La subtile disparition du J/Psi dans les collisions d'ions lourds

> SPhN June 19, 2009

Jean-Paul Blaizot, IPhT

Outline

- Brief historical perspective
- Present experimental situation
- · Open theoretical questions
- · Outlook

The charmonium is a « non relativistic » system

$$H = 2m_c + \frac{p_1^2}{2m_c} + \frac{p_2^2}{2m_c} + V(r)$$

Some charmonium properties

state	J/ψ	χ_c	ψ'	Υ	χ_b	Υ'	χ_b'	Υ"
mass [GeV]	3.10	3.53	3.68	9.46	9.99	10.02	10.26	10.36
$\Delta E \; [\text{GeV}]$	0.64	0.20	0.05	1.10	0.67	0.54	0.31	0.20
$\Delta M \; [\text{GeV}]$	0.02	-0.03	0.03	0.06	-0.06	-0.06	-0.08	-0.07
r_0 [fm]	0.50	0.72	0.90	0.28	0.44	0.56	0.68	0.78

 ΔE is binding energy

(from H. Satz, hep-ph/0602245)

Screening of binding forces in a quark-gluon plasma

Screened potential

$$V(r) = -\frac{\alpha}{r}e^{-r/r_D(T)}$$

Bound state exists for

$$r_D(T) > r_D^{min}$$

that is, for

$$T < T_D$$

Melting temperature depends on size of bound state

(from H. Satz, hep-ph/0602245)

Production of J/Psí in hadronic collisions (mechanism not fully understood)

$$\frac{d^2 \sigma_{NN \to C}}{dp_T^2} = \int dx_1 dx_2 \,\delta(x_1 x_2 s - M_C^2) \,G(x_1) G(x_2) \frac{d^2 \sigma_{gg \to C}}{dp_T^2}$$

To detect « anomaly », normalíze to Drelll-Yan

(yield is proportional to the number of nucleon-nucleon collisions)

J/Psí production depends on size of nuclei

(from L. Kluberg and H. Satz, arXív:0901.3831)

« Normal » nuclear absorption

$$\sigma_{hA\to\Psi} = \sigma_{hN\to\Psi} \int d^2 \mathbf{b} \, dz \, \rho(\mathbf{b}, z) \exp\left\{-\sigma_a \int_z^\infty dz' \rho(\mathbf{b}, z')\right\}$$

$$\mathcal{N}_A = \frac{1}{A} \frac{\sigma_{pA}}{\sigma_{pp}} = \frac{1}{A\sigma_a} \int d^2 b \left(1 - \exp\left(-\sigma_a T_A(\mathbf{b})\right)\right)$$

Summary of early measurements (NA38,NA50)

(CERN, 2000)

Recent NAGO measurements indicate that the absoprtion cross section depends on energy

 $\sigma_{abs} \int \sigma_{abs} \int \phi (158 \text{ GeV}) = 7.6 \pm 0.7 \pm 0.6 \text{ mb}$ $\sigma_{abs} \int \phi (400 \text{ GeV}) = 4.3 \pm 0.8 \pm 0.6 \text{ mb}$

Comparíson between experiments

(from R. Arnaldí, Quark Matter 09)

Nuclear absorption is a complex phenomenon

Inítial state effects (nuclear modífication of structure functions)

Including shadowing correction leads to significantly higher values of σ_{abs}

 $\begin{aligned} \sigma_{abs} & \stackrel{J/\psi, EKS}{\to} (158 \text{ GeV}) = 9.3 \pm 0.7 \pm 0.7 \text{ mb} \\ \sigma_{abs} & \stackrel{J/\psi, EPS}{\to} (158 \text{ GeV}) = 9.8 \pm 0.8 \pm 0.7 \text{ mb} \\ \sigma_{abs} & \stackrel{J/\psi, EKS}{\to} (400 \text{ GeV}) = 6.0 \pm 0.9 \pm 0.7 \text{ mb} \\ \sigma_{abs} & \stackrel{J/\psi, EPS}{\to} (400 \text{ GeV}) = 6.6 \pm 1.0 \pm 0.7 \text{ mb} \end{aligned}$

Comparison with AA results

(from R. Arnaldí, Quark Matter 09)

 \rightarrow smaller anomalous suppression with respect to previous estimates

B. Alessandro et al., EPJC39 (2005) 335 R. Arnaldi et al., PRL99 (2007) 132302

Anomalous suppression in $In-In \le 10\%$

 $\sigma_{abs} J/\psi$ (158 GeV) > $\sigma_{abs} J/\psi$ (400 GeV)

Anomalous suppression in Pb-Pb up to 30%

The present situation, as reported at Quark Matter 09

(from R. Arnaldí, Quark Matter 09)

What about RHIC?

Turning now to theory

Heavy quarks free energy from lattice calculations

(O. Kaczmarek et al., PLB543(2002)41, S. Gupta et al., Phys.Rev.D77(2008)034503)

Free energy contains entropy

Effective potential has imaginary part (there is more than screening) (M.Laine - A. Beraudo, JPB, C. Ratti)

Lattice : spectral function

Outlook

-The subject continues to inspire a lot of works -Theory of quarkonía is being developed (first principle finite temperature calculations, effective field theory, lattice spectral functions, etc.) -The experimental situation is still complicated: one needs a better understanding of cold nuclear matter effects.

-At LHC, time scales will be well separated, and things could be cleaner