Hadron Spectroscopy at COMPASS Séminaires du SPhN

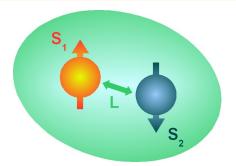
Johannes Bernhard¹

Institut für Kernphysik Mainz

January 22nd 2010

¹ johannes.bernhard@cern.ch

Outline


- Introduction
- Recoil Proton Detector
- Trigger
- Analysis and Results
- 5 Summary and Outlook

Spectroscopy with Mesons

- Simplified meson model: $q\bar{q}$ bound states
- characterized by

 - Flavour (u,d,s,c,b,t)
 Quantum numbers I^GJ^{PC}

- allowed J^{PC} combinations: $0^{-+}, 0^{++}, 1^{--}, \dots$
- exotic J^{PC} combinations: $0^{--}, 0^{+-}, 1^{-+}, \dots$

extend the simplified model by adding additional degrees of freedom:

• qq̄ mesons

Analysis and Results

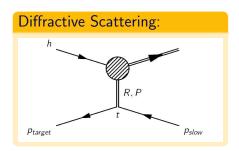
Exotic Mesons

- qq̄ mesons
- glueballs

- qq̄ mesons
- glueballs
- hybrids

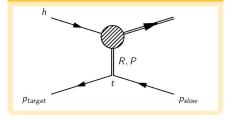
- qq̄ mesons
- glueballs
- hybrids
- bound $q\bar{q}q\bar{q}$ states

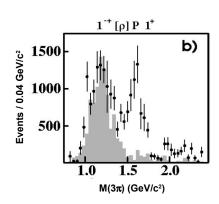
- qq̄ mesons
- glueballs
- hybrids
- bound qqqq states
- mesonic molecules





Formation processes

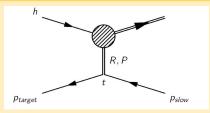




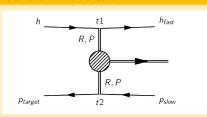
Introduction

000000

Diffractive Scattering:

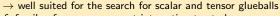


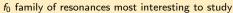
- SPE (single pomeron exchange)
- search for hybrid-candidates: $\pi(1600), \pi(1800)$



Formation processes

Diffractive Scattering:

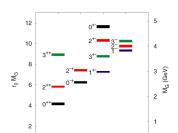

Central Production:



Context: Definition of Central Production

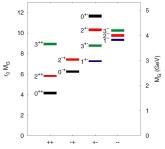
- Original definition, not only DPE (double pomeron exchange)
- formation of resonances at central rapidities

CP of charged pionic modes (e.g. $\pi^-\pi^+\pi^-\pi^+$)



Introduction

0


Y. Chen et al., Phys. Rev. D 73, 014516 (2006)

Central Production: h t1 hfast R, P R, P Pslow

Some examples of central production studies with 4π final states

- F. Binon et al. GAMS Collaboration. Nuovo Cimento, 78, 1983
- S. Abatzis et al. WA91 Collaboration. Phys.Lett.B 324, 1994
- F. Antinori et al. WA102 Collaboration, Phys.Lett.B 353, 1995
- C. Amsler et al. Crystal Barrel Collaboration. Phys.Lett.B 380, 1996

Y. Chen et al., Phys. Rev. D 73, 014516 (2006)

Central Production: h t1 R, P R, P Ptarget t2 Pslow

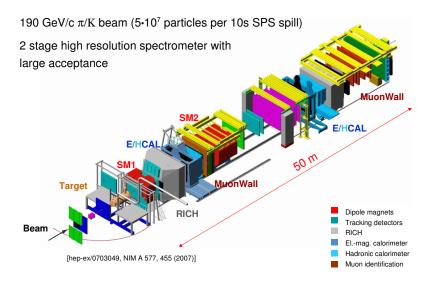
Analysis and Results

How to search for glueballs?

