Towards the 3-dimensional nucleon structure (TMDs and SIDIS)

Mauro Anselmino, Torino University \& CPHT Saclay, May 7, 2010

Exploring the 3-dimensional phase-space structure of the nucleon

phase-space parton distribution, $W(\boldsymbol{k}, \boldsymbol{b})$

(S. Meissner, Metz, Schlegel) GTMD or GPCF Wigner
function (Belitsky, Ji, Yuan)

$$
\int d^{2} \boldsymbol{k}_{\perp} H(\boldsymbol{k}, \boldsymbol{\Delta})=H\left(x, \xi, \boldsymbol{\Delta}_{T}\right)
$$

new probes and concepts to explore the nucleon structure

TMDs - Transverse Momentum Dependent (distribution and fragmentation functions)
(polarized) SIDIS and Drell-Yan, spin asymmetries in inclusive
(large p_T) NN processes

$$
f_{a / p}\left(x, \boldsymbol{k}_{\perp} ; \boldsymbol{s}_{a}, \boldsymbol{S}\right)
$$

GPDs - Generalized Partonic Distributions

exclusive processes in leptonic and hadronic interactions

$$
q\left(x, \boldsymbol{b}_{T}\right)=\int \frac{d^{2} \boldsymbol{\Delta}_{T}}{(2 \pi)^{2}} H_{q}\left(x, 0,-\boldsymbol{\Delta}_{T}^{2}\right) e^{-i \boldsymbol{b}_{T} \cdot \boldsymbol{\Delta}_{T}}
$$

GTMDs - Generalized Transverse Momentum Dependent (partonic distributions) exclusive processes in leptonic and hadronic interactions

$$
\int d^{2} \boldsymbol{k}_{\perp} H(\boldsymbol{k}, \boldsymbol{\Delta})=H\left(x, \xi, \boldsymbol{\Delta}_{T}\right)
$$

Usual way of exploring the nucleon structure: collinear QCD parton model

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} x \mathrm{~d} Q^{2}}=\sum_{q} q\left(x, Q^{2}\right) \otimes \frac{\mathrm{d} \hat{\sigma}_{q}}{\mathrm{~d} Q^{2}}
$$

great success, but essentially x and Q^{2} degrees of freedom

The nucleon, as probed in DIS, in collinear configuration: 3 distribution functions

Correlator:

$$
\begin{aligned}
\Phi_{i j}(k ; P, S) & =\sum_{X} \int \frac{\mathrm{~d}^{3} \boldsymbol{P}_{X}}{(2 \pi)^{3} 2 E_{X}}(2 \pi)^{4} \delta^{4}\left(P-k-P_{X}\right)\langle P S| \bar{\Psi}_{j}(0)|X\rangle\langle X| \Psi_{i}(0)|P S\rangle \\
& =\int \mathrm{d}^{4} \xi e^{i k \cdot \xi}\langle P S| \bar{\Psi}_{j}(0) \Psi_{i}(\xi)|P S\rangle \\
\Phi(x, S) & =\frac{1}{2} \underbrace{f_{1}(x)}_{q} h_{+}+S_{L} \underbrace{\Delta q}_{q_{1 L}(x)} \gamma^{5} h_{+} h_{1 T} i \sigma_{\mu \nu} \gamma^{5} n_{+}^{\mu} S_{T}^{\nu}]
\end{aligned}
$$

but the leading-twist correlator, with intrinsic k_{\perp}, contains several other functions

$$
\begin{aligned}
& \Phi\left(x, \boldsymbol{k}_{\perp}\right)\left.=\frac{1}{2}\left[f_{1}\right) h_{+}+f_{1 T}^{\perp} \frac{\epsilon_{\mu \nu \rho \sigma} \gamma^{\mu} n_{+}^{\nu} k_{\perp}^{\rho} S_{T}^{\sigma}}{M}+\left(S_{L}\left(g_{1 L}\right)+\frac{\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{T}}{M} g_{1 T}^{\perp}\right)\right) \gamma^{5} h_{+} \\
&\left.+h_{1 T}\right) i \sigma_{\mu \nu} \gamma^{5} n_{+}^{\mu} S_{T}^{\nu}+\left(S_{L}\left(h_{1 L}^{\perp}\right)+\frac{\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{T}}{M}\left(h_{1 T}^{\perp}\right)\right) \frac{i \sigma_{\mu \nu} \gamma^{5} n_{+}^{\mu} k_{\perp}^{\nu}}{M} \\
& \\
& P, S
\end{aligned}
$$

