer function computed by ap-
plying the analytical model for the EE power spectrum to
the Planck data and combining it with the large-scale struc-
ture data. The blue, dotted line shows the transfer function
computed assuming ACDM. The difference between the two
shows the limitations of the analytical approximation used to
derive the Green’s function. The gray region shows the 1-o
error from the data. Any alternative gravity theory must pre-
dict something close to this transfer function if it is to explain
how the fluctuations in the baryon density traced by the po-
larization signal at z ~ 1100 evolve to the galaxy density field
seen at low redshift.
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