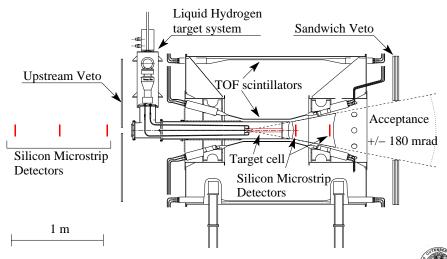
characterization by

- flavour-neutral decay modes: X is supposed to be seen in $\pi^+\pi^-$, $\pi^0\pi^0$, $K\bar{K}$, 4π , $\eta\eta$, $\eta\eta'$
- formation kinematics: small $dP_t = p_t^{fast} p_t^{slow}$

The COMPASS collaboration


Introduction

0000000



The COMPASS spectrometer

Changes for the Hadron Run 2008/2009: Target Region

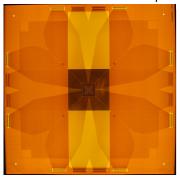
• 40cm IH₂ target

Introduction

0000000

Changes for the Hadron Run 2008/2009: New components

Installation of new components:



- Cold Silicon Microstrip Detectors (@200K)
- new LH₂ target
- Recoil Proton Detector

Changes for the Hadron Run 2008/2009: New components

Installation of new components:

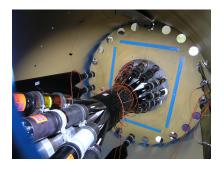
- Cold Silicon Microstrip Detectors (@200K)
- new LH₂ target
- Recoil Proton Detector
- upgrade on tracking (PixelGEMs, MicroMegas)

Changes for the Hadron Run 2008/2009: New components

Installation of new components:


- Cold Silicon Microstrip Detectors (@200K)
- new LH₂ target
- Recoil Proton Detector
- upgrade on tracking (PixelGEMs, MicroMegas)
- beam PID with CEDARS
- el.mag. calorimetry upgrade with new laser monitoring

Recoil Proton Detector

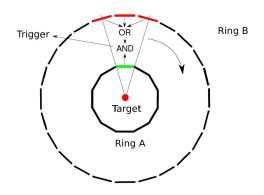

Function:

- 1 fast trigger on recoil proton
- 2 Proton **PID** via TOF and dE/dx measurement

Recoil Proton Detector

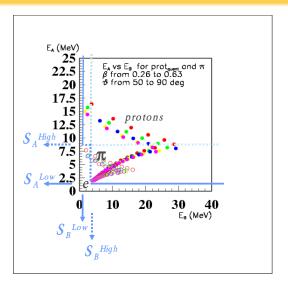
RPD during its assembly

- layout: 2 cylindrical layers of scintillators (r₁ = 120 mm and r₂ = 755 mm surrounding the target)
- inner ring w/ 12 scintillator slabs (5 mm x 500 mm BC404, U Mainz)
- outer ring w/ 24 scintillator slabs (10 mm x 1080 mm, IHEP Protvino)
- large dynamical range of the signals due to small attenuation length $(\lambda_{\it eff} \approx 70\,{\rm cm})$

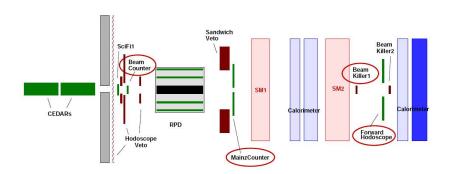

head of project: IRFU-SPhN

- ullet small e^- and π^- background
- time resolution $\sigma < 350 \, \mathrm{ps}$

Trigger

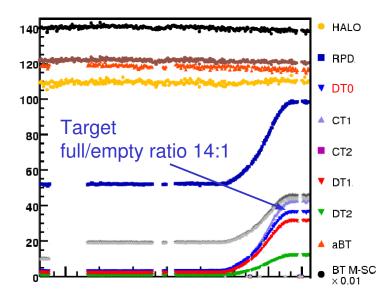

Proton Trigger

- no 2nd level trigger, so fast, efficient and pure trigger necessary
- trigger on slow recoil proton with RPD
- coincidence of one ring A element and one out of three possible ring B elements



Proton Trigger

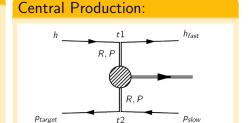
• identify proton by TOF and dE/dx meas. (with thresholds to cut out e^- and π^\pm)


- **Beam Definition:** Beamtrigger
- **Target Pointing:** Proton Trigger
- Vetos

Summary and Outlook

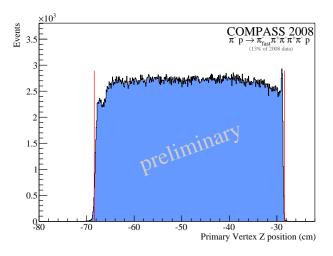
Physics Trigger $DT0 = Beamtrigger \land RPD \land !(Vetos)$

