

Superconducting Quadrupole Magnets for the LHC Low-Beta Insertions

Tatsushi NAKAMOTO

KEK/CERN

Outline

- LHC Experimental Insertions
- MQXA Development
 - R&D Work
 - Production
 - Measurement
 - Problems and Actions
 - Summary of MQXA
- MQXB Development
- Other Insertion Elements
- Current Status of LHC Insertions

LHC and Experimental Insertions

Dump

Circumference: 27 km Injection Energy: 450 GeV (p) Collision Energy: 7+7 TeV Peak Luminosity: 10³⁴ cm²/sec

RF

& Future Expt.

Low ß (pp) High Luminosity

CMS

* 450 GeV beam commissioning anticipated in Nov. 2007.

Layout of Experimental Insertions

The Low-Beta Insertion

Key Elements to Achieve High Luminosity....

Quadrupoles: Low-Beta Triplet Q1 & Q3 (MQXA): KEK Q2a & Q2b (MQXB): FNAL Correctors: CERN
Cryostat Assembly All done by FNAL
Feed boxes for the inner triplet DFBX: LBNL

G = 215 T/m, Aperture = 70 mm $\rightarrow \sim 9$ T L= 5.5 or 6.37 m Higher Order Multipoles < 1 unit (10⁻⁴) Beam Heating: 5 ~ 10 W/m

Outline

- LHC Experimental Insertions
- MQXA Development
 - R&D Work
 - Production
 - Measurement
 - Problems and Actions
 - Summary of MQXA
- MQXB Development
- Other Insertion Elements
- Current Status of LHC Insertions

Design Features

- Four Layer Coils
 - Two 2-layer coils
 - with current grading
 - Inner & outer SC cables
 - Higher J at outer coil
- Spacer-Collars
 - High-Mn steel
 - Low & stable permeability
- Flux Return Yoke
 - Horizontally split
 - Keyed structure
 - Pre-stress & mechanical support
 - Simple & cost-effective assembly

Design Parameters: Final version

Field gradient	215 T/m
Coil inner radius	35 m
Yoke outer radius	235 mm
Shell outer radius	245 mm
Magnetic length	6.37 m
Peak field in coil	8.63 T
Current	7149 A
Superc. load-line ratio	80 %
Inductance	87.9 mH
Stored energy	2.24 MJ
Magnetic force per pole (octant)
Fx	1.19 MN/m
Fv	-1.37 MN/m

Superconducting Cables: NbTi/Cu

Solder joint in 2nd-Layer

Inner Insulation: UpilexRN (t: 25 μm , w: 15 mm) w/ 50 % overlap. Outer Insulation: UpilexRN (t: 50 μm , w: 6 mm) w/ 2 mm gap. 10 μm thick B-stage epoxy resin on outer insulation.

	3500	
ty	at 4.2K	• Cable 2 at 1.9K
	3000	• MQXA inner at 1.9K
	2500	• MQXA outer at 1.9K
lensi	2500	
ent d	2000	
curre	-	
cal	1500	
Criti	1000	
	500	
		8 10 12 14
	U 2 4 6 Mangetic	8 10 12 14 field (T)
Ma	nufacturer: FURU	KAWA

Cable	Inner	Outer
Width (mm)	11.00 ± 0.01	11.00 ± 0.01
Thickness: Inside edge (mm) Middle (mm) Outside edge (mm) Keystone angle (deg.)	$ \begin{array}{r} 1.264 \\ 1.487 \pm 0.006 \\ 1.697 \\ 2.324 \pm 0.05 \\ 0.0$	$\begin{array}{c} 1.210 \\ 1.340 \pm 0.006 \\ 1.469 \\ 1.348 \pm 0.05 \\ 0.05 \end{array}$
Cable pitch (mm) Number of strands	90 ± 10 27	90 ± 10 30
Critical current: at 9 T, 1.9 K (A) at 10 T, 1.9 K (A) at 11 T, 1.9 K (A)	> 13 250 > 10 000 > 6000	> 9000 > 6500 > 4000
Strand	For inner cable	For outer ca
Diameter (mm) Cu:SC ratio Filament diameter (µm) RRR of copper Twist pitch (mm)	$\begin{array}{c} 0.815 \pm 0.005 \\ 1.2 \pm 0.1 \\ < 10 \\ > 110 \\ 15 \pm 2 \end{array}$	$0.735 \pm 0.005 \\ 1.9 \pm 0.1 \\ < 10 \\ > 110 \\ 15 \pm 2$

