TRAITEMENT D'IMAGE POUR LE PROTOTYPE DU RFQ SPIRAL2

Alain C France, O. Piquet

SOMMAIRE

OBJECTIF

GÉNÉRALITÉS	montage expérimental – principe des mesures – images numériques délivrées par les caméras – démosaïquage – algorithmes de détection de mouvement
PRE-PROCESSING	calcul de la luminance – étirement de contraste – filtrage linéaire – filtre gaussien passe bas – facteur d'échelle – jacobien et hessien de la luminance – exemples de masques
ALGORITHME (1)	principe de la détection de mouvement – exemple – statistiques
ALGORITHME (II)	le corrélateur – l'interpolateur – exemple – statistiques
ALGORITHME (III)	géométrie différentielle – courbures locales – détection de bord – localisation de bord par interpolateur – transformation de Hough

OBJECTIF

Design du RFQ

spécifications issues de la dynamique de faisceau

design de la cavité à température ambiante

▼

compensation des déformations induites par le dépôt de puissance RF au moyen de 2 circuits de refroidissement indépendants

But des essais

mesurer les mouvements des électrodes dans la zone axiale en fonction de la densité de puissance RF et des températures des deux circuits d'eau.

MONTAGE EXPÉRIMENTAL

PRINCIPE DES MESURES

IMAGES NUMÉRIQUES DÉLIVRÉES PAR LES CAMÉRAS

algorithme de démosaïquage:

- interpolation bilinéaire entre voisins: rapide mais peu satisfaisant
- traitement complémentaire (en général linéaire) basé sur les variations locales de R, G, B
- embarqué dans la caméra

EXEMPLES DE DÉMOSAÏQUAGE

référence: HS Malvar & al., *High quality linear interpolation for demosaicing of Bayer-patterned color images*, Microsoft Research.

EXEMPLE DE LA CAMÉRA UTILISÉE

ALGORITHMES DE DÉTECTION DE MOUVEMENT

• tous basés sur la luminance Y(i,j) – la chrominance ne portant pas a priori d'information particulière sur le mouvement

Algorithmes	Information délivrée	Propriétés
I – jacobien (gradient) de la luminance	translations en {X,Y}	 très sensible aux mouvements sub-pixel méthodes itératives complexes en cas de mouvements multi-pixel
 II – inter-corrélation + localisation du pic par interpolation 	translations en {X,Y}	 bonnes sensibilité et robustesse partition de l'image pour éliminer les fausses corrélations et estimer la précision
III – détection de bord (jacobien et hessien de la luminance) + reconnaissance de forme	translations en {X,Y} et rotations	 très sensible aux mouvements sub- et multi- pixel reconnaissance de forme complexe si des défauts de surface survivent à la détection de bord

PRE-PROCESSING

CALCUL DE LA LUMINANCE

définition: Y = 0.30 R + 0.59 G + 0.11 B

ÉTIREMENT DE CONTRASTE

FILTRAGE LINÉAIRE

• fonction de transfert

• coordonnées vert. et horiz. • normalisation

$$B_{i,j} = \sum_{p=1}^{P} \sum_{q=1}^{Q} A_{i+p-1, j+q-1} \cdot F_{p,q}$$

$$I_B(i) = I_A(i) + P / 2$$

 $J_B(j) = J_A(j) + Q / 2$

$$\sum_{p=1}^{P} F_{p,q} \leq 1$$

FILTRE GAUSSIEN PASSE-BAS

$$\sigma_{\rm H} = \sigma_{\rm V} = 0.6 \text{ pix} \qquad F = \begin{bmatrix} 0.02768 & 0.11101 & 0.02768 \\ 0.11101 & 0.44521 & 0.11101 \\ 0.02768 & 0.11101 & 0.02768 \end{bmatrix}$$

.

- -

.