Physics Trigger - Empty/Full Target Effect

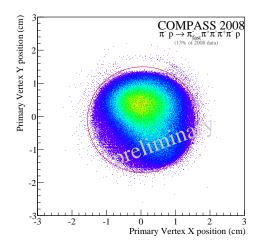

Example for a Hadron analysis: The 4π channel

Compass 2008 Run (shown here: 13% of 2008 data)

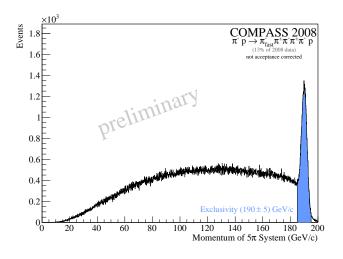
$$\pi^-
ho
ightarrow \pi^-_{fast} (\pi^+ \pi^- \pi^+ \pi^-)
ho_{recoil}$$


Cuts:

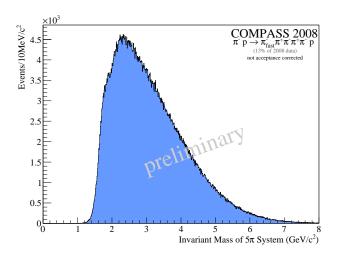
Cut	%
-no-	100
1 Primary Vertex	67.9
DT0 Trigger	58.4
5 Outgoing Charged Tracks	3.52
PV in Target	3.51
CEDAR Kaon Veto	3.46
Charge Conservation $\Sigma Q = -1$	2.52
Exclusivity (190 \pm 5) GeV	0.27
$Q_{\mathrm{fast}} = -1$	0.18



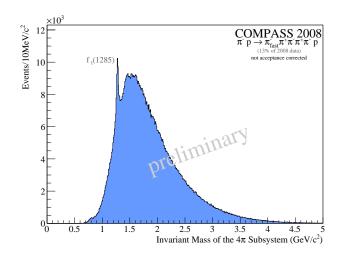
Vertex Distribution in Z (beam) direction



Vertex Distribution in XY-Plane

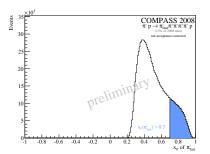


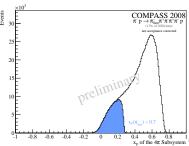
Exclusivity


Invariant Mass Distribution (5π)

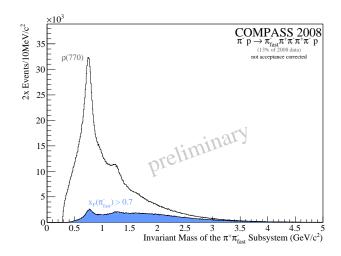
Summary and Outlook

Invariant Mass of 4π System

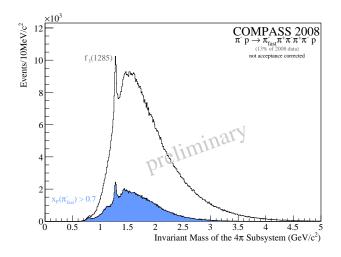


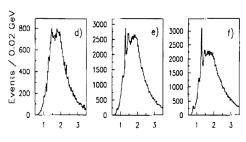


One Approach to Select CP: Feynman x_F

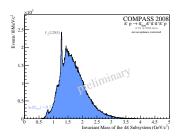

$$x_F = \frac{|\vec{p_I}|}{|\vec{p_I}^{max}|} = \frac{2|\vec{p}_I|}{\sqrt{s}},$$

- $|\vec{p_I}|$: longitudinal momentum
- \sqrt{s} : total center-of-mass energy of the interaction
- $|\vec{p_l}^{max}|$: the maximum allowed longitudinal momentum





Invariant Mass of 4π System

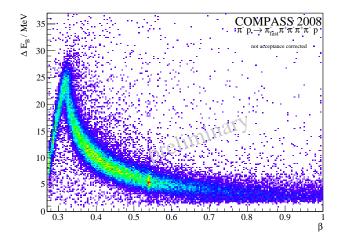


Invariant Mass of 4π System

Mass
$$(\pi^{\dagger}\pi^{-}\pi^{\dagger}\pi^{-})$$
 GeV

WA102:

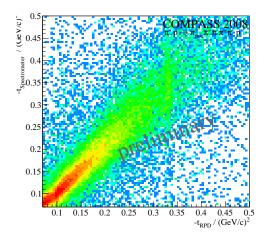
- d) $dP_t < 0.2 \text{ GeV}$
- e) 0.2 GeV $< dP_t < 0.5 \text{ GeV}$
- f) $dP_t > 0.5 \text{ GeV}$