Mechanical Design

Pre-assembly with spacer-collars at low pre-stress.
 < 10 MPa

- Collaring yoke to provide full prestress. > 50 MPa
 - <u>Fine-blanked</u> 6 mm thick low-carbon steel by JFE Steel (formerly Kawasaki Steel.)
 - FEM analysis to design <u>keys</u>, <u>slots</u>, <u>median</u> <u>plane shape and stepped cutout</u>.
- Redundant radial support by stainless steel shell fitting tightly around yoke.
- End plates to restrict longitudinal elongation of coil by Lorentz force.

R&D Work

	#	Electromagnetic Design	Notes	b6	b10			b6 b10
1-m Model	1	Original	Reach 250 T/m	-0.79 (0.32)	-0.93 (-0.98)	KEK -	1m-#1	Optimization
	2	Repeat		-1.62	-0.90	KEK	1m-#2	
	3	Re-optimize	b10 Re- optimized	-0.72 (0.15)	0.03 (0.00)	KEK (Toshiba)	1m-#3	b10 corrected
	4	Reproducibility		-0.77	0.00	KEK	ອື່ສ m-#4 ອ	
	5	Reproducibility		-0.81	0.01	Toshiba	1m-#5	
Full-scale Proto	1			-0.56	0.01	Toshiba	Prototype	
	2	Repeat				Toshiba	Production	b6 corrected with shim
Production	1- 19	Shim correction	b6 Re-tuned	0.13	0.00	Toshiba –	-2	.0 -1.5 -1.0 -0.5 0.0 0.5

Achievement

1-m model reached: 250 T/m Full-scale prototypes: Multiple tuned << 10⁻⁴

1-m Model R&D: Fabrication in-house

1-m Model R&D: Training Quench

- Reach to 250 T/m for 1st model.
- Exceeding 230 T/m for all models.
- Coil design change for 3rd model and later.
- Training memory after the thermal cycle.

1-m Model R&D: AC Loss Quench

Simulating radiation heat deposition in the coil.

70 % margin to the expected peak heat deposition.

Outline

- LHC Experimental Insertions
- MQXA Development
 - R&D Work
 - Production
 - Measurement
 - Problems and Actions
 - Summary of MQXA
- MQXB Development
- Other Insertion Elements
- Current Status of LHC Insertions

Coil Winding

Collaring Preparation

Collaring

Cylindering

Assembly Complete

MQXA Production and Tests

Production has been completed by summer, 2004.

Coil Size @ 50 MPa

Relative coil size controlled in a level of 20 µm

Yoke Diameter

Vertical oval deformation of yoke causes field distortion in b4.

Summary of Production Stability

Target of mechanical tolerance is 50 µm to achieve good field quality.

	Design	Av-meas	1σ	Ratio
Coil Size fm Ref. (in/out)		-37 / -49 µm	22 / 12 µm	5 x 10 ⁻⁴
Coil Rig. (in/out)		6.0 / 7.2 GPa	0.15 / 0.24 GPa	
Coil L.	6510	6509.7 / 6512.2 mm	0.7 / 0.9 mm	1x10 ⁻⁴
Yoke Size (V/H)		469.83 / 468.84 ∆ (V-H) = 0.1 mm	0.03 / 0.03 0.03 mm	6 x 10 ⁻⁵
Yoke L.	6510	6511.8 mm	1.9 mm	3 x 10 ⁻⁴
Yoke Weight		6331 kg	6 kg	3 x 10 ⁻⁴
Yoke Pack. F.		99.25 %	0.07 %	7 x 10 ⁻⁴
H. Alignment		0.2 mm	0.08 mm	
V. Alignment		0.46 mm	0.17 mm	
Twist		0.54 mrad	0.25 mrad	

Outline

- LHC Experimental Insertions
- MQXA Development
 - R&D Work
 - Production
 - Measurement
 - Problems and Actions
 - Summary of MQXA
- MQXB Development
- Other Insertion Elements
- Current Status of LHC Insertions

Performance Test at KEK MQXA from TOSHIBA KEK 1.9 K: **Room Temperature:** - Alignment • Training quench $\rightarrow 230$ T/m - Field Gradient, • Full energy dump @215 T/m - Error field • Fast Ramp test @150 A/s • Field Measurement **Room Temperature:** • To reach 220 T w/o quench – Alignment check • Electrical Insulation Test - Field Gradient. – Error Field 1.5 kV @ 4.2 K He-gas

Shipping Preparation @ TOSHIBA

- Pressure Test
- Electrical Test

Warm Measurement Setup

Cold Test Station: Vertical Cryostat

Training Characteristics: MQXA-03

3 quenches to reach 215 T/m
9 quenches to reach 230 T/m
Good training memory after thermal cycle

Fast Ramp Quench

All magnets exceeded 215 T/m @ 150 A/s before quench.

