29/03/2010

Testing General Relativity and the Copernican principle

Jean-Philippe UZAN

Interpretation of cosmological data

The interpretation of the dynamics of the universe and its large scale structure relies on the hypothesis that gravity is well described by General Relativity

Galaxy rotation curves

Introduction of *Dark Matter* <u>Einsteinian</u> interpretation Most of the time <u>Newtonian</u> interpretation

Acceleration of the cosmic expansion

Introduction of *Dark Energy* <u>Einsteinian</u> interpretation But more important <u>Friedmanian</u> interpretation

This raises many questions concerning our cosmological model.

Cosmological models

In agreement with all the data.

Underlying hypothesis

The standard cosmological model lies on <u>3 hypothesis</u>:

H1- Gravity is well described by general relativity
 H2- Copernican Principle

 On large scales the universe is <u>homogeneous</u> and <u>isotropic</u>

Consequences:

- **1-** The dynamics of the universe reduces to the one of the scale factor
- **2-** It is dictated by the Friedmann equations

$$egin{aligned} &3\left(H^2+rac{K}{a^2}
ight)=8\pi G
ho\ &rac{\ddot{a}}{a}=-rac{4\pi G}{3}(
ho+3P) \end{aligned}$$

 $\Omega \equiv \frac{8\pi G\rho}{3H^2}$

H3- Ordinary matter (standard model fields)

Consequences:

- **3-** On cosmological scales: pressureless +radiation
- **4-** The dynamics of the expansion is dictated by

$$H^2(z)/H^2_0 = \Omega^0_m(1+z)^3 + \Omega^0_r(1+z)^4 + \Omega^0_K(1+z)^2$$

Implications of the Copernican principle

Independently of any theory (H1, H3), the Copernican principle implies that the geometry of the universe reduces to a(t).

Consequences: H2

•
$$1+z = \frac{E_{rec}}{E_{em}} \stackrel{\downarrow}{=} \frac{a_0}{a(t)}$$

•
$$a(t) = a_0 \left[1 + H_0(t - t_0) - \frac{1}{2}q_0 H_0^2(t - t_0)^2 + \dots \right]$$

so that

$$H^2(z)/H^2_0 = 1 + (q_0 + 1)z + \mathcal{O}(z^2)$$

$$q_0 = \Omega_{m0}/2$$

• Hubble diagram gives

- H_o at small z - q_o

Supernovae data (1998+) show

The expansion is now **accelerating**

No hypothesis on gravity at this stage.

Λcdm (reference) model

The simplest extension consists in introducing a cosmological constant

- constant energy density
- well defined model and completely predictive

$$ho_{\Lambda} = rac{\Lambda}{8\pi G} = - P_{\Lambda}$$

ACDM consistent with all current data

Observationally, very good *Phenomenologically*, very simple *But*: cosmological constant problem

ACDM: mater content

Λ: problem

<u>Classically</u>

No problem ! New constant in the theory - measured.

Quantumly

Interpratation in terms of vacuum energy

$$\begin{split} \rho_{\Lambda,obs} &= \frac{\Lambda}{8\pi G} = H_0^2 M_p^2 = 10^{-47} \text{GeV}^4 \\ \rho_{\Lambda,th} &= M_{\text{fondamental}}^4 > 10^{12} \text{GeV}^4 \end{split} \end{split}$$
 Cosmological constant problem
$$\end{split}$$

$$\begin{split} \rho_{\Lambda} &> 10^{59} \rho_{\Lambda,obs} \text{ !!} \\ \Lambda_{\text{obs}} &= \Lambda_{\text{E}} + \Lambda_{\text{Q}} \ll \Lambda_{\text{Q}} \end{split}$$

The current interpretation of the cosmological data requires the need for a dark sector with

$$\Omega_r: \Omega_b: \Omega_m: \Omega_{\Lambda} \sim 10^{-3}: 1:5:14$$

This conclusion relies heavily on our hypothesis.

- Test of the Copernican principle
- New degrees of freedom [Theory]
- Test of general relativity

Part I

Testing the Copernican Principle

Isotropy

Observationally, the universe seems very isotropic around us.