... with partonic interpretation

$f_{1}^{q}\left(x, k_{\perp}^{2}\right)$

$$
q(x)=f_{1}^{q}(x)=\int \mathrm{d}^{2} \boldsymbol{k}_{\perp} f_{1}^{q}\left(x, k_{\perp}^{2}\right)
$$

several spin- \mathbf{k}_{\perp} correlations in TMDs

$\boldsymbol{S} \cdot\left(\boldsymbol{p} \times \boldsymbol{k}_{\perp}\right)$

$$
s_{q} \cdot\left(\boldsymbol{p} \times \boldsymbol{k}_{\perp}\right) \quad \boldsymbol{S} \cdot \boldsymbol{s}_{q}
$$

"Sivers effect"
"Boer-Mulders effect"

The nucleon at twist-2,

similar spin- p_{\perp} correlations in fragmentation process (case of final spinless hadron)

$$
D_{1}^{q}\left(x, \boldsymbol{p}_{\perp}^{2}\right)
$$

$$
H_{1}^{\perp q}\left(x, \boldsymbol{p}_{\perp}^{2}\right)
$$

$$
\boldsymbol{s}_{q} \cdot\left(\boldsymbol{p}_{q} \times \boldsymbol{p}_{\perp}\right)
$$

"Collins
effect"

factorization holds at large Q^{2}, and $P_{T} \approx k_{\perp} \approx \Lambda_{\mathrm{QCD}}$
Two scales: $P_{T} \ll Q^{2}$

(Collins, Soper, Ji, J.P. Ma, Yuan, Qiu, Vogelsang, Collins, Metz)

$\Lambda_{\mathrm{QCD}} \simeq k_{\perp} \simeq P_{T} \ll Q$

$$
\boldsymbol{P}_{T} \simeq \boldsymbol{p}_{\perp}+z_{h} \boldsymbol{k}_{\perp}
$$

elementary interaction: $\gamma^{*} q \rightarrow q^{\prime}$

SIDIS factorization

$$
\begin{array}{rl}
& \frac{\left.d \sigma^{\ell(S} S_{\ell}\right)+p(S) \rightarrow \ell^{\prime}+h+X}{d x_{B} d Q^{2} d z_{h} d^{2} \boldsymbol{P}_{T} d \phi_{S}} \\
= & \rho_{\lambda_{\ell}, \lambda_{\ell}}^{\ell, S_{\ell}} \otimes \underbrace{\rho_{\lambda_{q}, \lambda_{q}^{\prime}}^{T p_{q}^{\prime}} \hat{f}_{q / p, S}\left(x, \boldsymbol{k}_{\perp}\right.}_{\text {TMD-PDF }})
\end{array} \underbrace{M_{\lambda_{\ell}, \lambda_{q} ; \lambda_{\ell}, \lambda_{q}} \hat{M}_{\lambda_{\ell}^{\prime}, \lambda_{q}^{\prime} ; \lambda_{\ell}^{\prime}, \lambda_{q}^{\prime}}^{*}}_{\text {hard scattering }} \otimes \underbrace{\hat{D}_{\lambda_{q}, \lambda_{q}^{\prime}}^{h}\left(z, \boldsymbol{p}_{\perp}\right.}_{\text {TMD-FF }})
$$

all pieces contain phases and keeping them into account one obtains the most general expression for the cross-section:

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \phi} & =F_{U U}+\cos (2 \phi) F_{U U}^{\cos (2 \phi)}+\frac{1}{Q} \cos \phi F_{U U}^{\cos \phi}+\lambda \frac{1}{Q} \sin \phi F_{L U}^{\sin \phi} \\
& +S_{L}\left\{\sin (2 \phi) F_{U L}^{\sin (2 \phi)}+\frac{1}{Q} \sin \phi F_{U L}^{\sin \phi}+\lambda\left[F_{L L}+\frac{1}{Q} \cos \phi F_{L L}^{\cos \phi}\right]\right\} \\
& +S_{T}\left\{\sin \left(\phi-\phi_{S}\right) F_{U T}^{\sin \left(\phi-\phi_{S}\right)}+\sin \left(\phi+\phi_{S}\right) F_{U T}^{\sin \left(\phi+\phi_{S}\right)}+\sin \left(3 \phi-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi-\phi_{S}\right)}\right. \\
& +\frac{1}{Q}\left[\sin \left(2 \phi-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi-\phi_{S}\right)}+\sin \phi_{S} F_{U T}^{\sin \phi_{S}}\right] \\
& \left.+\lambda\left[\cos \left(\phi-\phi_{S}\right) F_{L T}^{\cos \left(\phi-\phi_{S}\right)}+\frac{1}{Q}\left(\cos \phi_{S} F_{L T}^{\cos \phi_{S}}+\cos \left(2 \phi-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi-\phi_{S}\right)}\right)\right]\right\}
\end{aligned}
$$

lepton plane

many spin asymmetries $\mathrm{d} \sigma(\boldsymbol{S}) \neq \mathrm{d} \sigma(-\boldsymbol{S})$
 $F_{S_{B} S_{T}}^{(\ldots)}$ contain the TMDs
 s

$$
\begin{aligned}
& F_{U U} \sim \sum_{a} e_{a}^{2}\left(f_{1}^{a}\right) \otimes D_{1}^{a} \\
& F_{L L} \sim \sum_{a} e_{a}^{2} g_{1 L}^{a} \otimes D_{1}^{a} \\
& \left.\left.F_{U U}^{\cos (2 \phi)} \sim \sum_{a} e_{a}^{2} h_{1}^{\perp a}\right) \otimes H_{1}^{\perp a} \quad F_{U T}^{\sin \left(\phi+\phi_{S}\right)} \sim \sum_{a} e_{a}^{2} h_{1 T}^{a}\right) \otimes H_{1}^{\perp a} \\
& F_{U L}^{\sin (2 \phi)} \sim \sum_{a} e_{a}^{2}\left(h_{1 L}^{\perp a}\right) \otimes H_{1}^{\perp a} \\
& \left.\begin{array}{rl}
F_{L T}^{\cos \left(\phi-\phi_{S}\right)} & \left.\sim \sum_{a} e_{a}^{2} g_{1 T}^{\perp a}\right) \otimes D_{1}^{a} \\
\left.F_{U T}^{\sin \left(\phi-\phi_{S}\right)} \sim \sum_{a} e_{a}^{2} f_{1 T}^{\perp a}\right) \otimes D_{1}^{a}
\end{array}\right\} \begin{array}{c}
\\
\text { chiral-even } \\
\text { TMDs }
\end{array} \\
& \frac{1}{Q} \cos \phi F_{U U}^{\cos \phi} \sim f_{1}^{q} \otimes D_{1}^{q} \otimes \mathrm{~d} \hat{\sigma}+\left(h_{1}^{q \perp} \otimes H_{1}^{q \perp} \otimes \mathrm{~d} \Delta \hat{\sigma}\right) \quad \begin{array}{r}
\text { Cahn kinema } \\
\text { effects }
\end{array}
\end{aligned}
$$ integrated $f_{1}^{q}(x)$ and $g_{1 L}^{q}(x)$ can be measured in usual DIS

TMDs in unpolarized SIDIS: "Cahn effect" at $\mathcal{O}\left(k_{\perp} / Q\right)$

$$
\begin{gathered}
\frac{1}{Q} \cos \phi F_{U U}^{\cos \phi} \sim \underbrace{f_{1}^{q} \otimes D_{1}^{q} \otimes \mathrm{~d} \hat{\sigma}}_{z=z_{h}}+(\underbrace{h_{1}^{q \perp} \otimes H_{1}^{q \perp} \otimes \mathrm{~d} \Delta \hat{\sigma}}_{\boldsymbol{P}_{T}=z \boldsymbol{k}_{\perp}+\boldsymbol{p}_{\perp}}) \\
x=x_{B} \\
d \hat{\sigma}^{\ell \rightarrow \ell q} \propto \hat{s}^{2}+\hat{u}^{2}=\frac{Q^{4}}{y^{2}}[1+(1-y)^{2} \Theta \underbrace{\frac{k_{\perp}}{Q}(2-y) \sqrt{1-y} \cos \varphi})
\end{gathered}
$$

simple kinematical effect directly related to quark intrinsic motion

$$
\mathcal{O}\left(k_{\perp}^{2} / Q^{2}\right) \text { : also a } \cos (2 \phi) \text { dependence }
$$