MFM: Field Gradient & Mag. Length

19 units of MQXA

Current (A)	Field Gra	dient (T/m)	Magnetic Length (m)	
	Average	Standard Deviation	Average	Standard Deviation
392.3	12.445	0.0096	6.3632	0.0048
2011.3	63.475	0.0200	6.3642	0.0010
3207.9	101.01	0.0341	6.3642	0.0009
6134.4	186.53	0.0581	6.3670	0.0009
6677.3	201.73	0.0587	6.3675	0.0010
7227.9	217.07	0.0651	6.3679	0.0012

Good reproducibility in the order of 10-4

MFM: Higher Order Multipoles @216T/m

Normal

Generally good within reference values. But, large b4...

MFM: Multipole of b₄

Keyed yoke structure \implies Vertical oval deformation Model calculation predicts that ΔR of 0.5 mm would induce 0.5 units of b4.

Yoke deformation could explain 0.5 units in b4.

But, still another source of 0.8 unit has not been traced.

MFM: Cold & Warm Correlation

Summary of Field Measurement

- Good reproducibility of field gradient and magnetic length.
- Multipole components are controlled at 10⁻⁴ or smaller.
- The reproducibility is very good as its level of 10⁻⁵.
- Measured results
 - fulfill the beam optics requirements,
 - are consistent with the mechanical tolerance of 50 µm.
 *exception of b4: twice larger than prediction

Outline

- LHC Experimental Insertions
- MQXA Development
 - R&D Work
 - Production
 - Measurement
 - Problems and Actions
 - Summary of MQXA
- MQXB Development
- Other Insertion Elements
- Current Status of LHC Insertions

Problem I: Turn Short by Inadequate End Spacer

Turn & layer short of Proto #1 Turn short at 1st turn of 2nd layer: Proto #2

Same problem ??

Problem I: Turn Short by Inadequate End Spacer

Pop-up of cable

Equidistant perimeters No problem in Damage to 2nd layer and adjacent turn production magnets

Problem II : Ground Insulation Peel-off

Inside of MQXA02 after cold test

Problem II : Ground Insulation Peel-off

Inside of MQXA02 after cold test

Action!! : Implementation of Holes in Ground Insulation

- No further problem after modification.
- New insulation scheme fulfill the electrical insulation specification.
- All magnets passed the electrical insulation tests.

Problem III: Increase of Quenches

Harmonic-coil Displacement Determined byField MeasurementDirect heat conduction from warm

tube to the coil

Quench!!

Decentering force:~100N/m。

@ 3 mm deviation at G = 215 T/m

Improved Quench Characteristics

We concluded that

-Because of magnetic permeability of bore tube made of stainless steel 316L, (~ 1.003 @ 300 K, ~1.01 @ 1.9 K),

-Bore tube bent due to electromagnetic fore in strong magnetic field gradient.

-It caused training quench increased.

Training characteristics were significantly improved after bore tube modification.

Outline

- LHC Experimental Insertions
- MQXA Development
 - R&D Work
 - Production
 - Measurement
 - Problems and Actions
 - Summary of MQXA
- MQXB Development
- Other Insertion Elements
- Current Status of LHC Insertions

Summary of MQXA

- The production of 20 MQXA quadrupoles for the LHC lowbeta insertions has been completed in 2004.
- 19 magnets have been cold-tested. All reached 230 T/m after training and showed no re-training up to 220 T/m after full energy dump at 215 T/m.
- Field quality fulfilled the requirements for beam optics, and it's uniformity is stable in a level of 10⁻⁵.
- The tolerance on coil position of 50 μ m was attained, and field measurements indicated uniformity of dimensions throughout production in a level of ~ 20 μ m (1 σ).