Uniformity principle

Two possibilities to achieve this:

Copernican Principle: we do not occupy a particular spatial location in the universe

Test of the Copernican principle

Redshift:
$$1 + z = \frac{\lambda_{\text{rec}}}{\lambda_{\text{em}}} = \frac{a_0}{a}$$

Test of the Copernican principle

Time drift of the redshifts

An interesting observable is the time drift of the redshift

Homogeneous and isotropic universe

$$\dot{z} = H_0(1+z) - H(z)$$
 [S
Typical order of magnitude (z~4) $\delta z \sim -5 imes 10^{-10}$ on $\delta t \sim$

[Sandage1962, McVittie 1962]

 $10\,\mathrm{yr}$

Measurement of H(z)

Inhomogeneous universe

$$\dot{z} = H_0(1+z) - H(z) + rac{1}{\sqrt{3}}\sigma(z)$$

[JPU, Clarkson, Ellis, PRL (2008)]

ELT

At a redshift of z=4, the typical order of magnitude is

$$\delta z \sim -5 \times 10^{-10}$$
 sur $\delta t \sim 10$ ans

Variance

[JPU, Bernardeau, Mellier, PRD (2007)]

Beyond what we can measure today $\ensuremath{\textbf{BUT}}$

ELT project:

- 60 meters of diameter
- ultrastable high resolution spectrograph (CODEX)
- 25 yrs ?
- 10 yrs of observation !

How sensitive can such a test be?

« Popular » universe model: Lemaître-Tolman-Bondi

- spherically symetric but inhomogeneous spacetime
- i.e. spherical symetry around one worldline only : *the universe as a center*

$$ds^{2} = -dt^{2} + \frac{X^{2}(r,t)}{1+2E(r)}dr^{2} + R^{2}(r,t)d\Omega^{2}$$

Two expansion rates, a priori different

[for an off-center observer, the universe does not look isotropic]

$$H_{\perp} \equiv \frac{\dot{R}}{R}, \qquad H_{\parallel} \equiv \frac{\dot{X}}{X} = \frac{\dot{R}'}{R'}$$

The solution depends on 2 arbitrary functions of r

$$3-1=2 \qquad \begin{bmatrix} E(r) \\ t_B(r) \\ M(r) = mr^3 \\ R(r,t) \end{bmatrix} \xrightarrow{\text{FL limit}} \begin{bmatrix} -kr^2 & k = \text{cst.} \\ 0 \\ m = \text{cst.} \\ a(t)r \end{bmatrix}$$

How sensitive can such a test be?

R can be interpreted as the angular diameter distance so that, evaluated on the past light-cone:

 $R[t_*(z), r_*(z)] = D_A(z)$

This allows to fix one of the free functions IF DA(z) is known. *There exist a class of LTB models reproducing the* $FL-D_A(z)$, *i.e. the* $FL-D_L(z)$, *observation*.

Full reconstruction requires an extra set <u>of independant</u> data.

In that class of models, we have $\dot{z} = (1+z)H_0 - H_\perp(z)$

- $D_A(z)$ and $\delta z(z)$ allow to fully reconstruct the LTB
- Give acces to H_{\parallel} and H_{\perp}

How sensitive can such a test be?

We assume that $8\pi G\rho(z) = 8\pi G\rho_{FL}(z) = 3\Omega_{m0}H_0^2(1+z)^3$

i.e. same $D_L(z)$ & same matter profile BUT NO cosmological constant

Prospective

•The time drift of the cosmological redshift is potentially a good way to constrain the Copernican principle.

[It gives access to some information outside the light-cone]

- •Other possibilities in the litterature:
 - CMB polarisation [Goodman (1995), Caldwell & Stebbins (2009), Abramo & JPU (2010)]
 - Measurement of the curvature

[Clarkson, Basset & Lu (2008)]

•Recently:

Investigation of the evolution of perturbation shows that the growth rate of the large scale structure is also very sensitive [depends on the spacetime structure inside the light-cone.]

Introducing new physical degrees of freedom

Some theoretical insight

Universality classes of extensions

New matter vs modification of GR

Extensions

Any of these extensions requires new-degrees of freedom

we always have new matter fields distinction matter/gravity is a Newtonian notion

MATTER: amount imposed by initial conditions

This matter dominates matter content and triggers acceleration (**dark energy**) This matter clusters and generates potential wells (**dark matter**)

<u>GRAVITY:</u> ordinary matter « generates » an effective dark matter halo « induces » an effective dark energy fluid

We would like to determine

the nature of these degrees of freedom the nature of their couplings

If they are light and if they couple to ordinary matter *responsible for a long range interaction*

In which regime

• Usually, we distinguish *weak-strong field* regimes

• Corrective terms in the action have to be compared to R

Also discussed in distinguishing *large-small distances*

Static configuation:

these limits are related because main dependance is (M,r) acceleration may also be the best parameter (e.g. rotation curves)

