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Ideally: obtain a quantum 
phase-space distribution 

(like the Wigner function)

Exploring the 3-dimensional phase-space structure 
of the nucleon    

〈Ô(x, p)〉 =
∫

dx dpW (x, p) O(x, p)

in 1-dimensional QM:
∫

dp W (x, p) = |ψ(x)|2
∫

dx W (x, p) = |φ(p)|2

k⊥b

sq

S
  spin-k┴ correlations?

orbiting quarks?

intrinsic motion



phase-space parton distribution,  W (k, b)

∫
d2k⊥H(k,∆) = H(x, ξ,∆T )

TMD

q(x,k⊥)

∆ = 0

FT, ∆ ↔ b

Wigner 
functionGTMD or GPCF

W (k, b)H(k,∆)

(Belitsky, Ji, Yuan)

FT, ∆T ↔ bT

∫
d3b

q(x, bT )

∫
d2k⊥

ξ = 0

H(x, 0,∆T )

∫
d2k⊥ dbL

(M. Burkardt)

(S. Meissner, Metz, Schlegel)



new probes and concepts to explore 
the nucleon structure 

TMDs - Transverse Momentum Dependent 
(distribution and fragmentation functions) 

(polarized) SIDIS and Drell-Yan,                  
spin asymmetries in inclusive                      

(large p_T) NN processes

fa/p(x,k⊥; sa,S)

k

P, S

k

P, S



GPDs - Generalized Partonic Distributions 
exclusive processes in leptonic and 

hadronic interactions

q(x, bT ) =
∫

d2∆T

(2π)2
Hq(x, 0,−∆2

T )e−ibT ·∆T

P ′, S ′P, S

k′k

x− ξ x + ξ

H(x, ξ,∆T )

P ′ − P = ∆



GTMDs - Generalized Transverse Momentum 
Dependent (partonic distributions) 
exclusive processes in leptonic and 

hadronic interactions

P ′, S ′P, S

k′k
P ′ − P = ∆

H(k,∆)

k − ∆
2

k +
∆
2

∫
d2k⊥H(k,∆) = H(x, ξ,∆T )



xP

P

DIS

. . . .

Q2

Usual way of exploring the nucleon structure: 
collinear QCD parton model 

dσ

dxdQ2
=

∑

q

q(x, Q2)⊗ dσ̂q

dQ2



g1 =
1
2

∑

q

e2
q ∆q(x, Q2)

great success, but essentially x and Q2 degrees of freedom …. 
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Φij(k;P, S) =
∑

X

∫
d3P X

(2π)3 2EX
(2π)4 δ4(P − k − PX)〈PS|Ψj(0)|X〉〈X|Ψi(0)|PS〉

=
∫

d4 ξ eik·ξ〈PS|Ψj(0)Ψi(ξ)|PS〉

The nucleon, as probed in DIS, in collinear 
configuration:  3 distribution functions 

Φ(x, S) =
1
2

[
f1(x) /n+ + SL g1L(x) γ5 /n+ + h1T iσµνγ5nµ

+Sν
T

]

q Δq ΔTq
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Fig. 1. – The handbag diagram for DIS. At leading QED order, the interaction between the
lepton (not shown) and the nucleon is mediated by the exchange of a virtual photon. Thus, the
DIS cross section is just the total cross section for the γ∗N → X process, which, by the optical
theorem, is related to the forward scattering amplitude. In the parton model, at leading QCD
order, the virtual photon scatters off a single quark in the nucleon, as represented in the figure.
The lower blob is thus the matrix element between the nucleon initial and final states of two
quark fields, one ”extracted from” and the other ”replaced into” the nucleon. It is a matrix in
the Dirac spinor space.

and it shows the chiral-odd nature of transversity, as it relates quarks with opposite
helicities. It is then clear why h1 cannot be measured in DIS: the bottom blob of fig. 2
cannot be inserted in the handbag diagram of fig. 1, as the QED (and QCD) interactions
conserve helicity and there is no way, by photon or gluon couplings, of flipping the helicity
of massles quarks.

A measurement of transversity requires a process in which h1 couples to another
chiral-odd function. Several suggestions have been discussed in the literature. At the
moment the most practicable way appears via SIDIS processes [7], in which h1 couples
to a chiral-odd fragmentation function, the Collins fragmentation function, as depicted
in fig. 3. In principle, the cleanest and most direct way should be via the measurement
of the double transverse spin asymmetry ATT in Drell-Yan processes, which couples two
transversity distributions (see fig. 4), as discussed in Section 5.

So far we have only considered collinear partonic configurations, in which the rele-
vant degrees of freedom, describing the nucleon structure, are the parton longitudinal
momentum fraction x and the helicities. Yet, it is already clear that the spin transverse
degree of freedom is at least as interesting, but much less known. It will be much more
so when also the intrinsic transverse motions of partons, k⊥, in addition to x, will be
considered. Which requires a detour into the issue of SSA.

3. – The (problem of) transverse Single Spin Asymmetries

Let us consider a 2 into 2 physical process, like AB → C D, in the center of mass
reference frame, A(p) + B(−p) → C(p′) + D(−p′), like in fig. 5. We wonder whether
or not the cross section for such a process can depend on the spin polarization S of one
particle only, say A; particle B is not polarized and the polarization of the final particles

Correlator:



but the leading-twist correlator, with intrinsic 
k┴, contains several other functions .....  