$\cos \Phi$ dependence generated also by Boer-Mulders
\otimes Collins term, via a kinematical effect in $\mathrm{d} \Delta \hat{\sigma}$

EMC data, μ and $\mu \mathrm{d}, \mathrm{E}$ between 100 and 280 GeV assuming gaussian k_{\perp} and p_{\perp} dependences:

$$
\begin{gathered}
\left\langle k_{\perp}^{2}\right\rangle=0.28(\mathrm{GeV})^{2} \quad\left\langle p_{\perp}^{2}\right\rangle=0.25(\mathrm{GeV})^{2} \\
\text { (no B-M } \otimes \text { Collins contribution) }
\end{gathered}
$$

M.A., M. Boglione, U. D'Alesio, A. Kotzinian, F. Murgia and A. Prokudin

Large P_{T} data explained by NLO QCD corrections

transition between TMDs and pQCD at $P_{T} \simeq 1 \mathrm{GeV} / c$

P_{T} dependence of data in agreement with a Gaussian k_{\perp} dependence of unpolarized TMDs

solid line $=$
$\left\langle P_{T}^{2}\right\rangle=z^{2}\left\langle k_{\perp}^{2}\right\rangle+\left\langle p_{\perp}^{2}\right\rangle$
$\left\langle k_{\perp}^{2}\right\rangle=0.25\left\langle p_{\perp}^{2}\right\rangle=0.20$
z dependence at small z values

not much x dependence in explored valence region

Schweitzer, Teckentrup, Metz, arXiv:1003.2190

$\cos \phi$ dependence observed by HERMES

F. Giordano and R. Lamb, arXiv:0901.2438 [hep-ex]

and by COMPASS

W. Käfer, on behalf of the COMPASS collaboration, talk at Transversity 2008, Ferrara

comparison with:
M. Anselmino, M. Boglione, A. Prokudin, C. Türk

Eur. Phys. J. A 31, 373-381 (2007)
does not include Boer - Mulders contribution
the azimuthal dependence induced by intrinsic motion is clearly observed phenomenolgical analysis and data need much improvement

Gaussian k_{\perp} distribution of TMDs?
$\left\langle k_{\perp}^{2}\right\rangle\left(x, Q^{2}\right) \quad\left\langle p_{\perp}^{2}\right\rangle\left(z, Q^{2}\right)$
x, z dependence?
flavour dependence?
energy dependence?
k_{\perp} dependence of Δq vs. q ?

Spin dependent TMDs

probing polarized nucleons: transverse single spin asymmetries in SIDIS

$$
A_{N}=\frac{\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}}{\mathrm{d} \sigma^{\uparrow}+\mathrm{d} \sigma^{\downarrow}}
$$

$$
A_{N} \propto \boldsymbol{S} \cdot\left(\boldsymbol{p} \times \boldsymbol{P}_{T}\right) \propto P_{T} \sin \left(\phi_{\pi}-\phi_{S}\right)
$$

Large Q^{2} : the virtual photon explores the nucleon structure. In collinear configurations there cannot be (at LO) any P_{T}

Sivers effect in SIDIS - $F_{U T}^{\sin \left(\phi-\phi_{S}\right)} f_{1 T}^{\perp q}\left(x, \boldsymbol{k}_{\perp}^{2}\right)$