Cosmology:

<u>background level</u>: R increases with z <u>perturbation</u>: always in weak field but at late time, we can have high curvature corrections

Parameter space

Tests of general relativity on astrophysical scales are needed

- galaxy rotation curves: low acceleration
- acceleration: low curvature

Solar system:

$$rac{R}{\phi^3}=rac{c^4}{G^2M_{_{\odot}}^2}$$

Cosmology:

$$R=3H_0^2\{\Omega_m(1+z)^3+4\Omega_\Lambda\}$$

Dark energy:

$$R < R_{\Lambda} = 12H_0^2\Omega_{\Lambda}$$

Dark matter:

$$a < a_0 \sim 10^{-8} {
m cm.s}^{-2}$$
 $a^2 = \phi R < a_0^2$ [Psaltis, 0806.1531]

Modifying GR

The number of modifications are numerous.

I restrict to field theory.

We can require the followin constraints:

• Well defined **mathematically** full Hamiltonian should be bounded by below -no ghost ($E_{kinetic} > 0$) -No tachyon ($m^2 > 0$) Cauchy problem well-posed

•In agreement with existing **experimental** data Solar system & binary pulsar tests Lensing by « dark matter » - rotation curve Large scale structure – CMB – BBN - ...

• Not pure fit of the data!

The regimes in which we need to modify GR to explain DE and DM are different.

```
DM case: we need a force \sim 1/r
```

```
a priori easy:
- consider V(φ) = - 2a<sup>2</sup>e<sup>-bφ</sup> [Not bounded from below]
- static configuration: Δφ =V'(φ) and thus φ = (2/b)ln(abr)
But:
The constant (2/b) has to be identified with M<sup>1/2</sup> !!
```

[see PRD76 (2007) 124012]

DE case:

Coincidence problem ST: 2 free functions that can be determine to reproduce H(z) and $D_+(z)$.

	bgd	bgd + Newt. pert.	bgd + Newt. pert. + Solar syst.
DGP vs quintessence	Y	Ν	N
DGP vs scalar-tensor	Y	?	N

At quadratic order

$$S_g = rac{c^3}{16\pi G} \int (R + lpha C_{\mu
u
ho\sigma}^2 + eta R^2 + \gamma GB) \sqrt{-g} d^4x$$

•
$$GB = R^2_{\mu
u
ho\sigma} - 4R^2_{\mu
u} + R^2$$
 does not contribute to the field eqs.

$$\frac{1}{p^2 + \alpha p^4} = \frac{1}{p^2} \bigoplus_{\substack{p^2 + \alpha^{-1} \\ \downarrow \\ massless \text{ graviton}}} \frac{1}{p^2 + \alpha^{-1}} \bigoplus_{\substack{p^2 + \alpha^{-1} \\ \downarrow \\ massive \text{ degrees of freedom with } m^2 = 1/\alpha}} \alpha_{<0: \text{ it is also a tachyon.}}$$

• $eta R^2$ equivalent to positive energy massive scalar d.o.f

These considerations can be extended to $f(R, R_{\mu\nu}, R_{\mu\nu\alpha\beta})$

[Hindawi et al., PRD53 (1996) 5597]

Generically contains massive spin-2 ghosts but for f(R)

These models involve generically higher-order terms of the variables.

the Hamiltonian is then generically non-bounded by below

[Ostrogradsky, 1850] [Woodard, 0601672]

Argument does not apply for an infinite number of derivative non-local theories may avoide these arguments

Only allowed models of this class are f(R).

Scalar-tensor theories

$$S=rac{c^3}{16\pi G}\int\!\sqrt{-g}\{R-2(\partial_\mu\phi)^2-V(\phi)\}^{ ext{ spin 0}}+S_m\{ ext{matter}, ilde{g}_{\mu
u}=A^2(\phi)g_{\mu
u}\}$$

Maxwell electromagnetism is conformally invariant in d=4

$$S_{em} = \frac{1}{4} \int \sqrt{-\tilde{g}} \, \tilde{g}^{ab} \tilde{g}^{cd} F_{ac} F_{bd} \mathrm{d}^d x$$
$$= \frac{1}{4} \int \sqrt{-g} \, g^{ab} g^{cd} F_{ac} F_{bd} A^{d-4}(\phi) \mathrm{d}^d x$$

Light deflection is given as in GR

$$\delta heta = rac{4GM}{bc^2}$$

What is the difference?

