The $\Xi_{b}=:$
 Discovery of a strangely beautiful baryon

Eduard De La Cruz Burelo
University of Michigan

Outline

- B Physics and the observation status
- Fermilab \& D0
\square Search for the Ξ_{b}
- Ξ_{b} signal
- Mass measurement
- Relative production ratio
- Summary

Birth of B Physics

The discovery of the upsilon meson in 1977 at Fermilab by Lederman et al.

Fermilab's giant accelerator reveals another new sub-nuclear particle
B Physics, a whole field, was born

Status of B hadrons:

■ Mesons:

- Established: $B^{+}(u Б), B^{0}(d Б), B_{s}(s Б), B_{c}{ }^{+}(c Б)$
- Established: B^{*}
- Preliminary: $B_{d}{ }^{* *}, B_{s}{ }^{* *}(C D F \& D \varnothing)$
- Baryons:
- Established: $\Lambda_{b}(u d b)$
- Preliminary (CDF): $\Sigma_{b}{ }^{+}(u u b), \Sigma_{b}{ }^{-}(d d b)$

The quest for \mathbf{b} baryons

Λ_{b} (udb)
discovered by UA1 in 1991
$\Sigma_{b}(u u b, d d b, u d b)$ discovered by CDF in 2006/2007
$\Xi_{b}{ }^{-}(d s b) ?$
made of one quark from each generation
Plus there is a $\mathrm{J}=3 / 2$ baryon multiplet

$\Sigma_{\mathrm{b}}{ }^{+}, \Sigma_{\mathrm{b}}{ }^{-}$observation

$$
\begin{gathered}
\Sigma_{b}^{+}=(u u b) \\
\Sigma_{b}^{-}=(d d b) \\
\text { CDF analyzed } \\
\Sigma_{\mathrm{b}}{ }^{ \pm} \rightarrow \Lambda_{\mathrm{b}} \pi^{ \pm}
\end{gathered}
$$

- October 2006 preliminary result
- June 2007, submitted for publication

The Tevatron \& DØ

2T Solenoid

Tevatron is doing great:

Int. Lumi.	$\mathbf{f b}^{\mathbf{- 1}}$
Delivered	>3
DØ Run IIa	1.3
D0 Run IIb	1.3

Excellent, large angle, muon spectrometer and trigger. Large $B \rightarrow \mu$ semileptonic and $B \rightarrow J / \psi+X$ samples

Run Ilb addition:

Silicon Layer \varnothing

Data

Run II Integrated Luminosity
19 April 2002-22 July 2007

Triggering the Ξ_{b} search

What do we know about the $\Xi_{b}{ }^{-}$?

- Predicted mass: 5.7-5.8 GeV
- Predicted to follow the mass hierarchy
- $M\left(\Lambda_{b}\right)<M\left(\Xi_{b}{ }^{-}\right)<M\left(\Sigma_{b}\right)$
\square By using preliminary Σ_{b} mass measurement from CDF and predicted mass hierarchy:
- $5.624 \mathrm{GeV}<\mathrm{M}\left(\Xi_{\mathrm{b}}{ }^{-}\right)<5.8 \mathrm{GeV}$
$\square \Xi_{\mathrm{b}}{ }^{-}$lifetime by LEP: $1.42+0.28 /-0.24 \mathrm{ps}$. (Indirect measurement) *

```
* This is the world average (ALEPH+DELPHI). HFAG:
arXiv:0704.3575 [hep-ex]
```


How do we look for this particle?

- We have an excellent dimuon sample.
- We have experience in Λ
${ }_{\mathrm{b}} \rightarrow \mathrm{J} / \psi \Lambda$ (~ 170 events)
- Then we look in the decay $\Xi_{\mathrm{b}}^{-} \rightarrow \mathrm{J} / \psi+\Xi^{-}$(This could be very rare!)

The sister ... $\Lambda_{b} \rightarrow J / \psi \Lambda$

Searching for Ξ_{b} in $\Xi_{\mathrm{b}}{ }^{-} \rightarrow \mathrm{J} / \psi+\Xi^{-}$

IP cut ... a killer

What did we do to solve this problem?

- We need to open up the IP at reconstruction
- To reprocesses all D \varnothing data with a wider IP for track reconstruction is a very difficult task.
\square The $\mathrm{J} / \psi \rightarrow \operatorname{mon}^{\circ} \mu$ - is a golden channel. Although $B \rightarrow J / \psi X$ is fairly rare, it is very clean channel and easy to trigger on.
- We therefore reprocessed DØ Runlla data for events containing a J / ψ, which is ~ 35 million events.