FACTEUR D'ÉCHELLE

JACOBIEN ET HESSIEN DE LA LUMINANCE

• développement de Taylor de la luminance Y(x,y) à l'ordre (M,N):

$$Y(x, y) = Y(0,0) + \sum_{j=0}^{N} \sum_{\substack{i=0\\i+j\neq 0}}^{M} \frac{1}{j!} \frac{1}{i!} Y_{x^{j}y^{i}} x^{j} y^{i}$$
(1)

• jacobien J et hessien H :
$$Y(x, y) = Y(0,0) + J^t \begin{vmatrix} x \\ y \end{vmatrix} + \begin{vmatrix} x & y \end{vmatrix} H \begin{vmatrix} x \\ y \end{vmatrix} + \dots$$

J = $\begin{vmatrix} Y_x \\ Y_y \end{vmatrix}$ H = $\begin{vmatrix} Y_{xx} & Y_{xy} \\ Y_{xy} & Y_{yy} \end{vmatrix}$

 estimation par un filtre linéaire de masque 2P+1 x 2Q+1 : l'équation (1) sur le masque donne (2P+1)(2Q+1)-1 équations, que l'on résout au sens des moindres carrés

EXEMPLES DE MASQUES

• masque 3 x 3 ; ordre (2,2)		
$F_{x} = \frac{1}{6} \begin{vmatrix} -1 & 0 & +1 \\ -1 & 0 & +1 \\ -1 & 0 & +1 \end{vmatrix}$	$F_{xy} = \frac{1}{4} \begin{vmatrix} +1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & +1 \end{vmatrix}$	$F_{xx} = \frac{1}{5} \begin{vmatrix} +1 & -2 & +1 \\ +3 & -6 & +3 \\ +1 & -2 & +1 \end{vmatrix}$
• masque 5 x 5 ; ordre (2,2)		
$F_{x} = \frac{1}{50} \begin{vmatrix} -2 & -1 & 0 & +1 & +2 \\ -2 & -1 & 0 & +1 & +2 \\ -2 & -1 & 0 & +1 & +2 \\ -2 & -1 & 0 & +1 & +2 \\ -2 & -1 & 0 & +1 & +2 \end{vmatrix}$	$F_{xy} = \frac{1}{100} \begin{vmatrix} +4 & +2 & 0 & -2 & -4 \\ +2 & +1 & 0 & -1 & -2 \\ 0 & 0 & 0 & 0 & 0 \\ -2 & -1 & 0 & +1 & +2 \\ -4 & -2 & 0 & +2 & +4 \end{vmatrix}$	$F_{xx} = \frac{1}{945} \begin{vmatrix} +28 & -23 & -40 & -23 & +28 \\ +58 & +7 & -10 & +7 & +58 \\ +68 & +17 & -350 & +17 & +68 \\ +58 & +7 & -10 & +7 & +58 \\ +28 & -23 & -40 & -23 & +28 \end{vmatrix}$
• masque 5 x 5 ; ordre (3,3) —		
$F_{x} = \frac{1}{420} \begin{vmatrix} +31 & -44 & 0 & +44 & +31 \\ -5 & -62 & 0 & +62 & +5 \\ -17 & -68 & 0 & +68 & +17 \\ -5 & -62 & 0 & +62 & +5 \\ +31 & -44 & 0 & +44 & +31 \end{vmatrix}$	$F_{xy} = \frac{1}{100} \begin{vmatrix} +4 & +2 & 0 & -2 & -4 \\ +2 & +1 & 0 & -1 & -2 \\ 0 & 0 & 0 & 0 & 0 \\ -2 & -1 & 0 & +1 & +2 \\ -4 & -2 & 0 & +2 & +4 \end{vmatrix}$	$F_{xx} = \frac{1}{945} \begin{vmatrix} +28 & -23 & -40 & -23 & +28 \\ +58 & +7 & -10 & +7 & +58 \\ +68 & +17 & -350 & +17 & +68 \\ +58 & +7 & -10 & +7 & +58 \\ +28 & -23 & -40 & -23 & +28 \end{vmatrix}$
$F_{xxx} = \frac{1}{10} \begin{vmatrix} -1 & +2 & 0 & -2 & +1 \\ -1 & +2 & 0 & -2 & +1 \\ -1 & +2 & 0 & -2 & +1 \\ -1 & +2 & 0 & -2 & +1 \\ -1 & +2 & 0 & -2 & +1 \end{vmatrix}$	$F_{xxy} = \frac{1}{70} \begin{vmatrix} -4 & +2 & +4 & +2 & -4 \\ -2 & +1 & +2 & +1 & -2 \\ 0 & 0 & 0 & 0 & 0 \\ +2 & -1 & -2 & -1 & +2 \\ +4 & -2 & -4 & -2 & +4 \end{vmatrix}$	

