Sujet de la thèse

CONTRIBUTION À L'ÉTUDE DES PROPRIÉTÉS THERMIQUES ET HYDRODYNAMIQUES D'UN ÉCOULEMENT D'HÉLIUM NORMAL (He I) DIPHASIQUE EN CIRCULATION NATURELLE POUR LE REFROIDISSEMENT DES AIMANTS SUPRACONDUCTEURS

Lahcène BENKHEIRA

Directeur de thèse : Pr. Mohamed Souhar (INPL Nancy)

dapnia

Co-directeur de thèse : Dr. Bertrand Baudouy (CEA Saclay)

saclay

Motivation de l'étude

Ces travaux de recherche ont été effectués au

Dapnia/SACM/LCSE

En collaboration avec

Dimensionnement du système de refroidissement

cryogénique de l'aimant supraconducteur du détecteur

de particules CMS pour le LHC

Plan de la présentation

Contexte et motivation de l'étude

Dispositif expérimental et appareillages cryogéniques

- Cryostat et insert
- Techniques de mesure

Présentation et analyse des résultats expérimentaux

- Thermiques
- Hydrodynamiques

Conclusion générale et perspectives

Contexte et motivation de l'étude

Dispositif expérimental et appareillages cryogéniques

- Cryostat et insert
- Techniques de mesure

Présentation et analyse des résultats expérimentaux

- Thermiques
- Hydrodynamiques

Conclusion générale et perspectives

Enjeu scientifique et technologique du LHC

Enjeu scientifique

- Le Grand collisionneur de hadrons, (Large Hadron Collider, LHC) est un accélérateur de particules qui sondera la matière plus profondément que jamais
- Collisions à 14 TeV

Enjeu technologique

• Réaliser une telle machine

Aimants supraconducteurs

Besoin de champs magnétiques intenses

La propriété qu'ont certains matériaux de conduire le courant électrique sans dissipation d'énergie à condition de les refroidir jusqu'à une température très basse voisine de celle de l'hélium liquide

Aimant supraconducteur du détecteur CMS

- Hauteur : 12,5 m
- Diamètre externe : 7 m
- Champ magnétique: 4 teslas
- Courant électrique nominal : 19500 A

Vue d'ensemble de CMS avant fermeture

6

Système cryogénique de l'aimant de CMS

- Le solénoïde de CMS est composé de 5 modules
- L'He I saturé à 4,5 K circule à travers des tubes de diamètre intérieur de 14 mm
- L'écoulement est créé par le principe thermosiphon

Avantages

- Passivité : sans pompage, sans système de pressurisation
 - Mise en œuvre simple
- 🔿 Faible coût

Problématique

Propriétés thermohydrauliques de l'écoulement d'He I diphasique en mode thermosiphon ?

Boucles thermosiphons diphasiques

La plupart des études concernent les fluides classiques notamment eau-vapeur et eau-air

Des cartes d'écoulements

Des lois de comportement

- les pertes de charges
- le transfert thermique

Ces travaux ne sont pas directement transposables au cas de l'hélium vu la grande différence de propriétés physiques

Comparaison massique

Fluide	ρ _l (kg/m³)	ρ _v (kg/m³)	ρ _l /ρ _v
Eau	1000	0,6	1000
Hélium	125	17	7

Comparaison thermique

Fluide	C _p (J/kg.K)	L _v (J/kg)	C _p /L _v (K ⁻¹)
Eau	2250	4212	1000
Hélium	20000	4480	4

Une étude sur ce sujet s'avère indispensable

9

Contexte et motivation de l'étude

Dispositif expérimental et appareillages cryogéniques

- Cryostat et insert
- Techniques de mesure

Présentation et analyse des résultats expérimentaux

- Thermiques
- Hydrodynamiques

Conclusion générale et perspectives

Système expérimental

Système de chauffage

Soutenance de thèse Lahcène Benkheira 29/06/2007

Mesure de la température pariétale T_p

Sonde de température utilisée

- dR/dT≈10⁴ Ω/K @ 4,2 K
- Précision 3 mK

Mesure de la pression différentielle Ap

Mesure à chaud

• Capteurs de pression à l'extérieur du cryostat et reliés avec les points de mesure avec des capillaires

Soutenance de thèse Lahcène Benkheira 29/06/2007

Disposition des capteurs

- Mesures de température de paroi T_p à différentes hauteurs

Soutenance de thèse Lahcène Benkheira 29/06/2007 Contexte et motivation de l'étude