$$
\begin{gathered}
\mathrm{d} \sigma^{\uparrow, \downarrow}=\sum_{q} \overbrace{\left.f_{q / p^{\dagger},}\right)}\left(x, \boldsymbol{k}_{\perp} ; Q^{2}\right) \otimes \mathrm{d} \hat{\sigma}\left(y, \boldsymbol{k}_{\perp} ; Q^{2}\right) \otimes D_{h / q}\left(z, \boldsymbol{p}_{\perp} ; Q^{2}\right) \\
\begin{aligned}
f_{q / p^{\uparrow}, \downarrow}\left(x, \boldsymbol{k}_{\perp}\right) & =f_{q / p}\left(x, k_{\perp}\right) \pm \frac{1}{2} \Delta^{N} f_{q / p^{\uparrow}}\left(x, k_{\perp}\right) \boldsymbol{S}_{T} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right) \\
& =f_{q / p}\left(x, k_{\perp}\right) \mp \frac{k_{\perp}}{M} f_{1 T}^{\perp q}\left(x, k_{\perp}\right)
\end{aligned} \boldsymbol{S}_{T} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right)
\end{gathered} \begin{aligned}
& \begin{array}{l}
\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}= \\
\sum_{q} \Delta^{N} f_{q / p^{\uparrow}\left(x, k_{\perp}\right)} \underbrace{\boldsymbol{S})}_{\sin \left(\varphi-\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right)\right.} \otimes \mathrm{d} \hat{\sigma}\left(y, \boldsymbol{k}_{\perp}\right) \otimes D_{h / q}\left(z, \boldsymbol{p}_{\perp}\right) \\
\sim F_{U T}^{\sin \left(\phi-\phi_{S}\right)} \sin \left(\phi-\phi_{S}\right)
\end{array}
\end{aligned}
$$

simple physical picture for Sivers effect

Quark models for Sivers function

Brodsky, Hwang, Schmidt: final state interactions

recent quark-diquark model of all twist-2 TMDs: Bacchetta, Conti, Radici, arXiv:0807.0323 (PRD 78, 074010, 2008);

Bacchetta, Radici, Conti, Guagnelli, arXiv:1003.1328
very recent quark bag model of all twist-2 and twist-3 TMDs:
Avakian, Efremov, Schweitzer, Yuan, arXiv:1001.5467
(supports Gaussian k_{\perp} dependence of TMDs in valence x-region)

Sivers function from light-front wave function

> Brodsky, Pasquini, Xiao, Yuan, arXiv:1001.1163
> Pasquini, Yuan, arXiv:1001.5398

(a)

(b) in all models one has:

$$
\left[f_{1 T}^{q \perp}\right]_{\mathrm{SIDIS}}=-\left[f_{1 T}^{q \perp}\right]_{\mathrm{DY}}
$$

see also Hwang, arXiv:1003.0867 - incorporation of final state interactions into the light-cone wave function

HERMES data on pion Sivers asymmetry

HERMES kaon Sivers asymmetry

extraction of Sivers functions from SIDIS data (from HERMES proton and COMPASS deuteron data)
u and d functions rather well determined

M.A., M. Boglione, U. D'Alesio, A. Kotzinian, S. Melis, F. Murgia, A. Prokudin, C. Türk

predictions for Sivers asymmetry at COMPASS, off a proton target - comparison with new data

A. Martin, DIS2010

Sivers asymmetry off a proton target comparison of HERMES and COMPASS data

A. Martin, DIS2010

What could we learn from the Sivers distribution?
number density of partons with longitudinal momentum
fraction x and transverse momentum \boldsymbol{k}_{\perp}, inside a proton with spin \mathbf{S}

$$
\sum_{a} \int d x d^{2} \boldsymbol{k}_{\perp} \boldsymbol{k}_{\perp} f_{a / p^{\dagger}}\left(x, \boldsymbol{k}_{\perp}\right) \equiv \sum_{a}\left\langle\boldsymbol{k}_{\perp}^{a}\right\rangle=0
$$

M. Burkardt, PR D69, 091501 (2004)
same naive sum rule as expected for free partons (no final state interactions)

Total amount of intrinsic momentum carried by partons of flavour a

$$
\begin{aligned}
\left\langle\boldsymbol{k}_{\perp}^{a}\right\rangle & =\left[\frac{\pi}{2} \int_{0}^{1} d x \int_{0}^{\infty} d k_{\perp} k_{\perp}^{2} \Delta^{N} f_{a / p^{\dagger}}\left(x, k_{\perp}\right)\right](\boldsymbol{S} \times \hat{\boldsymbol{P}}) \\
& =m_{p} \int_{0}^{1} d x \Delta^{N} f_{q / p^{\dagger}}^{(1)}(x)(\boldsymbol{S} \times \hat{\boldsymbol{P}}) \equiv\left\langle k_{\perp}^{a}\right\rangle(\boldsymbol{S} \times \hat{\boldsymbol{P}})
\end{aligned}
$$