Mass distribution for K^{0} and $\boldsymbol{\Lambda}$ signals for the "standard" (bottom histograms) and "extended" (opening up IP) tracks reconstruction.

Ξ^{-}Yield

The Ξ yield increased a factor of five from reprocessing

Reconstruction strategy for Ξ_{b}

- Reconstruct $J / \psi \rightarrow$ 双 μ -
\square Reconstruct $\Lambda \rightarrow p \pi$
- Reconstruct $\Xi \rightarrow$ m π
\square Combine $J / \psi+\Xi$
- Improve mass resolution by using an event-byevent mass difference correction .
\square We need some guides to look for a particle:
- The sister: $\Lambda_{\mathrm{b}} \rightarrow \mathrm{J} / \psi \Lambda$ decays in data
- The impostor: $\mathrm{J} / \psi^{+} \Xi\left(\right.$ fake from $\left.\Lambda\left(\mathrm{p} \pi^{-}\right) \pi^{+}\right)$
- The clone: Monte Carlo simulation of $\Xi_{\mathrm{b}}{ }^{-} \rightarrow \mathrm{J} / \psi^{+} \Xi^{-}$

Natural constraints in $\Xi_{b}^{-} \rightarrow J / \psi+\Xi^{-}$

- Three daughter signal particles need to be reconstructed:
- $\Lambda \rightarrow \mathrm{p}+\pi$
- $\Xi \rightarrow$ 困 π
- $J / \psi \rightarrow$ [
- The final state particles (p, π ${ }^{-}, \pi^{-}$) have significant impact parameter with respect to the interaction point.
- Charge correlation: both pions must have the same charge

More features in $\Xi_{b}{ }^{-} \rightarrow J / \psi+\Xi^{-}$

Reconstructing the daughters

$$
\Xi \rightarrow \text { 菴 }
$$

Background events from wrong-sign combinations $\left(\Lambda\left(p \pi^{-}\right) \pi^{+}\right)$

What background do we expect?

- Prompt background:
- $\sim 80 \%$ of the J / ψ are directly produced at the collision.
- Real B's:
- The remaining $\sim 20 \%$ of J / ψ come from B decays
- Combinatory background:
- Real J / ψ plus fake Ξ^{-}
- Fake J / ψ plus fake Ξ^{-}
- Fake J / ψ plus real Ξ^{-}
- Real J / ψ plus real Ξ^{-}, but not from $\Xi_{b}{ }^{-}$

Determination of Selection Criteria

- To retain efficiency, try to keep cuts loose
- We use independent samples:
- $\Lambda_{b} \rightarrow J / \psi \Lambda$ decays from data
- Background from wrong-sign combination
- Background from J / ψ sideband events
- Background from Ξ^{-}sideband events
- Use $\Xi_{\mathrm{b}}{ }^{-}$signal MC events only when no choice (e.g., pion from Ξ^{-})

Example 1: pT(π^{-}) from Λ

Example 2: pT($\left.\pi^{-}\right)$from Ξ^{-}

Example 3: topological cut

Ξ_{b} Selection

- $\Lambda \rightarrow \mathrm{p} \pi$ decays:
- $\mathrm{pT}(\mathrm{p})>0.7 \mathrm{GeV}$
- $\mathrm{pT}(\pi)>0.3 \mathrm{GeV}$
$\square \Xi^{-} \rightarrow \Lambda \pi$ decays:
- $\mathrm{pT}(\pi)>0.2 \mathrm{GeV}$
- Transverse decay length>0.5 cm
- Collinearity>0.99
- Ξ_{b}^{-}particle:
- Lifetime significance>2. (Lifetime divided by its error)

So now ... let's first look at the background control samples after all cuts
\square We have three independent background samples:

- Wrong sign combination (fake $\Xi^{-1} s$ from $\left.\Lambda\left(p \pi^{-}\right) \pi^{+}\right)$
- J/ ψ sideband events
- Ξ^{-}sideband events.