ALGORITHME I – PRINCIPE DE LA DÉTECTION DE MOUVEMENT

• développement au premier ordre de la luminance Y(x,y) :

$$Y(j + u, i + v) = Y(j, i) + J^{t} \begin{vmatrix} u \\ v \end{vmatrix} \qquad J = \begin{vmatrix} \partial Y(j, i) / \partial x \\ \partial Y(j, i) / \partial y \end{vmatrix}$$

• mouvement {u,v} de l'image #n par rapport à l'image #1:

$$Y^{n}(x, y) = Y^{1}(x - u, y - v)$$

• estimation du mouvement sur un groupe de pixels $[J_1, J_2] \times [I_1, I_2]$:

$$Y^{n}(j, i) = Y^{1}(j, i) - J^{1}_{x}(j, i) \cdot u - J^{1}_{y}(j, i) \cdot v, \qquad I_{1} \leq i \leq I_{2}, \quad J_{1} \leq j \leq J_{2},$$

que l'on résout au sens des moindres carrés.

 sélection des pixels – J_{min} élimine les zones où Y ne varie pas et J_{max} élimine les pixels de bruit isolés :

$$\mathbf{J}_{\min} \; \leq \; \left\| \mathbf{J}^{1} \right\| \; \leq \; \mathbf{J}_{\max}$$

ALGORITHME I – EXEMPLE

sac2005_08_24_09_07

ALGORITHME I – COMPOSANTES DU JACOBIEN

masque 5 x 5 ; ordre (2,2)

ALGORITHME I – SÉLECTION DES PIXELS

|| **J** ||

 $0.02 \leq ||J||$

ALGORITHME I – CHAMP DE DÉPLACEMENT

sac2005_08_24_09_07

ALGORITHME I – STATISTIQUES

ALGORITHME II – LE CORRÉLATEUR

- on cherche dans une "grande" image A, la ou les zones ressemblant "le plus" à une image de référence B
- idée: utiliser les propriétés du produit scalaire dans \mathbb{R}^n : ||a|| = 1, $||b||=1 \rightarrow -1 \le a^t b \le +1$, et : $a^t b = 1$ ssi a = b.
- soit B la "grande" image, et A l'image de référence de dimension (2P+1)(2Q+1); le coefficient d'inter-corrélation de A et B est défini par :

$$\chi_{i,j} = \sum_{p=-P}^{p=+P} \sum_{q=-Q}^{q=+Q} A'_{p,q} B'_{i+p,j+q}$$

où A' et B' sont normées (norme euclidienne dans \mathbb{R}^n) et à moyenne nulle:

$$\langle A \rangle = \frac{1}{(2P+1)(2Q+1)} \sum_{p=-P}^{p=+P} \sum_{q=-Q}^{q=+Q} A_{p,q} \qquad A' = \frac{A - \langle A \rangle}{\|A - \langle A \rangle\|_2}$$

$$\langle B \rangle_{i,j} = \frac{1}{(2P+1)(2Q+1)} \sum_{p=-P}^{p=+P} \sum_{q=-Q}^{q=+Q} B_{i+p,j+q} \qquad B'_{i+p,j+q} = \frac{B_{i+p,j}}{\sqrt{m=+P} \sum_{q=-Q}^{n=+Q} A_{p,q} }$$

$$B'_{i+p,j+q} = \frac{B_{i+p,j+q} - \langle B \rangle_{i,j}}{\sqrt{\sum_{m=-P}^{m=+P} \sum_{n=-Q}^{n=+Q} (B_{i+m,j+n} - \langle B \rangle_{i,j})^2}}$$