Φ(x,k⊥) =
1
2

[
f1/n+ + f⊥1T

εµνρσγµnν
+kρ
⊥Sσ

T

M
+

(
SL g1L +

k⊥ · ST

M
g⊥1T

)
γ5/n+

+ h1T iσµνγ5nµ
+Sν

T +
(

SL h⊥1L +
k⊥ · ST

M
h⊥1T

)
iσµνγ5nµ

+kν
⊥

M

+ h⊥1
σµνkµ

⊥nν
+

M

]
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Fig. 1. – The handbag diagram for DIS. At leading QED order, the interaction between the
lepton (not shown) and the nucleon is mediated by the exchange of a virtual photon. Thus, the
DIS cross section is just the total cross section for the γ∗N → X process, which, by the optical
theorem, is related to the forward scattering amplitude. In the parton model, at leading QCD
order, the virtual photon scatters off a single quark in the nucleon, as represented in the figure.
The lower blob is thus the matrix element between the nucleon initial and final states of two
quark fields, one ”extracted from” and the other ”replaced into” the nucleon. It is a matrix in
the Dirac spinor space.

and it shows the chiral-odd nature of transversity, as it relates quarks with opposite
helicities. It is then clear why h1 cannot be measured in DIS: the bottom blob of fig. 2
cannot be inserted in the handbag diagram of fig. 1, as the QED (and QCD) interactions
conserve helicity and there is no way, by photon or gluon couplings, of flipping the helicity
of massles quarks.

A measurement of transversity requires a process in which h1 couples to another
chiral-odd function. Several suggestions have been discussed in the literature. At the
moment the most practicable way appears via SIDIS processes [7], in which h1 couples
to a chiral-odd fragmentation function, the Collins fragmentation function, as depicted
in fig. 3. In principle, the cleanest and most direct way should be via the measurement
of the double transverse spin asymmetry ATT in Drell-Yan processes, which couples two
transversity distributions (see fig. 4), as discussed in Section 5.

So far we have only considered collinear partonic configurations, in which the rele-
vant degrees of freedom, describing the nucleon structure, are the parton longitudinal
momentum fraction x and the helicities. Yet, it is already clear that the spin transverse
degree of freedom is at least as interesting, but much less known. It will be much more
so when also the intrinsic transverse motions of partons, k⊥, in addition to x, will be
considered. Which requires a detour into the issue of SSA.

3. – The (problem of) transverse Single Spin Asymmetries

Let us consider a 2 into 2 physical process, like AB → C D, in the center of mass
reference frame, A(p) + B(−p) → C(p′) + D(−p′), like in fig. 5. We wonder whether
or not the cross section for such a process can depend on the spin polarization S of one
particle only, say A; particle B is not polarized and the polarization of the final particles

... with partonic interpretation



X

q(x) = fq
1 (x) =

∫
d2k⊥ fq

1 (x, k2
⊥)fq

1 (x, k2
⊥)

X

sq

several spin-k┴ correlations in TMDs

“Sivers effect” “Boer-Mulders effect”
S · (p× k⊥) sq · (p× k⊥) S · sq · · ·



The nucleon at twist-2,    

fq
1 (x,k2

⊥)

gq
1L(x,k2

⊥)

N -Twist 2

hq
1T (x,k2

⊥)

h⊥q
1T (x,k2

⊥)

g⊥q
1T (x,k2

⊥)

h⊥q
1L (x,k2

⊥)

h⊥q
1 (x,k2

⊥)

f⊥q
1T (x,k2

⊥)



X

similar spin-p┴ correlations in fragmentation process 
(case of final spinless hadron) 

H⊥q
1 (x,p2

⊥)

X
Dq

1(x,p2
⊥)

“Collins 
effect”

sq · (pq × p⊥)



p⊥ ! P T − zh k⊥
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FIG. 3: Three dimensional kinematics of the SIDIS process.

and

p⊥ =

(
P T − P T · k⊥ + P 3

hk′3

|k′|2
k⊥ , P 3

h − P T · k⊥ + P 3
hk′3

|k′|2
k′3

)
(28)

= P T − zh k⊥ + O
(

k2
⊥

Q2

)
(29)

where k′0, k′3 and |k′| are given in Eqs. (25) and P 3
h = (zh W )/2 − P 2

T /(2zh W ).
Eqs. (26) and (28) allow us to describe the fragmentation process in terms of the variables (zh, P T ):

dz d2p⊥ = dzh d2P T
z

zh
, (30)

so that, finally, the SIDIS cross section (20) can be written in terms of physical observables as:

d5σ!p→!hX

dxB dQ2 dzh d2P T
=

∑

q

∫
d2k⊥ fq(x, k⊥)

dσ̂!q→!q

dQ2
J

z

zh
Dh

q (z, p⊥) (31)

=
∑

q

e2
q

∫
d2k⊥ fq(x, k⊥)

2πα2

x2
B
s2

ŝ2 + û2

Q4
Dh

q (z, p⊥)
z

zh

xB

x

(
1 +

x2
B

x2

k2
⊥

Q2

)−1

·

This is an exact expression at all orders in (k⊥/Q); x is given in Eq. (6) and the full expressions of z and pT in
terms of xB, Q2, k⊥, zh and P T can be derived from Eqs. (25), (26) and (28). Notice that, in the physical variables
xB and zh, the x − z factorization of Eq. (20) is lost, even in our simple parton model treatment; it can be recovered
at O(k⊥/Q) (see Eq. (32) below).