Background: Wrong sign combinations

No peaking structure observed in this background control sample

Background: J/ ψ sideband events

Background: Ξ^{-}sideband events

$\mathrm{J} / \psi \Lambda(\mathrm{pr}) \pi$

No peaking structure observed in this background control sample

Others backgrounds (MC)

- We investigated with high MC statistics, B decay channels such as:

$$
\begin{aligned}
& B^{+} \rightarrow J / \psi K^{*+}\left(K_{S}^{0} \pi^{+}\right) \\
& B^{0} \rightarrow J / \psi K_{S}^{0} \\
& \Lambda_{b} \rightarrow J / \psi \Lambda
\end{aligned}
$$

No peaking structure observed any these B decays MC samples

What we expect: signal MC

Mean of the Gaussian: $5.839 \pm 0.003 \mathrm{GeV}$
Width of the Gaussian: $0.035 \pm 0.003 \mathrm{GeV}$

Looking at data

Event scan of event in the signal peak

Run 179200, Event 55278820, $M\left(\Xi_{b}\right)=5.788 \mathrm{GeV}$

Event scan of event in the signal peak

Run 179200, Event 55278820, $M\left(\Xi_{b}\right)=5.788 \mathrm{GeV}$

Mass measurement

- Fit:
- Unbinned extended log-likelihood fit
- Gaussian signal, flat background
- Number of background/signal events are floating parameters

Nothing in the background samples:

Signal significance:

- Likelihood method, two fits:

One with S+B
One with B only
$\sqrt{-2 \ln \left(L_{S+B} / L_{B}\right)}=5.5$

ㅁ Simple counting in a $N_{\text {obs }}=19$ $\pm 2.5 \sigma$ mass window: $N_{B}=3.6 \pm 0.6_{-1.9}^{+0.6}$
$\operatorname{Pr} \operatorname{ob}(3.6 \rightarrow 19)=2.2 \times 10^{-7}$
or equivalently 5.2σ

$\Xi_{\mathrm{b}}{ }^{-}$lifetime

Not enough statistics to measure lifetime,

 but the decay length distribution favors signal over background by a ratio of 5 to 1

Intermediate particles

Decision Trees

We observed the signal using alternative decision tree based selection

- Minimum overlap between input variables of DT and cut based analysis
- Consistent with cut based analysis.
- Only $\mathbf{\sim 5 0 \%}$ overlap in the selected events between the two analysis.
- similar significance

Combining two analyses \rightarrow significance Of 5.9б

Systematic Uncertainties on Mass

- Fitting models
- Two Gaussians instead of one for the peak. Negligible.
- First order polynomial background instead of flat. Negligible.
- Momentum scale correction:
- Fit to the Λ_{b} mass peak in data, $<1 \mathrm{MeV}$.
- Fit to B^{0} signal peak. Negligible effect $<1 \mathrm{MeV}$
- Study of $\mathrm{dE} / \mathrm{dx}$ corrections to the momentum of tracks finds a maximum deviation of 2 MeV from the measured mass .
- Event selection:
- From the mass shift observed between the cut-based and BDT analysis, once removing the statistical correlation, a 15 MeV variation is estimated.

Discovery!

$$
\begin{aligned}
& M\left(\Xi_{b}^{-}\right)=5.774 \pm 0.011(\text { stat }) \pm 0.015(\text { syst }) \\
& N_{\Xi_{b}^{-}}=15.2 \pm 4.4(\text { stat })+{ }_{0.4}^{1.9}(\text { syst })
\end{aligned}
$$

Predictions:

Predictions come from Lattice QCD, Heavy Quark Effective Theory, and potential models in NRQCD

CDF observation

Same decay channel

- CDF signal has a significance greater than 7 sigma

Excellent confirmation of DØ observation

Two weeks after D0 paper submission, CDF submitted a PRL reporting their Ξ_{b} observation.

Mass measurements in both observations are consistent.

CDF observation

Predictions come from Lattice QCD, Heavy Quark Effective Theory, and potential models in NRQCD

Production ratio

In addition to the observation, we also measure:

$$
\frac{f\left(b \rightarrow \Xi_{b}^{-}\right) B R\left(\Xi_{b}^{-} \rightarrow J / \psi \Xi^{-}\right)}{f\left(b \rightarrow \Lambda_{b}\right) B R\left(\Lambda_{b} \rightarrow J / \psi \Lambda\right)}
$$

$f(b \rightarrow X)$: fraction of times b quark hadronizes to X

This provides a measurement to allow other experiments to compare their production rate with this result.