$$
\left\langle k_{\perp}^{u}\right\rangle+\left\langle k_{\perp}^{d}\right\rangle=-17_{-55}^{+37}(\mathrm{MeV} / c)
$$

$$
\left[\left\langle k_{\perp}^{u}\right\rangle=96_{-28}^{+60} \quad\left\langle k_{\perp}^{d}\right\rangle=-113_{-51}^{+45}\right]
$$

$$
\left\langle k_{\perp}^{\bar{u}}\right\rangle+\left\langle k_{\perp}^{\bar{d}}\right\rangle+\left\langle k_{\perp}^{s}\right\rangle+\left\langle k_{\perp}^{\bar{s}}\right\rangle=-14_{-66}^{+43}(\mathrm{MeV} / c)
$$

Burkardt sum rule almost saturated by u and d quarks alone; little residual contribution from gluons

$$
-10 \leq\left\langle k_{\perp}^{g}\right\rangle \leq 48(\mathrm{MeV} / c)
$$

Sivers u and d quark densities in transverse momentum space

proton moving into the screen, polarization along y-axis blue: less quarks red: more quarks $x=0.2 \mathrm{k}$ in $\mathrm{GeV} / \mathrm{c}$
$q\left(x, \boldsymbol{b}_{T}\right)$: femtophotography or tomography of the nucleon

Sivers distribution in impact parameter space (M. Burkardt)

Sivers function and orbital angular momentum
 D. Sivers

Sivers mechanism originates from $\boldsymbol{S} \cdot \boldsymbol{L}_{q}$ then it is related to the quark orbital angular momentum

Sivers function and proton anomalous magnetic moment M. Burkardt, S. Brodsky, Z. Lu, I. Schmidt

Both the Sivers function and the proton anomalous magnetic moment are related to correlations of proton wave functions with opposite helicities

$$
\int_{0}^{1} \mathrm{~d} x \mathrm{~d}^{2} \boldsymbol{k}_{\perp} \Delta^{N} f_{q / p^{\uparrow}}\left(x, k_{\perp}\right)=C \kappa_{q}
$$

in qualitative agreement with large z data:

$$
\frac{A_{U T}^{\sin \left(\phi_{\pi}+-\phi_{S}\right)}}{A_{U T}^{\sin \left(\phi_{\pi^{-}}-\phi_{S}\right)}} \sim \frac{\kappa_{u}}{\kappa_{d}}
$$

Sivers effect now observed by two experiments,
... but needs further measurements
and if the Sivers function is zero? and if (Sivers) SIDIS \neq - (Sivers) ${ }_{\text {D-y? }}$
A_{N} in $A B \rightarrow C X$, which Sivers function? other mechanisms? Collins effect?

Collins effect

$$
\begin{aligned}
D_{h / q, \boldsymbol{s}_{q}}\left(z, \boldsymbol{p}_{\perp}\right) & =D_{h / q}\left(z, p_{\perp}\right)+\frac{1}{2} \Delta^{N} D_{h / q^{\uparrow}}\left(z, p_{\perp}\right) \boldsymbol{s}_{q} \cdot\left(\hat{\boldsymbol{p}}_{q} \times \hat{\boldsymbol{p}}_{\perp}\right) \\
& =D_{h / q}\left(z, p_{\perp}\right)+\frac{p_{\perp}}{z M_{h}} H_{1}^{\perp q}\left(z, p_{\perp}\right) \boldsymbol{s}_{q} \cdot\left(\hat{\boldsymbol{p}}_{q} \times \hat{\boldsymbol{p}}_{\perp}\right)
\end{aligned}
$$