Dispositif expérimental et appareillages cryogéniques

- Cryostat et insert
- Techniques de mesure

Présentation et analyse des résultats expérimentaux

- Thermiques
- Hydrodynamiques

Conclusion générale et perspectives

Courbes d'ébullition

Soutenance de thèse Lahcène Benkheira 29/06/2007

Prédiction des courbes d'ébullition

Comparaison entre modèles d'ébullition convective

Crises d'ébullition

Comparaison entre modèles de flux de chaleur critique

Soutenance de thèse Lahcène Benkheira 29/06/2007 Contexte et motivation de l'étude

Dispositif expérimental et appareillages cryogéniques

- Cryostat et insert
- Techniques de mesure

Présentation et analyse des résultats expérimentaux

- Thermiques
- Hydrodynamiques

Conclusion générale et perspectives

Chute de pression Δp_{Ch}

Dans la gamme $0 \le q \le 2000 \text{ W/m}^2$, Δp_{Ch} diminue avec l'augmentation de q

La prédominance du terme de gravité dans l'équation de conservation de la quantité de mouvement:

 $\Delta p_{Ch} = \Delta p_{g} + \Delta p_{a} + \Delta p_{f}$

q \triangleleft le taux de vide \triangleleft et $\Delta p_q \simeq$, Δp_a et $\Delta p_f \triangleleft$ légèrement

Soutenance de thèse Lahcène Benkheira 29/06/2007

Résultats hydrodynamiques ... 23

Évolution du débit massique de circulation m_t

24

Évolution de m_v et x

Soutenance de thèse Lahcène Benkheira 29/06/2007

Résultats hydrodynamiques ... 25

Modélisation de l'écoulement à travers la boucle (1/4)

→ Objectif

Prédire les propriétés hydrodynamiques de l'écoulement thermosiphon notamment le débit massique total m_t et le titre massique vapeur x créés par la densité du flux de chaleur q.

Résultats hydrodynamiques ...

26

Modélisation de l'écoulement à travers la boucle (2/4)

Les propriétés physiques de l'écoulement sont calculées à partir du code numérique HEPAK

Détermination de la frontière entre les zones d'écoulement diphasique et monophasique

 $T_{I}(z) \stackrel{?}{=} T_{sat}(p_{z})$

Tels que :

$$-T_{l}(z) = T_{e} + \frac{q\pi D - m_{t}g}{m_{t}C_{pl}}z$$
$$-p_{z} = p_{e} + \frac{2C_{flo}m_{t}^{2}z}{D\rho_{l}A^{2}} + \rho_{l}gz \left[1 - \beta \frac{q\pi D}{2m_{t}C_{pl}}z\right]$$

27

Modélisation de l'écoulement à travers la boucle (3/4)

 \rightarrow La fermeture du système d'équations nécessite la connaissance de a et de ϕ_{lo}^2

- Modèle homogène

- Modèle à phases séparées

- Modèle de Lockhart-Martinelli (1949)
- Modèle de Lévy (1960)
- Modèle de Huq (1992)
- Modèle de Chisholm (1973)
- Modèle de Friedel (1979)

Soutenance de thèse Lahcène Benkheira 29/06/2007

Modélisation de l'écoulement à travers la boucle (3/4)

Résultats hydrodynamiques ... 29

Contexte et motivation de l'étude

Dispositif expérimental et appareillages cryogéniques

- Cryostat et insert
- Techniques de mesure

Présentation et analyse des résultats expérimentaux

- Thermiques
- Hydrodynamiques

Conclusion générale et perspectives

Conclusion générale

Résultats thermiques

- L'échange thermique par ébullition nucléée est le régime le plus performant
- L'échange thermique est modélisé par une corrélation $q = (q_{CV}^3 + q_{EN}^3)^{1/3}$ avec un écart de 10%

$$q_{cr}$$
 est prédit par la corrélation $Ku = \frac{1}{24,29+0,093\left(\frac{z}{D}\right)}$ avec un écart de 7%

Résultats hydrodynamiques

- Le modèle homogène prédit d'une manière très satisfaisante la chute de pression de l'écoulement dans la gamme de titre massique étudiée (0≤x≤30%)
- Le modélisation de la boucle prédit d'une manière très satisfaisante l'évolution du débit total et du titre massique jusqu'au flux critique

Application à CMS

- Utilisation du modèle homogène pour le dimensionnement des circuits
- Utilisation des coefficients d'échange pour les échangeurs