Let us now consider again the issue discussed at the end of Section II A, concerning the azimuthal dependence of the
cross section, by comparing Eqs. (19) and (31). The former equation describes the cross section for jet production and
depends, as we explained, on the azimuthal angle ϕ, that is on the azimuthal angle of the intrinsic k⊥ of the quark in
the proton. Such a dependence is integrated over in Eq. (31), which describes the cross section for the production of a
hadron, resulting from the non collinear fragmentation of the quark. Therefore, there cannot be any ϕ dependence in
this cross section. However, due to relations (26) and (28), the integration over k⊥ at fixed P T = PT (cosφh, sinφh, 0)
introduces a dependence on the azimuthal angle φh of the produced hadron h, that is the angle between the leptonic
and the hadronic plane, Fig. 3. This azimuthal dependence remains in the SIDIS cross section and will be studied in
the next Section (see also Appendix A).

factorization holds at large Q2, and PT ≈ k⊥ ≈ ΛQCD

d6σ ≡ d6σ!p↑→!hX

dxB dQ2 dzh d2P T dφS

(Collins, Soper, Ji, J.P. Ma, Yuan, Qiu, Vogelsang, Collins, Metz)

dσ!p→!hX =
∑

q

fq(x,k⊥;Q2)⊗ dσ̂!q→!q(y, k⊥;Q2)⊗Dh
q (z,p⊥;Q2)

PT ! Q2Two scales:

3-dimensional probe of 
nucleons: SIDIS in 
parton model with 
intrinsic motion 



P T ! p⊥ + zh k⊥ΛQCD ! k⊥ ! PT " Q

elementary interaction: γ∗ q → q′

P T

k⊥

p⊥

γ∗
q

q′

h

! p→ ! hX

SIDIS

q

q′



SIDIS factorization

all pieces contain phases and keeping them into 
account one obtains the most general 

expression for the cross-section: 

λq λ′
q

p, Sp, S

Q2Q2

h h

TMD-PDF hard scattering TMD-FF

dσ!(S!)+p(S)→!′+h+X

dxB dQ2 dzh d2P T dφS

= ρ!,S!

λ!,λ′
!
⊗ ρq/p,S

λq,λ′
q
f̂q/p,S(x,k⊥) ⊗ M̂λ!,λq ;λ!,λq

M̂∗
λ′

!,λ′
q ;λ′

!,λ′
q
⊗ D̂h

λq,λ′
q
(z,p⊥)



dσ

dφ
= FUU + cos(2φ) F cos(2φ)

UU
+

1
Q

cos φ F cos φ
UU

+ λ
1
Q

sinφ F sin φ
LU

+ SL

{
sin(2φ) F sin(2φ)

UL
+

1
Q

sinφ F sin φ
UL

+ λ

[
FLL +

1
Q

cos φ F cos φ
LL

]}

+ ST

{
sin(φ− φS)F sin(φ−φS)

UT
+ sin(φ + φS) F sin(φ+φS)

UT
+ sin(3φ− φS) F sin(3φ−φS)

UT

+
1
Q

[
sin(2φ− φS) F sin(2φ−φS)

UT
+ sinφS F sin φS

UT

]

+ λ

[
cos(φ− φS) F cos(φ−φS)

LT
+

1
Q

(
cos φS F cos φS

LT
+ cos(2φ− φS)F cos(2φ−φS)

LT

)]}

lepton plane

z − axis

x − axis

φ

φS

hadron plane

S

"

PT

"′

Ph

γ∗

Kotzinian, NP B441 (1995) 234
Mulders and Tangermann, NP B461 (1996) 197
Boer and Mulders, PR D57 (1998) 5780
Bacchetta et al., PL B595 (2004) 309
Bacchetta et al., JHEP 0702 (2007) 093 
Anselmino et al., in preparation

many spin asymmetries
dσ(S) != dσ(−S)

F (...)
SBST

contain the TMDs



2 Will be inserted by the editor

where we have j(x) =
∫

d2pT j(x,p2
T ) for j = fa

1 , ea, gT , hL while ga
1(x) =

∫

d2pT ga
1L(x,p2

T )
and ha

1(x) =
∫

d2pT {ha
1T (x,p2

T ) + p2
T /(2M2

N)h⊥a
1T (x,p2

T )}.
The fragmentation of unpolarized hadrons is described in terms of two fragmentation func-

tions, Da
1 and H⊥a

1 , at leading-twist. In SIDIS (with polarized beams and/or targets, where
necessary) it is possible to access information on the leading twist TMDs by measuring the
angular distributions of produced hadrons. Some data on such processes are available [27–45].

The fragmentation functions and TMDs in SIDIS and other processes were subject to nu-
merous studies in the literature [46–73]. This is true especially for the prominent transversity
distribution ha

1 or the ’naively time-reversal-odd’ functions like the Sivers function f⊥a
1T , the

Boer-Mulders function h⊥a
1 and the Collins fragmentation function H⊥a

1 . Among the so far less
considered functions are h⊥a

1L and the ’pretzelosity’ distribution h⊥a
1T .

The purpose of this lecture (based on the works [67,68]) is fourfold. First, we discuss whether
some of the unknown TMDs could be approximated in terms of (possibly better) known ones.
Second, we review what is known about h⊥a

1T . Third, we mention the models these TMDs were
calculated. Fourth, we present estimates for SSAs in which these functions enter, and discuss
the prospects to measure these SSAs in experiments at Jefferson Lab and COMPASS.

!

z!axis

h
"S

"

P
h

l’

l

q

HADRON PRODUCTION PLANE

LEPTON SCATTERING PLANE

N

S

S

Fig. 1. Kinematics of SIDIS, lN → l′hX, and the
definitions of azimuthal angles in the lab frame.

The process of SIDIS is sketched in Fig. 1.
We denote the momenta of the target, in-
coming and outgoing lepton by P , l and l′

and introduce s = (P + l)2, q = l − l′ with

Q2 = −q2. Then y = Pq
Pl , x = Q2

2Pq , z = PPh

Pq ,

and cos θγ = 1− 2M2

N
x(1−y)
sy where θγ denotes

the angle between target polarization vector
and momentum q of the virtual photon γ∗,
see Fig. 1, and MN is the nucleon mass. The
component of the momentum of the produced
hadron transverse with respect to γ∗ is de-
noted by Ph⊥ and Ph⊥ = |Ph⊥|.