Collins effect in SIDIS - $F_{U T}^{\sin \left(\phi+\phi_{S}\right)}$

$$
\begin{aligned}
& D_{h / q, \boldsymbol{s}_{q}}\left(z, \boldsymbol{p}_{\perp}\right)=D_{h / p}\left(z, p_{\perp}\right)+ \\
& \frac{1}{2}\left(\Delta^{N} D_{h / q^{\top}}\left(z, p_{\perp}\right) \boldsymbol{s}_{q} \cdot\left(\hat{\boldsymbol{p}}_{q} \times \hat{\boldsymbol{p}}_{\perp}\right)\right.
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}=\sum_{q} h_{\left.h_{1 q}\left(x, k_{\perp}\right)\right) \otimes \mathrm{d} \Delta \hat{\sigma}\left(y, \boldsymbol{k}_{\perp}\right) \otimes \Delta^{N} D_{h / q^{\uparrow}}\left(z, \boldsymbol{p}_{\perp}\right.}^{A_{U T}^{\sin \left(\phi+\phi_{S}\right)} \equiv 2 \frac{\int \mathrm{~d} \phi \mathrm{~d} \phi_{S}\left[\mathrm{~d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}\right] \sin \left(\phi+\phi_{S}\right)}{\int \mathrm{d} \phi \mathrm{~d} \phi_{S}\left[\mathrm{~d} \sigma^{\uparrow}+\mathrm{d} \sigma^{\downarrow}\right]}} \\
\mathrm{d} \Delta \hat{\sigma}=\mathrm{d} \hat{\sigma}^{\ell q^{\uparrow} \rightarrow \ell q^{\uparrow}}-\mathrm{d} \hat{\sigma}^{\ell q^{\uparrow} \rightarrow \ell q^{\downarrow}}
\end{gathered}
$$

Collins effect in SIDIS couples to transversity

HERMES Collins asymmetry

Collins function from $e^{+} e^{-}$processes BELLE @ KEK

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma^{+} e^{-} \rightarrow q^{\top} \bar{q}^{\top}}{\mathrm{d} \cos \theta}=\frac{3 \pi \alpha^{2}}{4 s} e_{q}^{2} \cos ^{2} \theta \quad \frac{\mathrm{~d} \sigma^{e^{+} e^{-} \rightarrow q^{\dagger} \bar{q}^{\top}}}{\mathrm{d} \cos \theta}=\frac{3 \pi \alpha^{2}}{4 s} e_{q}^{2} \\
& A_{12}\left(z_{1}, z_{2}, \theta, \varphi_{1}+\varphi_{2}\right) \equiv \frac{1}{\langle d \sigma\rangle} \frac{d \sigma^{e^{+} e^{-} \rightarrow h_{1} h_{2} X}}{d z_{1} d z_{2} d \cos \theta d\left(\varphi_{1}+\varphi_{2}\right)} \\
& =1+\frac{1}{4} \frac{\sin ^{2} \theta}{1+\cos ^{2} \theta} \cos \left(\varphi_{1}+\varphi_{2}\right) \times \frac{\sum_{q} e_{q}^{2}\left(\Delta^{N} D_{h_{1} / q} \dagger\right.}{\sum_{q} e_{q}^{2} D_{h_{1} / q}\left(z_{1}\right)\left(D^{N} D_{h_{2} / \bar{q} / \bar{q}\left(z_{2}\right)}\right)}\left(z_{2}\right)
\end{aligned}
$$

Collins asymmetry best fit

M. A., M. Boglione, U. D'Alesio, A. Kotzinian, F. Murgia, A. Prokudin, S. Melis , e-Print: arXiv:0812.4366 [hep-ph]

fit of COMPASS data, deuteron target

best fit of Belle data

extracted Collins functions

extracted transversity

 and comparison withmodels

M.A., M. Boglione, U. D'Alesio, A. Kotzinian, S. Melis, F. Murgia, A. Prokudin, C. Türk

Predictions for COMPASS, with a proton target, and comparison with data

A. Martin, DIS2010

Collins effect observed by three independent experiments: HERMES, BELLE and COMPASS

Collins function expected to be universal

Collins function couples to Boer-Mulders function in unpolarized SIDIS to give a $\cos (2 \Phi)$ asymmetry

Boer-Mulders effect

$$
\begin{aligned}
f_{q, \boldsymbol{s}_{q} / p}\left(x, \boldsymbol{k}_{\perp}\right) & =\frac{1}{2} f_{q / p}\left(x, k_{\perp}\right)+\frac{1}{2} \Delta^{N} f_{q^{\uparrow} / p}\left(x, k_{\perp}\right) \boldsymbol{s}_{q} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right) \\
& =\frac{1}{2} f_{q / p}\left(x, k_{\perp}\right)-\frac{k_{\perp}}{2 M} h_{1}^{\perp q}\left(x, k_{\perp}\right) \boldsymbol{s}_{q} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right)
\end{aligned}
$$

transversely polarized quarks inside unpolarized nucleons; interesting spin effects in unpolarized processes
possible strategy: combined analysis of $\cos (2 \Phi)$ asymmetries in unpolarized Drell-Yan (B-M $\otimes B-M$) and in SIDIS (B-M \otimes Collins)