/D\

ALGORITHME II – L'INTERPOLATEUR

• idée: développer χ au voisinage du pic de corrélation localisé en {u,v} :

$$\chi(x, y) = a(x - u)^{2} + b(y - v)^{2} + c(x - u)(y - v) + d$$

• calcul de a, b, c, d, u, v: le développement de χ en fonction de {x,y} est:

$$\chi(\mathbf{x}, \mathbf{y}) = g_1 x^2 + g_2 y^2 + g_3 x y + g_4 x + g_5 y + g_6$$

on utilise les sorties du corrélateur $\chi(j,i)$ dans un domaine $[J_1,J_2] \times [I_1,I_2]$ pour estimer les g_n au sens des moindres carrés. À partir des g_n on obtient:

$$a = g_1; \quad b = g_2; \quad c = g_3; \quad \begin{vmatrix} -a & -c \\ -c & -b \end{vmatrix} \begin{vmatrix} u \\ v \end{vmatrix} = \begin{vmatrix} g_4 \\ g_5 \end{vmatrix}; \quad d = -\frac{1}{2}g_4u - \frac{1}{2}g_5v - g_6$$

• élimination des faux extrema : le hessien de χ est : $H = \begin{vmatrix} g_1 & \frac{1}{2} & g_3 \\ \frac{1}{2} & g_3 & g_2 \end{vmatrix}$

ses valeurs propres λ_1 et λ_2 sont solution de : $\lambda^2 - (g_1 + g_2)\lambda + g_1g_2 - \frac{1}{4}g_3^2$

et les extréma ne satisfaisant pas $\lambda_1 < 0$ et $\lambda_2 < 0$ sont éliminés.

ALGORITHME II – CHAMP DE DÉPLACEMENT

sac2005_08_24_09_07

ALGORITHME II – STATISTIQUES

COMPARAISON DES ALGORITHMES I ET II

	(I)	(II)
$\langle u \rangle$	+0.0757	+0.07775
$\langle v \rangle$	-0.2427	-0.2337
<u>σ(u)</u>	0.024	0.0303
σ(٧)	0.054	0.0319

ALGORITHME II – EXEMPLE DE MOUVEMENT MULTI-PIXEL

gre2006_05_31_15_11

ALGORITHME II – MOUVEMENT MULTI-PIXEL; STATISTIQUES

ALGORITHME III – GÉOMÉTRIE DIFFÉRENTIELLE

• idée: représenter la fonction de luminance par un difféomorphisme de $\Omega \subset \mathbb{R}^2$ dans \mathbb{R}^3 , et étudier les propriétés locales de la surface:

$$\{\mathbf{x}, \mathbf{y}\} \rightarrow \mathbf{a}(\mathbf{x}, \mathbf{y}) \coloneqq \begin{vmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{Y}(\mathbf{x}, \mathbf{y}) \end{vmatrix}$$