The cross section differential in the azimuthal angle φ of the produced hadron has schemat-
ically the following general decomposition [7,74] (the dots indicate power suppressed terms):

dσ

dφ
= FUU + cos(2φ)F cos(2φ)

UU + SL sin(2φ)F sin(2φ)
UL +λ

[

SLFLL+ ST cos(φ − φS)F cos(φ−φS)
LT

]

+ST

[

sin(φ−φS)F sin(φ−φS)
UT + sin(φ+φS)F sin(φ+φS)

UT + sin(3φ−φS)F sin(3φ−φS)
UT

]

+ . . . (3)

In Fweight
XY the index X = U(L) denotes the unpolarized (longitudinally polarized, helicity λ)

beam. Y = U(L, T ) denotes the unpolarized target (longitudinally, transversely with respect to
the virtual photon polarized target). The superscript reminds on the kind of angular distribution
of the produced hadrons with no index indicating an isotropic φ-distribution.

Each structure function arises from a different TMD. The chirally even f ’s and g’s enter the
observables in connection with the unpolarized fragmentation function Da

1 , the chirally odd h’s
in connection with the chirally odd Collins fragmentation function H⊥a

1

FUU ∝
∑

a

e2
a fa

1 ⊗ Da
1 , F cos(φ−φS)

LT ∝
∑

a

e2
a g⊥a

1T ⊗ Da
1 , (4)

FLL ∝
∑

a

e2
a ga

1 ⊗ Da
1 , F sin(φ−φS)

UT ∝
∑

a

e2
a f⊥a

1T ⊗ Da
1 , (5)

F cos(2φ)
UU ∝

∑

a

e2
a h⊥a

1 ⊗ H⊥a
1 , F sin(φ+φS)

UT ∝
∑

a

e2
a ha

1 ⊗ H⊥a
1 , (6)

F sin(2φ)
UL ∝

∑

a

e2
a h⊥a

1L ⊗ H⊥a
1 , F sin(3φ−φS)

UT ∝
∑

a

e2
a h⊥a

1T ⊗ H⊥a
1 . (7)

Cahn kinematical 
effects  

1
Q

cos φ F cos φ
UU

∼ fq
1 ⊗Dq

1 ⊗ dσ̂ +
(
hq⊥

1 ⊗Hq⊥
1 ⊗ d∆σ̂

)

chiral-even 
TMDs

chiral-odd 
TMDs

FUU ∼
∑

a

e2
a fa

1 ⊗Da
1 F cos(φ−φS)

LT
∼

∑

a

e2
a g⊥a

1T ⊗Da
1

FLL ∼
∑

a

e2
a ga

1L ⊗Da
1 F sin(φ−φS)

UT
∼

∑

a

e2
a f⊥a

1T ⊗Da
1

F cos(2φ)
UU

∼
∑

a

e2
a h⊥a

1 ⊗H⊥a
1 F sin(φ+φS)

UT
∼

∑

a

e2
a ha

1T ⊗H⊥a
1

F sin(2φ)
UL

∼
∑

a

e2
a h⊥a

1L ⊗H⊥a
1 F sin(3φ−φS)

UT
∼

∑

a

e2
a h⊥a

1T ⊗H⊥a
1

fq
1 (x) gq

1L(x)and can be measured in usual DISintegrated



x = xB z = zh P T = z k⊥ + p⊥

d∆σ̂
cos Φ         dependence generated also by Boer-Mulders     
⊗ Collins term, via a kinematical effect in 

1
Q

cos φ F cos φ
UU

∼ fq
1 ⊗Dq

1 ⊗ dσ̂ +
(
hq⊥

1 ⊗Hq⊥
1 ⊗ d∆σ̂

)

simple kinematical effect directly related to quark 
intrinsic motion 

cos(2φ)O(k2
⊥/Q2): also a               dependence 

dσ̂!q→!q ∝ ŝ2 + û2 =
Q4

y2

[
1 + (1− y)2 − 4

k⊥
Q

(2− y)
√

1− y cos ϕ

]

O(k⊥/Q)TMDs in unpolarized SIDIS: “Cahn effect” at



EMC data, µp and µd, E between 100 and 280 GeV

M.A., M. Boglione, U. D’Alesio, A. Kotzinian, F. Murgia and A. Prokudin

(no B-M ⊗ Collins contribution) 

assuming gaussian k⊥ and p⊥ dependences:
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s) contribution, computed by taking into

account the partonic transverse intrinsic motion at all orders in the (k⊥/Q) expansion, Eq. (3); the solid line corresponds to
the SIDIS cross section as given by LO contributions and a K factor (K = 1.5) to account for NLO effects, Eqs. (11)–(15).
The data are from ZEUS collaboration measurements [21]. 〈k⊥〉 and 〈p⊥〉 are fixed as in Eq. (17).
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FIG. 5: The cross section dσ/dφh: the solid line is obtained by including all orders in (k⊥/Q), the LO corrections and a K = 6
factor to account for NLO effects. The data are from EMC measurements [9]. 〈k⊥〉 and 〈p⊥〉 are fixed as in Eq. (17).

This is a quantity integrated over PT ≥ 0.2 GeV/c; we have used only dσ0 up to PT = 1 GeV/c and added the
K dσ1 contributions (with K = 6) above that. We notice, however, that the dominant contributions come from very
low PT ’s, while the pQCD contribution is almost negligible.

Figs. 6 and 7 show our predictions for the average value of cosφh compared to the experimental data from the FNAL
E665 collaboration [10] (µp and µd interactions at 490 GeV) and from the ZEUS collaboration [22] (positron-proton
collisions at 300 GeV) respectively. Here 〈cosφh〉 is defined as

〈cosφh〉 =

∫

dx
Bj

dQ2dzhd2P T cosφh d5σ
∫

dx
Bj

dQ2dzhd2P T d5σ
, (24)

where d5σ denotes the fully differential cross section

d5σ ≡
d5σ!p→!hX

dx
Bj

dQ2 dzh d2P T
· (25)

For the FNAL E665 data sample the integral over PT runs from P cut
T to Pmax

T ∼ 10 GeV/c and the range of the other

γ∗g → q q̄

Large PT data  explained by NLO QCD corrections

q

q′

g q̄

q
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transition between TMDs and pQCD at PT ! 1 GeV/c

γ∗q → q g
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detector non-uniformities.