B-M function from SIDIS data alone contributions from Cahn effect at order $\mathcal{O}\left(k_{\perp}^{2} / Q^{2}\right)$
 Barone, Melis, Prokudin, arXiv:0912.5194

opposite contribution to π^{+}, π^{-}given by B-M effect only

fit based on simple phenomenological assumption

$$
h_{1}^{\perp q}\left(x, k_{\perp}^{2}\right)=\lambda_{q} f_{1 T}^{\perp q}\left(x, k_{\perp}^{2}\right)
$$

COMPASS Deuteron

COMPASS and HERMES PT data quite different
$h_{1}^{\perp u, d}$ both negative, as expected from models

$$
\lambda_{u} \simeq 2.1 \quad \lambda_{d} \simeq-1.1
$$

Gaussian dependence of TMDs assumed, Sivers and Collins distributions from other fits

$$
\left\langle k_{\perp}^{2}\right\rangle=0.18(\mathrm{GeV} / c)^{2} \quad\left\langle k_{\perp}^{2}\right\rangle=0.20(\mathrm{GeV} / c)^{2}
$$

B-M function from Drell-Yan data alone

Lu, Schmidt, arXiv:0912.2031

$$
\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}=\frac{3}{4 \pi} \frac{1}{\lambda+3}\left(1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right)
$$

best fit results, antiquark distribution needed

only relative signs of $B-M$ functions can be fixed
what about the last 3 TMDs? any relation with the others?

$$
\begin{aligned}
g_{1 T}^{\perp(1) a}(x) & \simeq x \int_{x}^{1} \frac{\mathrm{~d} y}{y} g_{1}^{a}(y) \\
h_{1 L}^{\perp(1) a}(x) & \simeq-x^{2} \int_{x}^{1} \frac{\mathrm{~d} y}{y^{2}} h_{1}^{a}(y) \\
h_{1 T}^{\perp(1) a}(x) & \simeq g_{1}^{a}(x)-h_{1}^{a}(x)
\end{aligned}
$$

neglecting
twist-3 contributions
similar to the Wandzura-Wilczek relation

$$
\begin{gathered}
g_{T}^{a}(x) \simeq \int_{x}^{1} \frac{\mathrm{~d} y}{y} g_{1}^{a}(y) \quad \text { supported by experiment } \\
g_{1 T}^{\perp(1) a}(x)=\int \mathrm{d}^{2} \boldsymbol{k}_{\perp} \frac{k_{\perp}^{2}}{2 m_{N}^{2}} g_{1 T}^{\perp a}\left(x, k_{\perp}^{2}\right)
\end{gathered}
$$

Avakian, Efremov, Schweitzer, Yuan, arXiv:0805.3355

HERMES data, PRL 84 (2000) 4047; PL B562 (2003) 182

(b) $\quad \mathrm{A}_{\mathrm{UL}}^{\sin 2 \phi}(\mathbf{x}) \pi^{+} / \mathbf{d}$
(c) $\quad \mathbf{A}_{\mathbf{U L}}^{\sin 2 \phi}(\mathbf{x}) \pi^{-} / \mathbf{d}$
(d)

$$
\left.F_{U L}^{\sin (2 \phi)} \sim \sum_{a} e_{a}^{2} h_{1 L}^{\perp a}\right) \otimes H_{1}^{\perp a}
$$

COMPASS data, arXiv:0705.2402

$$
F_{U T}^{\sin \left(3 \phi-\phi_{S}\right)} \sim \sum_{a} e_{a}^{2}\left(h \frac{\perp}{1 T}\right) \otimes H_{1}^{\perp a}
$$

Future

3-dimensional exploration of nucleon has just started: collect as much data as possible on TMDs and GPDs and try to reconstruct the complete phase-space distribution
ideal machine:
high luminosity
x-range including the valence region
Q^{2} high enough to neglect higher-twist corrections P_{T} high enough to see transition from TMDs to PQCD precise $P_{T}-Q^{2}$ bins
plenty of challenging theoretical issues....