Outline

- LHC Experimental Insertions
- MQXA Development
 - R&D Work
 - Production
 - Measurement
 - Problems and Actions
 - Summary of MQXA
- MQXB Development
- Other Insertion Elements
- Current Status of LHC Insertions

MQXB Low-Beta Quadrupole (FNAL)

70 mm ID Coil G = 215 T/m at 1.9 K I = 11950 A E = 248 kJ/m L_{mag} = 5.5 m 2-m Model: 9 Full-scale Proto: 1 Production: 18

Two-layer, graded coil,

- Free standing collars, fully supporting the forces,
- Keyed iron-yoke. (45° rotated)

Assembly Facility in FNAL

Courtesy of J. Kerby

Low-Beta Correctors: CERN

MCBX

MQSX, MCSOX, MCSX and MCTX

MCBXV (Inner Dipole) Training @ 4.3K

Assembly of Q2: MQXB+MCBX+MQXB

Low-Beta Quadrupole Cryostat

"Spider" support for alignment rigidity

Q2 on test in FNAL

Test Results of MQXB

- Most magnets showed excellent quench performance.
- But, 2 magnets trained to a plateau around 200 T/m.

Two magnets were reassembled for repair and reached 230 T/m.

Multipole Components

- Multipole components are controlled at 10⁻⁴ or smaller.
- Generally good within reference values.

MQXA Cryostating & Test at FNAL

MQXA

First Test of MQXA

Outline

- LHC Experimental Insertions
- MQXA Development
 - R&D Work
 - Production
 - Measurement
 - Problems and Actions
 - Summary of MQXA
- MQXB Development
- Other Insertion Elements
- Current Status of LHC Insertions

Matching Quadrupoles: MQM Connecting the beam optics of the arc section to the final focus system.

56 mm ID coil 86 units + spare G = 200 T/m at 1.9 K I = 5390 A E = 64.3 kJ/m/aperture L_{mag} = 2.4/3.4/4.8 m Manufactured by Tesla

- Two-layer, non-graded coil,
- Free standing collars, fully supporting the forces,
- Two-in-one iron yoke.

Matching Quadrupoles: MQY w/ Wide Aperture

70 mm ID coil

- 24 units + spare
- G = 160 T/m at 4.5 K
- $\mathbf{I} = \mathbf{3610} \ \mathbf{A}$
- E = 141 kJ/m/aperture

$$L_{mag} = 3.4$$

Manufactured by ACCEL

- Four-layer, graded shell coil,
- Free standing collars, fully supporting the forces,
- Two-in-one iron yoke.

Test Results of MQM & MQY

Multipole Components: MQM & its cold mass

- Multipole components are controlled at 10⁻⁴ or smaller.
- Matching a set of MQMs effectively reduced the multipole components.
- Generally good within reference values.

Separation Dipoles: BNL

- RHIC main dipole coil,
- Single or twin aperture,
- Free standing collars,
- Horizontal-split iron yoke.

80 mm ID Coil 18 units + spare B = 3.8 T I = 6050 A L_{mag} = 9.45 m

DFBX Production Feed box for the inner triplets

HTS Lead Testing at Fermilab

Fabrication and Assemblycmsat Meyer Tool

IR Absorber: TAS&TAN

Crucial element to protect the insertion magnets from secondary particles from IP.

Single aperture TAS absorbers.

Twin aperture TAN absorbers.

TAN Beam Tube

* Copper & Steel

Outline

- LHC Experimental Insertions
- MQXA Development
 - R&D Work
 - Production
 - Measurement
 - Problems and Actions
 - Summary of MQXA
- MQXB Development
- Other Insertion Elements
- Current Status of LHC Insertions

Current Status of LHC Insertions

- Production of the insertion elements was completed.
- So far, magnets and relevant apparatuses have been set in 6 out of 8 experimental insertions, and preparation work for the hardware commissioning is underway.
- In remaining 2 experimental insertions, magnets will be set by the end of May 2007.
- Superfluid helium heat exchangers for the inner triplet with defects are all being replaced to new ones with improvements. Replacement work will be finished soon.
- First cooldown of Sector 7-8 in the LHC tunnel is in progress.
 (3.6 K at March 21) First excitation test will be carried out next week(?).
 See http://lhc.web.cern.ch/lhc/
- Beam commissioning at 450 GeV is anticipated in Nov. 2007.

Acknowledgment Many thanks to CERN and Fermilab for their cooperation.