The difference with GR comes from the fact that massive matter feels the scalar field

$$lpha = \mathrm{d}\ln A/\mathrm{d}\phi$$

Motion of massive bodies determines G_{cav}M **not** GM.

Thus, in terms of observable quantities, light deflection is given by

$$\delta heta = rac{4G_{ ext{N}}M}{(1+lpha^2)bc^2} \leq rac{4GM}{bc^2}$$

which means

$$M_{\rm lens} \leq M_{\rm rot}$$

Cosmological features of ST theories

Cosmological predictions computable (BBN, CMB, WL,...]

Coc et al., 2005]

Astrophysical tests of General Relativity

TESTING MODELS

- too numerous

- contain the cosmological constant as a CONTINOUS limit!

TESTING THE HYPOTHESIS

- Negative : increase the domain of validity of the theory and thus the credence in our cosmological model

- Positive: class of models that enjoy this particular NEEDED deviation

WHAT TO TEST

- Copernican principle (already discussed)
- General relativity
- Other [topology, Maxwell,...]

General relativity in a nutshell

Equivalence principle

- Universality of free fall
- Local Lorentz invariance
- Local position invariance

Dynamics

Relativity

and
ance
ance
$$S_{matter}(\psi, g_{\mu\nu})$$

 $S_{grav} = \frac{c^3}{16\pi G} \int \sqrt{-g_*} R_* d^4 x$
 $g_{\mu\nu} = g^*_{\mu\nu}$
 $G_{\mu\nu} = 8\pi G T_{\mu\nu}$

RelativitField equations

General relativity: validity

Universality of free fall $2 \frac{|a_1 - a_2|}{|a_1 + a_2|}$ 10⁻⁸ Eötvös Renner C. Will, gr-qc/0510072 Free-fall 10⁻⁹ Fifth-force searches 10-10 Boulder η Princeton Eöt-Wash 10-11 Eöt-Wash Moscow 10-12 LLR 10⁻¹³ η= <mark>a₁-a₂ /2 (a₁+a₂)/2</mark> 10⁻¹⁴ 7000 790,92,940 100, 10, 100 7990 YEAR OF EXPERIMENT «Constancy » of fundamental constants

JPU, RMP (2003)

Physical systems

Constraints

JPU, RMP (2003); arXiv:09XX.XXXX

Future evolution

Testing relativity

Have to agree if GR is a good description of gravity.

Testing GR on large scales

One needs at least **TWO** independant observables

Structure in ΛCDM

Restricting to low-*z* and sub-Hubble regime

$$\mathrm{d}s^2 = a^2(\eta) \left[-(1+2\Phi)\mathrm{d}\eta^2 + (1-2\Psi)\gamma_{ij}\mathrm{d}x^i\mathrm{d}x^j \right]$$

Background

$$H^2/H^2_0 = \Omega^0_m (1+z)^3 + (1 - \Omega^0_m - \Omega^0_\Lambda)(1+z)^2 + \Omega^0_\Lambda$$

Sub-Hubble perturbations

$$egin{aligned} \Phi &= \Psi \ \Delta\Psi &= 4\pi G
ho a^2 \delta & heta \propto -f \delta \ \delta' + heta &= 0 & f \propto \Omega_{
m mat}^{0.6} \ heta' + \mathcal{H} heta &= -\Delta \Phi \end{aligned}$$

This implies the existence of **rigidities** between different quantities

Original idea

On sub-Hubble scales, in weak field (typical regime for the large scale structure)

 $\Delta \Phi = 4\pi G \rho a^2 \delta$

Weak lensing

Galaxy catalogues

$$egin{aligned} \delta & heta &= rac{2}{c^2} \int &
abla oldsymbol{
abla} & \left\langle \Phi(heta) \Phi(heta+n)
ight
angle \end{aligned}$$

$$n_{gal}(\mathbf{x})$$

$$\xi(r) = \langle \delta(\mathbf{x}) \delta(\mathbf{x} + \mathbf{r})
angle$$

Distribution of the gravitational potential

Distribution of the matter

Compatible? [JPU, Bernardeau (2001)]

Example of some rigidity

In the linear regime, the growth of density perturbation is then dictated by

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi G\rho_{\rm mat}\delta = 0$$

This implies a *rigidity* between the growth rate and the expansion history

Bertschinger, astro-ph/0604485, JPU, astro-ph/0605313

It can be considered as an equation for H(a)

Chiba & Takahashi, astro-ph/0703347

$$egin{aligned} (H^2)' + 2\left(rac{3}{a} + rac{\delta''}{\delta'}
ight)H^2 &= 3rac{\Omega_0 H_0^2\delta}{a^5\delta'} \ rac{H^2}{H_0^2} &= 3\Omega_{m0}rac{(1+z)^2}{\delta'(z)^2}\int_zrac{\delta}{1+z}(-\delta')\mathrm{d}z \end{aligned}$$

H(a) from the background (geometry) and growth of perturbation have to agree.

