

Gamow-Teller Transitions Implications for Supernova Scenarios & Double-β Decay

Muhsin N. Harakeh

GANIL, Caen & KVI, Groningen

IRFU/SPhN CEA-Saclay, 18 September 2009

1. Introduction

- 2. Importance of studying GT⁺ in *fp*-shell nuclei
- 3. Experimental method
- 4. Case Study: ⁵⁸Ni
- 5. Measurements on several *fp*-shell nuclei
- 6. Measurements on 2β-decaying nuclei
- 7. Conclusions and outlook

Spin-isospin excitations

- Neutral (v,v') and charged (v_e,e^-), (v_e,e^+) currents
- NC ⇒ Inelastic electron and proton scattering ⇒ M0, M1, M2
- $\mathbf{CC} \Rightarrow \mathbf{Charge-exchange\ reactions}$
 - **Isovector charge-exchange modes**
 - ⇒ GTR, IVSGMR, IVSGDR, etc.

Importance for nuclear astrophysics,

-Saclay; 18 September 2009

v-physics, 2 β -decay, n-skin thickness, etc.

 $(p,n), (^{3}\text{He},t) \{\text{GT}^{-}\}; (n,p), (d,^{2}\text{He}) \& (t,^{3}\text{He}) \{\text{GT}^{+}\}$

Charge-exchange probes $\Delta T_z = -1$ (n,p)-type $(\Delta T_z = +1)$

(p,n)-type $(\Delta T_z = -1)$

- β⁻-decay
- (*p*,*n*)

EA-Saclay; 18 September 2009

- (³He,*t*)
- heavy ion

- β^+ -decay
- (*n*,*p*)
- (*d*,²He)
- (*t*,³He)
- heavy ion; (7Li,7Be)

Energy per nucleon (>100 MeV/u)
Spin-flip versus non-spin-flip
Complexity of reaction mechanism
Experimental considerations

\$ 2.31 (IAS)

0

gs

Cross section peaks at θ° (ΔL=0)

n↓

EA-Saclay; 18 September 2009

Strong excitation of **GT** states at E/A=100-500 MeV/u

Why are Gamow-Teller transitions in *fp*-shell nuclei important ?

- Role of *fp*-shell nuclei in supernova explosions: Core of supernova star is composed of *fp*-shell nuclei.
 ⇒ electron capture
- Neutrino absorption cross sections by *fp*-shell nuclei are essential in understanding of nuclear synthesis in Supernova explosions in cosmos.
- → Difficulties in shell-model calculations for *fp*-shell nuclei.
- → Importance to measure spin-isospin responses of *fp*-shell nuclei to gauge theoretical calculations.

Determination of GT Strength is imperative

Electron capture in *fp*-shell

- ■In supernova explosions, electron capture (EC) on *fp*-shell nuclei plays a dominant role during the last few days of a heavy star [presupernova stage; deleptonization ⇒ core collapse ⇒ subsequent type IIa Supernova (SN) explosion] Bethe *et al.* (1979)
- The rate for EC is governed by the GT⁺ strength distribution at low excitation energy; not accessible to β-decay.
- Fuller, Fowler and Newman (FFN) (1982-1985); estimates of stellar rates in stellar environments using s.p. model.
- ■Caurier *et al.*, Martínez-Pinedo & Langanke (1999), Otsuka *et al.* ⇒ Large shell-model calculations ⇒ marked deviations from FFN EC rate; generally smaller EC rates.
- Experiments and theory relied on (n,p) data (TRIUMF) which have a rather poor energy resolution.

nuclei: large scale shell model E. Caurier *et al.* calculations NPA 653 (1999) 439

- Stellar weak reaction rates with improved reliability
- Large scale shell model (SM) calculations
- Tuned to reproduce GT⁺ strength measured in (*n*,*p*)
- (n,p) data from TRIUMF
- **GT**⁺ strength from **SM**
- Folded with energy resolution

Case study: ⁵⁸Ni

E. Courier et el. / Nuclear Physics A 653 (1999) 439-452

 ${}^{3}S_{1}$ deuteron $\Rightarrow {}^{1}S_{0}$ di-proton (2 He) ${}^{1}S_{0}$ dominates if (relative) 2-proton kinetic energy $\varepsilon < 1$ MeV (*n*,*p*)-type probe with exclusive $\Delta S=1$ character (GT⁺ transitions) But near 0°: tremendous background from *d*-breakup

-Saclay; 18 September 2009

CEA-Saclay;

CEA-Saclay; 18 September 2009

shell model calculations 4 ħω & 6 ħω (G. Martínez-Pinedo)
B (GT⁺) (S. Rakers)