Perspectives

- Paramètres supplémentaires à étudier
 - Pression de fonctionnement
 - Diamètre du tube inférieur à 10 mm
 - Hauteur de la boucle
 - Le transfert de chaleur dans la zone d'ébullition en film
 - corrélation de transfert de chaleur
 - Etude des mécanismes de la crise d'ébullition
 - hystérésis
- Détermination du régime d'écoulement diphasique par visualisation à travers un tube en verre
 - Cartes d'écoulement
- Mesure du taux de vide par la technique d'atténuation de l'énergie d'un faisceau d'électrons

Contribution scientifique

Revue

 Heat transfer characteristics of He I thermosiphon flow
L. Benkheira, B. Baudouy and M. Souhar, International Journal of Heat and Mass Transfer, Vol. 50, p. 3534-3544, 2007

Communications avec actes dans des livres à comité de lecture

- Heat and mass transfer in nucleate boiling regime of He I in a natural circulation loop L. Benkheira, M. Souhar, B. Baudouy, Advances in Cryogenic Engineering, Vol. 51A, p. 871-878, 2005
- Experimental and theoritical study of a two phase heliumhigh circulation loop Ph. Brédy, F-P. Juster, B. Baudouy, L. Benkheira, M.Cazanou, Advances in Cryogenic Engineering, Vol. 51A, p. 496-503, 2005

Communications

- Flow boiling regimes and CHF prediction in He I thermosiphon flow L. Benkheira, B. Baudouy and M. Souhar, 21st International Cryogenic Engineering Conference (2006), Praha, Czech Republic
- **Régimes d'ébullition convective d'un écoulement thermosiphon en hélium normal (4.2 K)** L. Benkheira, B. Baudouy and M. Souhar, Congrès français de thermique Île-de-Ré (2006), p. 149-154

Merci de votre attention

Calcul de la température du fluide T_f

Corrélations d'ébullition nucléée

La relation $q=f(\Delta T_p)$ dans la zone ENT s'exprime généralement par la loi : $q = \Psi . \Delta T_p^{m}$

Corrélation d'ébullition nucléée en bain

Corrélation de Rohsenow
$$racking q = \frac{\mu_l C_{pl}^3}{\Pr^{5,1} C_{sf}^3 L_v^2 \left(\frac{\sigma}{g(\rho_f - \rho_v)}\right)^{1/2}} \Delta T_p^3$$

- C_{sf} est un coefficient dépendant de la combinaison surface-fluide compris entre 0,012 et 0,013

Corrélation de Kutateladze
$$q = 1,9 \times 10^{-9} \left[g \left(\frac{\rho_l}{\mu_l} \right)^2 X^3 \right]^{0,3125} \left(\frac{pX}{\sigma} \right)^{1,75} \left(\frac{\rho_l}{\rho_v} \right)^{1,5} \times \left(\frac{C_{pl}}{L_v} \right)^{1,5} \Delta T_p^{2,5}$$

- $X = \left(\frac{\sigma}{g\rho_l} \right)^{0,5}$

Corrélation en ébullition nucléée convective

Corrélation de Steiner

Steiner propose une expression de h_{EN} faisant intervenir q, D, la rugosité de la paroi et la pression

36

Coefficient d'échange thermique diphasique

Modèle asymptotique

$$n_{TP} = \sqrt[n]{\left(Fh_{CV}\right)^{n} + \left(Sh_{ENB}\right)^{n}}$$

n exprime le degré de couplage entre l'ébullition nucléée et la convection forcée

F est le multiplicateur diphasique convectif >1

S est le coefficient de suppression

 \rightarrow h_{cv} \rightarrow Corrélation de Dittus-Boettler (1930)

→ h_{ENB} → Corrélation d'ébullition en bain

Plusieurs corrélations ont été proposées selon le modèle asymptotique :

Corrélation de Rohsenow (1949) Corrélation de Liu-Winterton (1991)

Corrélation de Chen (1966)

Corrélation de Steiner-taboreck (1992)

Soutenance de thèse Lahcène Benkheira 29/06/2007

Chute de pression diphasique

Équation des quantités de mouvement

- Taux de vide
$$a = \frac{A_v}{A}$$
 \rightarrow $A_v A_l$
- ϕ_{lo}^2 est le multiplicateur diphasique $\phi_{lo}^2 = \frac{\left(\frac{dp}{dz}\right)_{TP}}{\left(\frac{dp}{dz}\right)_{lo}}$

Le long du riser (partie non-chauffée) $\implies \Delta p_a=0$

q	m	Ecoulement diphasique)	L
		Ecoule	– m,	