Growth factor: example

SNLS – WL from 75 deg² CTIO – 2dfGRS – SDSS (luminous red gal) CMB (WMAP/ACBAR/BOOMERanG/CBI)

Wang *et al.*,arViv:0705.0165

Consistency check of any DE model within GR with <u>non clustering</u> DE Assume Friedmannian symmetries! (see e.g. Dunsby, Goheer, Osano, JPU, 2010)

To go beyond we need a parameterization of the possible deviations

Post-ΛCDM

Restricting to low-*z* and sub-Hubble regime

$$\mathrm{d}s^2 = a^2(\eta) \left[-(1+2\Phi)\mathrm{d}\eta^2 + (1-2\Psi)\gamma_{ij}\mathrm{d}x^i\mathrm{d}x^j \right]$$

Background

$$H^2/H_0^2 = \Omega_m^0(1+z)^3 + (1-\Omega_m^0-\Omega_\Lambda^0)(1+z)^2 + \Omega_{
m de}(z)$$

Sub-Hubble perturbations

$$egin{aligned} \Delta(\Phi-\Psi) &= \pi_{ ext{de}} \ &-k^2\Phi &= 4\pi G_N F(k,H) \,
ho a^2 \delta + \Delta_{ ext{de}} \ &\delta'+ heta &= 0 \ & heta'+\mathcal{H} heta &= -\Delta\Phi + S_{ ext{de}} \end{aligned}$$

ΛCDM

 $(F,\pi_{
m de},\Delta_{
m de},S_{
m de})=(1,0,0,0)$

[JPU, astro-ph/0605313; arXiv:0908.2243]

Data and tests

Various combinations of these variables have been considered

JPU and Bernardeau, Phys. Rev. D 64 (2001)

EUCLID: ESA-class M-phase A

Data and tests

Large scale structure
$$\delta_g = \frac{\delta n_g}{n_g}$$
 $\delta_g = b_1 \delta + b_2 \delta^2$
 $P_{gg}^z(k,\mu) = P_{gg}(k) + 2\frac{\mu^2}{aH}P_{g\theta_g}(k) + \frac{\mu^4}{a^2H^2}P_{\theta_g\theta_g}(k)$

Lensing

-weak lensing:
$$P_{\Phi+\Psi,\Phi+\Psi}$$

-galaxy-galaxy lensing: $P_{g,\Phi+\Psi}$

In a ACDM, all these spectra are related

$$P_{g\theta_g} = aH\frac{f}{b}P_{gg} \quad P_{\theta_g\theta_g} = a^2H^2\frac{f^2}{b^2}P_{gg}$$

One needs to control the biais.

Biais

$$\begin{array}{l} \begin{array}{c} \text{velocity map} \\ \left< \delta_g \theta \right> &= b \beta \left< \delta^2 \right> \\ \end{array} \\ \begin{array}{c} \text{Galaxy map} \\ \left< \delta_g \kappa \right> &\propto b \left< \delta \Delta (\Phi + \Psi) \right> &\propto 8 \pi G \rho a^2 b \left< \delta^2 \right> \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{weak lensing} \end{array}$$

The ratio of these 2 quantities is independent of the bias

Zhang et al, arXiv:0704.1932

Assume - no velocity bias $(S_{DE}=0)$ - no clustering of DE $(\Delta_{DE}=0)$

Conclusions

Our cosmological model requires dark sector.

The understanding of this sector calls for tests of the hypothesis of the model.

Underlying idea:

Any hypothesis implies that some quantities are related; We can test these rigidities [Consistency tests].

Copernican principle:

Time drift of redshift vs distance measurements. Good test that allows to distinguish models that have the same light-cone properties.

Modification of gravity:

difficult to construct models that are theoretically well-defined

Any modification from the LCDM:

modifies the prediction (growth rate, background dynamics) and <u>more important:</u> violation of SOME of the rigidities.

Data analysis:

Parametrisations: (w, gamma) [!!have to be compatible!!] Not yet in the spirit. Attempt with CFHTLS [Doré et al]. Requires: matter and velocity distribution + lensing [Tomography].

Other datasets: weakly NL regime / Gravity waves/ constants...