EA-Saclay; 18 September 2009

GT S	streng	th in	¹² B and	d ²⁴ Na fro	m (d,²He)	reaction
Target	Referen	ice data			Present data	
	Ex	B(GT_)	Ex	$d\sigma/d\Omega(q=0)$	σ(L=0)/σ(τοτ)	B(GT +)
	[MeV]		[MeV]	[mb/sr]	(q=0)	(C=0.267)
12_						
**B	0.00	0.998	0.00	2.580 ± 0.138	0.988	0.930 ± 0.050
			5.00	0.138±0.010	0.976	0.050±0.004
²⁴ Na	0.44	0.050	0.47	0.138±0.012	0.821	0.049±0.004
	1.07	0.613	1.35	1.563±0.085	0.948	0.654±0.035
	1.58	0.020	1.89	0.087±0.026	0.649	$0.025{\pm}0.008$
	2.98	0.362	3.41	0.667±0.039	0.980	0.290±0.016
			3.59	0.266±0.018	0.806	0.095±0.006
	3.33	0.059	3.92	0.193±0.058	0.809	0.070 ± 0.022
	4.69	0.015	5.06	0.093±0.027	0.561	$0.024{\pm}0.007$
			6.24	$0.086 {\pm} 0.026$	0.818	0.031 ± 0.010
	6.46	0.068	6.70	0.161±0.012	0.972	0.071±0.005
	6.87	0.029	7.20	0.173±0.013	0.642	0.050±0.004

$(d,^{2}\text{He})$ as GT⁺ probe in *fp*-shell nuclei

	GT Stre	ength in ⁵⁸ Co	from (d, ² He) reaction
	Ex	dσ/dσ(0.5°)	$\sigma(L=0)/\sigma(\tau o \tau)$	B(GT+)
	[MeV]	[mb/sr]		
	1.050	0.159±0.009	0.88	0.15±0.01
ST.	1.435	0.078±0.006	1.00	0.09±0.01
	1.729	0.148 ± 0.014	1.00	0.16±0.02
	1.868	$0.648 {\pm} 0.020$	1.00	0.72±0.05
	2.249	0.047±0.004	1.00	0.05±0.01
	2.660	0.057±0.005	0.96	0.06±0.01
	2.860	0.145±0.009	0.99	0.17±0.01
	3.100	0.126±0.008	0.99	0.15±0.01
	3.410	0.065±0.007	0.96	0.07±0.01
er zu	3.520	0.080±0.009	0.95	0.09±0.01
emoe	3.625	0.067±0.007	0.87	0.07 ± 0.01
ndac	3.900	0.062±0.006	0.97	0.07 ± 0.01
10	4.030	0.155±0.010	1.00	0.19±0.01
acia	4.05-5.00	0.381±0.061		0.49±0.09

GT⁺ strength: comparison (*n*,*p*), (*d*,²He) & theory

Up to 4 MeV excitation:

13 GT transitions measured (*d*,²He)

Strength rebinned in 1 MeV bins

Significant differences

Updated shell model calculations by Martínez-Pinedo/Langanke

Muhsin N. Harakeh

CEA-S?

Electron capture rate

$$\lambda_{ec} \approx \sum_{i} B_{i}(GT) \int_{\omega_{i}}^{\infty} \omega p \left(Q_{i} + \omega \right)^{2} F(Z, \omega) S_{e}(\omega, T) d\omega$$

With

-Saclay; 18 September 2009

- $B_i(GT)$ Gamow-Teller strength distribution
- *and p* energy and momentum of electrons
- $S_e(\omega, T)$ Fermi-Dirac distribution electron gas at temperature T

EA-Saclay; 18 September

Strength deviations at low excitation \Rightarrow rates deviation at low T

nucleus

⁵¹V g.s.
$$(J^{\pi}=7/2^{-}, T=5/2) \Rightarrow {}^{51}Ti (J^{\pi}=5/2^{-}, 7/2^{-}, 9/2^{-}, T=7/2)$$

Independent single-particle model (FFN):

C. Bäumer et al., PRC 68, 031303(R) (2003)

v(a,-He): Comparison with shell-model calculations

CEA-Sacl

Langanke

CEA-Sacl

Muhsin I

SM Exp. 5.2 1.9 4.7 1.9 4.1 2.9 4.6 4.2 3.4 3.4 8.8) 7 ¹ 86 FFN Centroid 9 7 9 3.8 9 7 4.5 9 7		even-even odd-A odd-I odd-A odd-I
--	--	--	---

(FFN rates) LMP = Langanke-Martínez-Pinedo Large shell-model

calculations {G. Martínez-Pinedo et

ratio e = Central electron-to-baryon

Conclusions

- Presupernova models depend sensitively on EC rates.
- GT⁺ transitions in *fp*-shell nuclei play a decisive role in determining EC rates and thus provide input into modeling of explosion dynamics of massive stars.
- Large shell-model calculations are needed especially as function of T. (Caurier *et al.*; Martínez-Pinedo & Langanke [KB3G]; Otsuka *et al.* [GXPF]) ⇒ smaller EC rates for A=45-60 than FFN ⇒ Larger Y_e (electron to baryon ratio) and smaller iron core mass (Heger *et al.*)
- New high resolution (d,²He) experiments provide essential tests for shell model calculations at 0 T.