Production ratio

We find :

$$
\frac{f\left(b \rightarrow \Xi_{b}^{-}\right) B R\left(\Xi_{b}^{-} \rightarrow J / \psi \Xi^{-}\right)}{f\left(b \rightarrow \Lambda_{b}\right) B R\left(\Lambda_{b} \rightarrow J / \psi \Lambda\right)}=0.28 \pm 0.09(\text { stat })+_{-0.08}^{+0.09}(\mathrm{syst})
$$

Ignoring the ratio of Br's, from ratio of hadronization fractions of B_{s} to B_{d}, expect $\sim 1 / 4$ or less

Summary

$\Xi_{\mathrm{b}}{ }^{-}$observation: Phys. Rev. Lett. 99, 1052001 (2007)

$$
N_{\mathrm{E}_{b}^{-}}=15.2 \pm 4.4(\mathrm{stat})+{ }_{0.4}^{1.9}(\mathrm{syst})
$$

Signal Significance
$M\left(\Xi_{b}^{-}\right)=5.774 \pm 0.011($ stat $) \pm 0.015($ syst $) \quad \sqrt{-2 \ln \Delta L}=5.5 \sigma$

Backup slides

Celebrating @ Fermilab

*Fermilab

Announcements

Special seminar Friday

DZero physicist Eduard De La Cruz Burelo, University of Michigan, Ann Arbor, will present results on the discovery of the cascade b particle in a special seminar, titled "Observation of a New b-baryon Xi b at DZero: Celebrating 30 Years of Beauty at Fermilab" on Friday, June 15, at 1 p.m. in One West.

```
-
```

nilab
Fermilab
hinds
rmilab
No
nis
cists
How
tunities
Feature

Fermilab physicists discover "triple-scoop" baryon
Three-quark particle contains one quark from each family
Physicists of the DZero experiment at the Department of Energy's Ferm National Accelerator Laboratory have discovered a new heavy particle, the Ξ_{b} (pronounced "zigh sub b") baryon, with a mass of 5.774 ± 0.019 $\mathrm{GeV} / \mathrm{c}^{2}$, approximately six times the proton mass. The newly discovered electrically charged \bar{E}_{b} baryon, also known as the "cascade b ," is made of a down, a strange and a bottom quark. It is the first observed baryon fomed of quaks form all hree lamilies of matter. Its discovery and the measurement of its mass provide new understanding of how the strong huclear fore acts upon the quarks, the basic building blocks of matter
Help/About The Site

The DZero experiment has reported the discovery of the cascade b baryon in a paper rubmitted to Physical Review Letters on June 12.
Pead More

Timeline:

- June 12, 2007: submitted to PRL and arXiv
- June 13, 2007: Fermilab press release
- June 14, 2007: Special Fermilab W\&C seminar by Burelo