Systematic uncertainties arising from electron identification were estimated by comparing

two different methods (as in Ref. [42]) of pion rejection, one based on Poisson shapes of

Cherenkov counter spectra and another on the geometrical and temporal matching between

the measured track and Cherenkov signal.

The systematic uncertainty arising from π+ identification has two contributions. One was

estimated from the difference between the ratios of events in the missing neutron peak before

and after pion identification as calculated for data and GSIM simulations. The second part

comes from our treatment of kaon contamination (see section IVC), which was assumed to

be 20%. The two errors were added in quadrature.

Radiative corrections are model-dependent. To estimate this systematic uncertainty we

changed the model used in the radiative correction code by 15% and took the resulting

difference as an estimate of the uncertainty.

There is an additional overall systematic uncertainty of 1% due to uncertainties in the

target length and density. The target length was 5±0.05 cm and the liquid-hydrogen density

was ρ = 0.0708 ± 0.0003 g/cm3 giving approximately a 1% uncertainty.
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d5σ

dx dQ2 dz dP 2
T dφ

= C [εH1 +H2 + A cos φ + B cos(2φ)]
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FIG. 14: The p2
T -dependence of the φ-independent term H2 +εH1 at x = 0.24 and z = 0.30. The lines represent exponential fits

to the data for Q2 = 1.74 (GeV/c)2 (full circles and solid line), Q2 = 2 (GeV/c)2 (full squares and dashed line), and Q2 = 2.37
(GeV/c)2 (triangles and dotted line). The errors bars are statistical only.

leads to a cut on the p2
T -distribution, which is not present in high energy experiments. To account for this low-energy

effect we modified the parameterization as:

〈p̃2
T 〉 =

〈p2
T 〉

1 + 〈p2
T 〉/(p2

T )max
. (23)

The dotted curve in Fig. 15 shows that this new parameterization follows the data points, but the absolute normal-
ization given by the parameters a and b is still too high. This modification breaks the factorization between x, Q2

and pT in the low-z region because the p2
T -distribution now depends also on x and Q2.
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FIG. 15: The z-dependence of 〈p2
T 〉 at Q2 = 2.37 (GeV/c)2 and x = 0.27. The points are the data from the present analysis.

The curves show the maximum allowed p2
T = (p2

T )max (dashed), the parameterization of high energy data from Eq. 8 (solid),
and the low-z modification from Eq. 23. The error bars are statistical only and they are smaller than the symbol size.

At large z, pmax
T is also large. Therefore, we can check the factorization of p2

T from x and Q2. Fig. 16 shows
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At large z, pmax
T is also large. Therefore, we can check the factorization of p2

T from x and Q2. Fig. 16 shows
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no appreciable dependence of the mean transverse momentum 〈p2
T 〉 for x < 0.5 corresponding to the missing mass

M2
X < 1.6 (GeV/c2)2, i.e. the ∆ resonance region.
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FIG. 16: The x-dependence of 〈p2
T 〉 at Q2 = 2.37 (GeV/c)2 and z = 0.34. The points are from the present analysis. The curves

show p2
T = (p2

T )max (dashed) and a constant fit to the data (solid). The error bars are statistical only.

The transverse momentum distribution exhibits a small variation with Q2 over the covered kinematic interval as
seen in the different slopes in Fig. 14. However, the Q2 coverage is insufficient to observe the logarithmic pQCD
evolution of 〈p2

T 〉 with Q2 discussed in Ref. [61].

B. Comparison with pQCD

In order to compare the φ-independent term with pQCD predictions, we assumed a constant longitudinal to trans-
verse cross section ratio R = 0.12 [21].

Since there is no TMD-based approach to which we could directly compare our data, we integrated the measured
structure functions H2 in p2

T in order to compare H2 measured in this experiment with H2 from pQCD calculations.
We integrated Eq. 1 in φ and p2

T and compared with Eq. 4 obtaining

H2(x, Q2, z) = πEh

∫ (p2
T )max

0
dp2

T
H2(x, z, Q2, pT )
√

E2
h − m2

h − p2
T

, (24)

where the upper limit of integration is given by the smaller of the quantities (p2
T )max = (zν)2 − m2

h and the value
defined by the pion threshold, which limits the longitudinal hadron momentum in the lab frame to

p‖ > pmin
‖ =

1

2|q|

{

(M2
n − M2) + Q2 − (25)

2Mν(1 − z) − m2
π + 2zν2 − 2Mnmπ

}

.

This limits p2
T < |ph|2 − (p2

‖)
min. If we exploit the exponential behavior of the measured structure function H2 in p2

T

(see Eq. 7), the integration can be performed analytically leading to

H2(x, Q2, z) = V (x, Q2, z)Ehe
−

|ph|2

〈p2
T

〉

√

π

〈p2
T 〉

(26)

[

Erfi

(
√

|ph|2
〈p2

T 〉

)

− Erfi

(
√

|ph|2 − (p2
T )max

〈p2
T 〉

)]

,

Q2 = 2.37 (GeV)2

z = 0.34

〈P 2
T 〉 = z2〈k2

⊥〉 + 〈p2
⊥〉

solid line = 

z dependence at 
small z values 

not much x 
dependence in 

explored valence 
region 

〈k2
⊥〉 = 0.25 〈p2

⊥〉 = 0.20
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A. Lessons from CLAS and Hall-C

In the CLAS experiment [33] the semi-inclusive π+ electro-production off a proton target was studied with a
5.75GeV beam. Among others the following quantity was measured:

R(Ph⊥) ≡
d4σUU (x, y, z, Ph⊥)/dxdy dz dP 2

h⊥

d4σUU (x, y, z, 0)/dxdy dz dP 2
h⊥

= exp

(

−
P 2
h⊥

κ2
T (z)

)

, (9)

at x = 0.24 and z = 0.30 for three different values of Q2. In the last step of (9) we assumed flavor-independent Gauss
widths. For all three values of Q2 the data are remarkably well described by the Gauss model [33]. In Fig. 2a we
show the data on the ratio (9) for the highest Q2 = 2.37GeV2, which is very well described with the parameter

κ2
T (z)

∣

∣

∣

∣

z=0.30

= 0.17GeV2 . (10)

The agreement of the data with the Gauss Ansatz is astonishing. At lower Q2 = 1.74GeV2 and 2GeV2 the situation
is equally impressive, with somewhat lower values for κ2

T (z) [33].
However, several reservations need to be made. First, in the CLAS kinematics [33] the contributions of O(M2/Q2)

we mentioned in the context of Eqs. (4) and (6) are not negligible, i.e., the description of CLAS data in Eqs. (9, 10)
effectively parametrizes also these contributions. Second, at z = 0.30 the measured hadrons are not only due to the
fragmentation of the struck quark (“current fragmentation”) but can also originate from the hadronization of the
target remnant (“target fragmentation”). The latter is described in terms of so-called fracture functions, which —
while being a fascinating topic by themselves — are an undesired contamination from the point of view of DIS.
Nevertheless, although one has to keep in mind these reservations, presently the 5.75GeV beam CLAS data [33]

provide the best support for the applicability of the Gauss model in SIDIS. It would be desirable to solidify this
observation with data taken at higher energies at CLAS12, HERMES and COMPASS.
Another conclusion one can draw from the CLAS data [33], modulo the above-mentioned reservations, is that

the Gauss width 〈p2T 〉 of fa
1 (x, pT ) is only moderately x-dependent, see Fig. 2b which shows the average transverse

momentum square 〈P 2
h⊥〉 of π+ produced at z = 0.34 and Q2 = 2.37GeV2 at CLAS [33] as function of x. In fact, for

0.2 < x < 0.5 we find 〈P 2
h⊥〉 = 0.15GeV2 within 20%, which is demonstrated by the shaded region in Fig. 2b.

In the Gauss model, the z-dependence of the average hadron transverse momentum square 〈P 2
h⊥(z)〉 in Eq. (8)

allows in principle to fix the Gauss widths 〈K2
T 〉 and 〈p2T 〉 of Da

1 and fa
1 . Such data were presented in [33], but here

we will not use them for a quantitative determination of the Gauss model parameters. In fact, at the moderate beam
energies for z ! 0.4 [41] the produced hadrons receive also contributions from target fragmentation, see above, and at
still lower z “threshold effects” play a role [33]. Therefore we refrain here from using these data quantitatively, and
will come back to them later for a qualitative comparison in Sec. II C.
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h⊥〉 of π+ produced at z = 0.34 and Q2 = 2.37GeV2 in SIDIS at CLAS [33] as function of x. The dotted
line is an effective description in the Gauss model assuming the Gauss width of fa

1 (x, pT ) to be x-independent. This describes
data within 20% in the region 0.2 < x < 0.5 as the shaded region shows.
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FIG. 6: Azimuthal asymmetry Acosφ
UU in charged hadron pro-

duction vs. z. The data are from the EMC experiment [31].
The theoretical curve is the “Cahn-effect-only” approximation
for this observable, which is justified under certain assumptions
(see text), using the Gauss model with parameters fixed from
HERMES, Eq. (13).

In fact, the EMC data on Acosφ
UU [31, 32] were used

in [62] to determine in the “Cahn-effect-only” approxi-
mation the Gauss model parameters quoted in Eq. (3).
It is therefore instructive to check, whether the revised
numbers from (13) still give a good description of these
data.
In the “Cahn-effect-only” approximation, i.e., ne-

glecting in (15) the “pure twist-3” tilde-functions and
the Collins effect, we obtain for the asymmetry with
the Gauss model (1, 2) the result

Acosφ
UU,Cahn(z) = −

z
√
π 〈p2T 〉

〈Q〉
√

z2〈p2T 〉+ 〈K2
T 〉

, (17)

where we assumed flavor-independent Gauss widths.
In the EMC [31] experiment 280GeV muons were
scattered off protons and the covered kinematics was:
y < 0.8, z > 0.15, Q2 > 10GeV2 with about 〈Q〉 =
4.8GeV, and 160 < W 2/GeV2 < 360. Also the cut
Ph⊥ > 200MeV was imposed which is ignored in (17)
for simplicity. Numerically it has a negligible effect.
In this kinematics we obtain with the Gauss model pa-
rameters inferred from HERMES, Eq. (13), the result
shown in Fig. 6. We observe a very good agreement.
At this point, this not only demonstrates the com-

patibility of the EMC and HERMES data. Since we
have fixed the details of the Gauss model in an inde-
pendent experiment, the excellent agreement we ob-
serve in Fig. 6 can also be read in opposite direction.
The approximations we used in order to relate Acosφ

UU to the Cahn effect, namely the cancellation of the Collins effect
in charged hadron production and the neglect of tilde-terms, are justified — within the experimental error bars and
the theoretical uncertainty of our study. In this sense, the EMC data on Acosφ

UU support the “Wandzura-Wilczek-type”
approximations discussed critically in [92–95]. (However, we shall come back to this point at the end of Sec. IV.)
To draw an intermediate summary, in the Sections IIA–IID we have seen that data from EMC [31, 32], Jefferson