Physics case for 0v2\beta study:⁷⁶*Ge*

GANI

- recent claim of the observation of $0v2\beta$ -decay in ⁷⁶Ge

it becomes imperative to study experimentally higher multi-pole components

Conclusions

Charge-exchange reactions provide important input for 2vββ decay ME; *i.e.* (*d*,²He) (*t*,³He) for GT⁺ leg and

(³He,*t*) for the GT⁻ leg

■⁹⁶Zr and ¹⁰⁰Mo exhibit Single-State-Dominance (at 0.69 MeV (⁹⁶Zr) and g.s. (¹⁰⁰Mo))

Outlook

Radioactive ion beams will be available at energies where it will be possible to study GT transitions (RIKEN, NSCL, FAIR, EURISOL)

- Determine GT strength in unstable sd & fp shell nuclei
- Use IVSGDR as tool to determine n-skin [IV(S)GDR]
- Exotic excitations such as Double GT

Detection system (a) FAIR

Figure 1: Schematic view of the EXL detection systems. Left: Set-up built into the NESR storage ring. Right: Target-recoil detector surrounding the gas-jet target.

Use of EXL recoil detector is under evaluation
Design & implementation of a dipole magnet for the momentum analysis of the protons

EA-Saclay; 18 September 2009

EuroSuperNova Collaboration

C. Bäumer¹, R. Bassini², A.M. van den Berg³, N. Blasi², B. Davids³, D. De Frenne⁴, R. De Leo⁵, D. Frekers¹, E.-W. Grewe¹, P. Haefner¹, M. Hagemann⁴, V.M. Hannen³, M.N. Harakeh³, J. Heyse⁴, F. Hofmann⁶, M. Hunyadi³, M. de Huu³, E. Jacobs⁴, B.C. Junk¹, A. Korff¹, K. Langanke⁷, A. Negret⁴, P. von Neuman-Cosel⁶, L. Popescu⁴, S. Rakers¹, A. Richter⁶, H. Sohlbach⁸, H.J. Wörtche³

¹Westfälische Wilhelms-Universität, Münster ²INFN, Milan

- ³ Kernfysisch Versneller Instituut Groningen
- ⁴ University Gent
- ⁵ University Bari
- ⁶ Technische Universität Darmstadt
- ⁷ University Aarhus
- ⁸ Märkische Fachhochschule Iserlohn

GANIL

Scattering of stored exotic nuclei off light hadronic

probes (EXL)

Inverse kinematics

CEA-Saclay; 18 September 2009

thin gas target (~10¹⁵/cm²)

kinematic complete measurements

elastic scattering (p,p) ... inelastic scattering (p,p'), (α,α') ... charge-exchange reactions (p,n), $(^{3}\text{He},t)$, $(d,^{2}\text{He})$... quasi-free scattering (p,pn), (p,2p), $(p,p\alpha)$...

Studies with CE reactions on unstable nuclei

GANI

Studies with CE reactions in inverse kinematics

Applications:

- the study of spin-isospin excitations in unstable nuclei involved in nuclear processes that happen under extreme conditions, like in a supernova, is indispensable

the study of the SDR, of which cross section is correlated to the neutron-skin thickness of nuclei (important for constraining the density dependence of the symmetry energy of nuclear matter)
 -systematic study is needed

- GT strength distribution on N=Z unstable proton-rich nuclei (⁷²Kr, ⁷⁶Sr,⁸⁰Zr, ⁸⁴Mo, ⁸⁸Ru, ⁹²Pd) – test for network calculations for rp-processes

- studies for calibrating presupernovae models: electron capture rates for all radioactive isotopes within ⁵⁵⁻⁶⁰Co, ⁵⁶⁻⁶¹Ni, ⁵⁴⁻⁵⁸Mn and ⁵⁴⁻⁵⁹Fe are of interest for the first phase of the core collapse, whereas the neutron-rich Kr and Ge isotopes are relevant for the later phase

Nuclear structure studies with CE reactions in inverse kinematics

possible at FAIR and RIKEN (intermediate beam energies are needed!)

RIKEN approach: detect the heavy ion in coincidence with its γ -decay

heavy ejectile

inconvenience: limitation to the known states,

akeh

GAN