Fermilab-Pub-07/196-E

Direct observation of the strange b baryon Ξ_{b}^{-}

V.M. Abazov ${ }^{35}$, B. Abbott ${ }^{75}$, M. Abolins ${ }^{65}$, B.S. Acharya ${ }^{28}$, M. Adams ${ }^{51}$, T. Adams ${ }^{49}$, E. Aguilo ${ }^{5}$, S.H. Ahr ${ }^{30}$, M. Ahsan ${ }^{59}$, G.D. Alexeev ${ }^{35}$, G. Alkhazov ${ }^{39}$, A. Alton ${ }^{64, *}$, G. Alverson ${ }^{63}$, G.A. Alves ${ }^{2}$, M. Anastasoaie ${ }^{34}$, L.S. Ancu ${ }^{34}$, T. Andeen ${ }^{53}$, S. Anderson ${ }^{45}$, B. Andrieu ${ }^{16}$, M.S. Anzelc ${ }^{53}$, Y. Arnoud ${ }^{13}$, M. Arov ${ }^{60}$, M. Arthaud ${ }^{17}$, A. Askew ${ }^{49}$, B. $A_{s m a n}{ }^{40}$, A.C.S. Assis Jesus ${ }^{3}$, O. Atramentov ${ }^{49}$, C. Autermann ${ }^{20}$, C. Avila ${ }^{7}$, C. Ay ${ }^{23}$, F. Badaud ${ }^{12}$, A. Baden ${ }^{61}$, L. Bagby ${ }^{52}$, B. Baldin ${ }^{50}$, D.V. Bandurin ${ }^{59}$, S. Banerjee ${ }^{28}$, P. Banerjee ${ }^{28}$, E. Barberis ${ }^{63}$, A.-F. Barfuss ${ }^{14}$, P. Bargassa ${ }^{80}$, P. Baringer ${ }^{58}$, J. Barreto ${ }^{2}$, J.F. Bartlett ${ }^{50}$, U. Bassler ${ }^{16}$, D. Bauer ${ }^{43}$, S. Beale ${ }^{5}$, A. Bean ${ }^{58}$, M. Begalli ${ }^{3}$, M. Begel ${ }^{71}$, C. Belanger-Champagne ${ }^{40}$, L. Bellantoni ${ }^{50}$, A. Bellavance ${ }^{50}$, J.A. Benitez ${ }^{65}$, S.B. Beri ${ }^{26}$, G. Bernardi ${ }^{16}$, R. Bernhard ${ }^{22}$, L. Berntzon ${ }^{14}$, I. Bertram ${ }^{42}$, M. Besançon ${ }^{17}$, R. Beuselinck ${ }^{43}$, V.A. Bezzubov ${ }^{38}$, P.C. Bhat ${ }^{50}$, V. Bhatnagar ${ }^{26}$, C. Biscarat ${ }^{19}$, G. Blazey ${ }^{52}$, F. Blekman ${ }^{43}$, S. Blessing ${ }^{49}$, D. Bloch ${ }^{18}$, K. Bloom ${ }^{67}$, A. Boehnlein ${ }^{50}$, D. Boline ${ }^{62}$, T.A. Bolton ${ }^{59}$, G. Borissov ${ }^{42}$, K. Bos ${ }^{33}$, T. Bose ${ }^{77}$, A. Brandt ${ }^{78}$, R. Brock ${ }^{65}$, G. Brooijmans ${ }^{70}$, A. Bross ${ }^{50}$, D. Brown ${ }^{78}$, N.J. Buchanan ${ }^{49}$, D. Buchholz ${ }^{53}$, M. Buehler ${ }^{81}$, V. Buescher ${ }^{21}$, S. Burdin ${ }^{42, \llbracket}$, S. Burke ${ }^{45}$, T.H. Burnett ${ }^{82}$, C.P. Buszello ${ }^{43}$, J.M. Butler ${ }^{62}$, P. Calfayan ${ }^{24}$, S. Calvet ${ }^{14}$, J. Cammin ${ }^{71}$,

Production ratio

- We use Monte Carlo samples of:
- $\Xi_{\mathrm{b}}{ }^{-} \rightarrow \mathrm{J} / \psi+\Xi^{-}$
- $\Lambda_{\mathrm{b}} \rightarrow \mathrm{J} / \psi+\Lambda$
- MC passed through D0 detector simulation
- Same reconstruction and selection criteria as used on data is applied to Monte Carlo.
- Monte Carlo distributions need to be reweighted due to the Data/MC pT spectrum differences and to account for trigger effects.
\square From comparison of Λ_{b} kinematic distributions in data and MC, determine further weighting factor, then apply to Ξ_{b}

Systematic uncertainties in the relative production ratio

Source	Uncertainty $(\%)$
$\Lambda_{\mathrm{b}} / \Xi_{\mathrm{b}}$ hadronization models	Negligible
MC stat. on $\Lambda_{\mathrm{b}} / \Xi_{\mathrm{b}}$	10
$\mathrm{pT}(\pi)$ reconstruction	7
Effect of mass difference between data and MC	5
$\Lambda_{\mathrm{b}} / \Xi_{\mathrm{b}}$ MC reweighting	$\mathbf{2 7}$
Syst. uncertainties on the number of Ξ_{b} in data	$+13,-3$

Conservatively take difference between reweighting result and no reweighting .

Why to look for particles?

- Spectroscopy:
- One of the best ways to test our understanding of QCD and potential models
ㅁ Production and Fragmentation:
- Major source of uncertainty in many measurements
- Discovery:
- Practice techniques for beyond the Standard Model searches by finding undiscovered Standard Model predicted particles.

We try to understanding this

Particles which are predicted to exist

To then understand this ...

What is this?

Figure 14: Data from ZEUS [8] for the reaction $\varepsilon^{+} p \rightarrow K^{0} p X$ with a cut on the 4 -momentum transfer $Q^{2}>20 \mathrm{GeV}^{2}$. The solid line is a fit to a smooth background and two peaks: a known Σ^{*+} resonance and a possible Θ^{+}peak at 1522 MeV . A Monte Carlo background is also shown by the histogram. The inset shows the two separate event sets added together in the main figure.

Pentaquarks?

Combining: cuts+BDT

- After we remove duplicate events, we observe $22.8 \pm$ 5.8 events.
- Significance:
- Sqrt $(-2 \Delta L)=5.9$