Lab [33, 34] and HERMES [35] support the Gauss model with flavor- and x- or z-independent Gauss widths. In the
future one may need to refine the description by allowing for flavor- and x- or z-dependent Gauss widths, when more
precise data will make it necessary to introduce and possible to constrain further parameters.
The Gauss model has an important principle limitation though. It may work only if the transverse momenta of

the produced hadrons are of the order of magnitude of the hadronic scale, i.e., much smaller than the hard scale in
the process. This condition is fulfilled in the case of EMC, Jefferson Lab, and HERMES data [31–35] where typically
〈Ph⊥〉 % 0.4GeV & 〈Q〉 = 2–5GeV in these experiments. When transverse hadron momenta become substantially
larger than the hadronic scale or even become so large that they set the hard scale in the process, one does not
deal with non-perturbative intrinsic pT anymore, but can apply perturbative QCD [8]. SIDIS data from high energy
experiments, for example E665 at Fermilab [36] or ZEUS at DESY [37, 38], are sensitive to such perturbative pT -
effects. In practice, in order to describe these data it is necessary to include both, perturbative and non-perturbative
effects. We refer to the pioneering study [10], see also the recent work [103].
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IV. ENERGY DEPENDENCE OF INTRINSIC TRANSVERSE MOMENTA IN DY AND SIDIS

In Eqs. (30, 31) we were able to combine information on the qT -dependence of DY cross sections from different
experiments to arrive at (32), because of comparable kinematics. In general experiments performed at different
energies have to be compared with care. In DY the mean lepton momentum square 〈q2T 〉 is energy (s-)dependent.
This dependence is different for i = πN or pN induced Drell-Yan. For 50GeV2 < s < 600GeV2 it can roughly be
described as [125]

〈q2T (s)〉i = Ai +Bi s , AπN = (0.59± 0.05)GeV2, BπN = (2.8± 0.2) · 10−3,

ApN = (0.52± 0.11)GeV2, BpN = (1.4± 0.2) · 10−3. (39)
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FIG. 10: Mean dimuon transverse momentum square
〈q2T 〉 as function of the center of mass energy square, s,
in π−N induced Drell-Yan. Following [125].
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FIG. 11: Mean square transverse momenta 〈P 2
h⊥(z)〉 in

SIDIS around z ∼ 0.5 as function of s from Jefferson Lab
[33, 34], HERMES [35], COMPASS [40].

This is just one way of parametrizing the s-dependence.
The data are compatible also with a linear in

√
s increase

of 〈q2T 〉 [125], while in QCD one would rather expect a log-
arithmic increase. But in a limited s-range an effective
parametrization of the type (39) works reasonably well. In
any case, 〈q2T 〉 increases with energy, which reflects the trans-
verse momentum broadening due to gluon radiation [12].
Fig. 10 shows 〈q2T 〉 in πN induced reactions and the original

fit from [125]. The values of 〈q2T 〉πN deduced from Figs. 7 and
8 are shown for comparison but not included in the fits. As-
suming the Gauss model (26) we obtain from (39) the follow-
ing effective s-dependence of the intrinsic transverse parton
momenta in the hadron h:

〈p2T (s)〉h ≈ 〈p2T (0)〉+ Ch s (40)

〈p2T (0)〉 = 0.3GeV2 (41)

Ch = 10−3 ×
{

2.1 for h = π,
0.7 for h = p.

(42)

At this point two questions arise. First, are transverse
parton momenta in DY and SIDIS compatible? Second, if so,
is there any indication of transverse momentum broadening
in SIDIS too?
Concerning the first question, it is encouraging to observe

that (40) “predicts” for HERMES (s = 52GeV2) the result
〈p2T (s)〉|HERMES = 0.34GeV2 which is within the error bars
of the Gauss width in (13). Probably it would be more consis-
tent to use in SIDIS the photon-hadron center of mass energy
square W 2 instead of s. However, in view of the uncertainties
in (13) and (40—42) this is numerically of little relevance.
Concerning the second question, let us compare the mean

square transverse momenta 〈P 2
h⊥(z)〉 in SIDIS from various

experiments at a common value of z, let us say 0.5 < z < 0.6
(as different ranges are covered we cannot compare averages
over z). For Jefferson Lab we use 〈P 2

h⊥(z)〉 = 0.24GeV2 at
z = 0.55 from CLAS [33], which describes well the Hall C data
[34], see Fig. 3. For HERMES we take 〈P 2

h⊥(z)〉 = 0.27GeV2

at z = 0.52 [35]. For COMPASS we use 〈Ph⊥(z)〉 = 0.55GeV
at z = 0.566 from [40] which we convert by means of (12).
Fig. 11 must be interpreted with care. The shown 〈P 2

h⊥(z)〉 were obtained in different ways, span a small s-range,
and have systematic uncertainties except for the HERMES value. For a conclusive comparison acceptance corrected
data are needed from all experiments. Nevertheless, we see a tendency for an increase in s with a slope which is 20%
lower than (42), see Fig. 11. We made no effort to estimate the uncertainty of (42) but it is presumably not smaller
than 20%. So the s-slopes in SIDIS and DY are compatible.

CLAS
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FIGURE 2. The cos"h moments for positive (upper panel) and negative (lower panel) hadrons, ex-
tracted from hydrogen (circles) and deuterium (squares) data, shown as projection versus the kinematic

variables x, y, z and Ph⊥.

geometrical acceptance and higher-order QED effects (radiative effects). Moreover,

typically the event sample is binned only in one variable (1-dimensional analysis), and

integrated over the full range of all the other ones, while the structure functions F used

in equation 2 and the instrumental contributions depend on all the kinematic variables x,

y, z and Ph⊥ simultaneously.
Therefore, in order to determine the cosine moments corrected for radiative and

detector smearing, an unfolding procedure [6] was used, in which the event sample is

binned simultaneously in all the relevant variables (multi-dimensional analysis1).
The unfolding algorithm is based on the relation between the unknown distribution of

Born yields B( j) and the distribution of measured yields X(i):

X(i) =
nb

$
j=1

S(i, j)B( j)+% (i). (4)

where nb is the total number of bins and % (i) is a vector that contains the events smeared
into the measured sample from outside the acceptance. The Smearing matrix S(i, j)
describes the probability that an event originating from the Born bin j, corresponding to

the original kinematics (free from experimental distortions), is actually observed in the

measured bin i. Both the background % (i) and the smearing matrix S(i, j) are determined
by a detailed Monte Carlo simulation of the experimental apparatus.