COMPASS: all dP_t up to now, binning in dP_t with the full data set to come

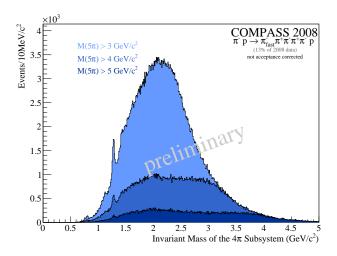
RPD information

RPD not only used in the trigger, but also in the offline analysis:

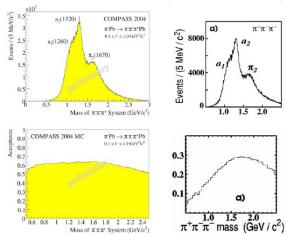
ullet measures TOF and dE/dx
ightarrow recoil particle momentum and PID



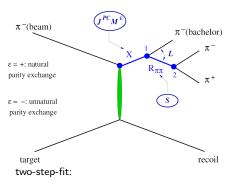
RPD information

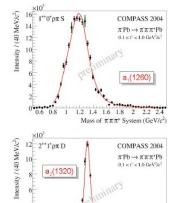

RPD not only used in the trigger, but also in the offline analysis:

- ullet measures TOF and dE/dx
 ightarrow recoil particle momentum and PID
- information on both t_1 and t_2

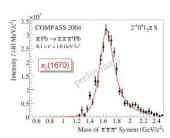

Different Approach: Cut on $M(5\pi)$

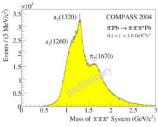
3π analysis (2004 data)


cf. CERN-PH-EP/2009-018 (submitted to PRL)


Selected results: PWA on 2004 3π data

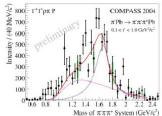
Analyse decay in the isobar model:

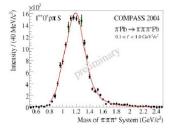

- intermediate two-particle decays
- introduce reflectivity basis: M = -L, -L + 1, ..., L - 1, L $\Rightarrow |M|\epsilon = |M| \operatorname{sgn}(M)$
- amplitudes in the *helicity* formalism: expand to D-Functions
- **1** Mass-independent PWA in $40 MeV/c^2$ bins
 - extended log-Likelihood fit with an extended set of waves (42)
 - acceptance corrected
- 2 Mass-dependent χ^2 fit
 - contains the 6 dominant waves
 - Breit-Wigner parametrization of the resonances

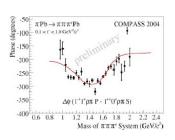


1.2 1.4 1.6 1.8 2 2.2 2.4

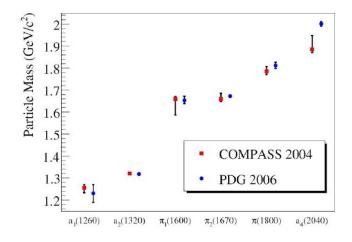
Mass of πππ+ System (GeV/c2)






major waves

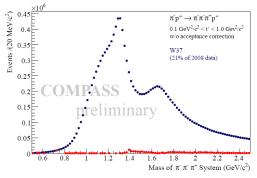
COMPASS 2004



exotic 1^{-+}

Summary and Outlook

PWA results



Selected results

Results for the 3π channel already published for 2004 data

- complete Partial Wave Analysis performed
- search mainly for the $\pi(1600)$ confirmed!
- as an appetizer, some 2008 data:

Summary and Outlook

- COMPASS Hadron program a first glance at upcoming results
- huge amount of data, mostly 200x more than previous experiments
- only a few days of 2008 data taking (13%) used yet in most of the analyses, 2009 proton data to come!
- Partial Wave Analysis results available for a few channels, but not yet published

Next steps:

- acceptance correction for 2008/2009 data
- introduce the next level of event selection (eg. glueball filter)
- 3 include both central and diffractive mechanisms in the PWA
- 4 develop new formalisms for the PWA

Summary and Outlook

Stay tuned for 2009 data:

- Primakoff
- spectroscopy with different target materials (Pb, Ni, C, W)
- low t

and, of course:

- GPD@COMPASS (DVCS, DVMP)
- Drell-Yan