• un extrémum local est atteint lorsque le jacobien J de Y est nul. La nature de l'extrémum est décrit par les valeurs propres λ_1 , λ_2 du hessien H de Y:

$$J = \begin{vmatrix} Y_x \\ Y_y \end{vmatrix} \qquad H = \begin{vmatrix} Y_{xx} & Y_{xy} \\ Y_{xy} & Y_{yy} \end{vmatrix} \qquad \lambda^2 - tr(H) \lambda + det(H) = 0 \qquad |\lambda_1| \ge |\lambda_2|$$

minimum local strict	$\lambda_1 > 0$	$\lambda_2 > 0$	det(H) > 0	tr(H) > 0
vallée locale	$\lambda_1 > 0$	$\lambda_2 = 0$	det(H) = 0	tr(H) > 0
maximum local strict	$\lambda_1 < 0$	$\lambda_2 < 0$	det(H) > 0	tr(H) < 0
ridge local	$\lambda_1 < 0$	$\lambda_2 = 0$	det(H) = 0	tr(H) < 0
point selle	$\lambda_1 > 0$	$\lambda_2 < 0$	det(H) < 0	
	$ou \ \lambda_1 < 0$	$\lambda_2 > 0$		
plat local	$\lambda_1 = 0$	$\lambda_2 = 0$	det(H) = 0	tr(H) = 0

ALGORITHME III – COURBURES LOCALES

• vecteur normal : \hat{n} • vecteur tangent : $\hat{\tau}$

• courbure normale : $\chi_n := \langle \hat{n}, k_{ss} \rangle$

• théorème d'Euler :
$$\chi_2 \leq \chi_n \leq \chi_1 \quad \forall \hat{\tau}$$

 $\chi^2 - 2\chi_m \chi + \chi_G = 0$

• courbure de Gauss :
$$\chi_G := \chi_1 \chi_2$$

• courbure moyenne :
$$\chi_m := \frac{1}{2} (\chi_1 + \chi_2)$$

$$\chi_{G} = \frac{\det(H)}{(1 + \|J\|^{2})^{2}} \qquad \qquad \chi_{m} = \frac{\operatorname{tr}(H) - J^{t}R_{\pi/2}^{t}HR_{\pi/2}J}{(1 + \|J\|^{2})^{3/2}}$$

ALGORITHME III – IMAGE DE DÉPART

ALGORITHME III – DÉTECTION DE BORD (1)

maximum local de la trace du hessien

 $tr(H) \ge 0.04$

ALGORITHME III – DÉTECTION DE BORD (2)

zéro local de la trace du hessien dans les zones de fort gradient

tr(H)

|| **J** ||

 $|| J || \ge 0.04$

&

ALGORITHME III – DÉTECTION DE BORD (3)

zéro local de la trace du hessien dans les zones de fort gradient, position calculée par interpolateurs en X et Y

CEA / DSM / DAPNIA / SACM

ALGORITHME III – TRANSFORMATION DE HOUGH

(ce qu'il restait à faire...)

- identifier l'orientation polaire 9 et la position {X,Y} du motif
- idée: utiliser la transformation de Hough, qui génère l'histogramme

$$\left\{ x_{j}^{}, y_{i}^{} \right\} \rightarrow N(\vartheta_{m}^{}, \rho_{n}^{})$$

MOUVEMENTS RELATIFS – COMPENSATION DE LA DÉRIVE MOYENNE

[x] = [y] = m.mouvement x 200

MOUVEMENTS RELATIFS DANS L'ESPACE DES COORDONNÉES DU RFQ

• déformations induisant des perturbations de tension au 1er ordre:

$d_{QQ} = (d_{12} + d_{23} + d_{34} + d_{41}) / 4$	(perturbation quadrupolaire Q)
$d_{SQ} = (d_{12} - d_{34}) / 2$	(perturbation dipolaire S)
$d_{TQ} = (d_{41} - d_{23}) / 2$	(perturbation dipolaire T)

• déformations induisant des perturbations de tension au 2nd ordre:

$$d_{SSTT} = (d_{12} - d_{23} + d_{34} - d_{41}) / 4$$

$$d_{SS} = (d_{13} + d_{24}) / 2$$

$$d_{ST} = (d_{13} - d_{24}) / 2$$

MOUVEMENTS RELATIFS DANS L'ESPACE DES COORDONNÉES DU RFQ

LUMIÈRES DANS LA NUIT . . .

gre2006_06_01_21_13