Assuming a non-singular S(i, j)matrix one obtains:

B( j) =
nb

$
i=1

S−1( j, i)
[

X(i)−% (i)
]

. (5)

The extraction of cosine moments from the Born yields B( j) can be performed by
linear regression that takes into account the correlations between bins introduced by

the smearing. In this way one pair of moments can be obtained in each kinematic bin

(〈cos"h〉, 〈cos2"h〉), which represents results that are fully differential in all variables.

1 For a more detailed discussion about 1- and multi-dimensional analysis see [5].

        dependence observed by HERMES cos φ
F. Giordano and R. Lamb, arXiv:0901.2438 [hep-ex] 



and by COMPASS
W. Käfer, on behalf of the COMPASS collaboration, talk at  

Transversity 2008, Ferrara
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does not include Boer – Mulders contribution 

comparison with:



Gaussian k⊥ distribution of TMDs?
 

x, z dependence? 
flavour dependence?
energy dependence?

k⊥ dependence of ∆q vs. q?
..................... 

  

〈k2
⊥〉(x, Q2) 〈p2

⊥〉(z, Q2)

the azimuthal dependence induced by 
intrinsic motion is clearly observed 

phenomenolgical analysis and data need 
much improvement



AN =
dσ↑ − dσ↓

dσ↑ + dσ↓

AN ∝ S · (p× P T ) ∝ PT sin(φπ − φS)

 probing polarized nucleons: 
transverse single spin 
asymmetries in SIDIS 

z

y

xΦS
Φπ

X

p

S

PT

γ∗p→ h X

γ*

Large Q2: the virtual photon explores the nucleon structure.          
In collinear configurations there cannot be (at LO) any PT 

Spin dependent TMDs 



dσ↑, ↓ =
∑

q

fq/p↑,↓(x,k⊥;Q2)⊗ dσ̂(y, k⊥;Q2)⊗Dh/q(z, p⊥;Q2)

fq/p↑,↓(x,k⊥) = fq/p(x, k⊥) ± 1
2
∆Nfq/p↑(x, k⊥) ST · (p̂× k̂⊥)

= fq/p(x, k⊥)∓ k⊥
M

f⊥q
1T (x, k⊥) ST · (p̂× k̂⊥)

∼ F sin(φ−φS)
UT sin(φ− φS)

sin(ϕ− φS)

dσ↑ − dσ↓ =∑

q

∆Nfq/p↑(x, k⊥) S · (p̂× k̂⊥)⊗ dσ̂(y, k⊥)⊗Dh/q(z,p⊥)

F sin(φ−φS)
UTSivers effect in SIDIS - f⊥q

1T (x,k2
⊥)



⊗
k⊥

•
-k⊥

simple physical picture for Sivers effect 

the large Q2 virtual 
photon “sees” the       
spin-k⊥ correlation  

PT ∼ k⊥

k⊥b

sq

S



Brodsky, Hwang, Schmidt: final state interactions

+ –diquark diquark

q q

recent quark-diquark model of all twist-2 TMDs: Bacchetta, 
Conti, Radici,  arXiv:0807.0323 (PRD 78, 074010, 2008); 

Bacchetta, Radici, Conti, Guagnelli, arXiv:1003.1328

very recent quark bag model of all twist-2 and twist-3 TMDs: 
Avakian, Efremov, Schweitzer, Yuan,  arXiv:1001.5467

(supports Gaussian k⊥ dependence of TMDs in valence x-region)

Quark models for Sivers function



(a) (b)

y1, !1⊥

y2, !2⊥ x2, k2⊥

x1, k1⊥

yn, !n⊥ xn, kn⊥

FIG. 1: Light-front time-order perturbation Feynman diagrams for the phase contribution from

one-gluon exchange between two constituent quarks.

where
∑

k− represents the sum of all partons energy k−
i , d[i]

′ represents the integral of

(yi, !i⊥). The interaction kernel K can be calculated from the light-front time-order pertur-

bation theory [2]. The wave functions ψn and ψ′
n may differ. From the above expression,

we find that the phase of ψn may come from the wave function in the right hand side ψ′
n

or the interaction kernel K. In the following, we assume that the wave function ψ′
n is real,

for example, from model calculation such as constituent quark model [18]. We will focus on

the contribution from the interaction kernel. We will calculate, in particular, the one-gluon

exchange contribution to the interaction kernel.

At the lowest order of the light-front time-order perturbation theory, we have one gluon

exchange contribution to the interaction kernel. This can be expressed as a sum of all

diagrams with gluon connection between all possible pair of constituents in the light-front

wave function. For example, the contribution from the gluon exchange between the ith and

jth quark can be written as,

K[k; !]ij =
ūλi

(xi, ki⊥)√
xi

γµ
uλ′

i
(yi; !i⊥)
√
yi

dµν
ūλj

(xj, kj⊥)
√
xj

γν
uλ′

j
(yj; !j⊥)
√
yi

×











1

P− − q− − k−
i − !−j −

∑

α$={i,j}
k−
α + iε

θ(q+)

q+

+
1

P− − q′− − k−
j − !−i −

∑

α$={i,j}
k−
α + iε

θ(q′+)

q′+











, (3)

where λ represents the helicity for the associated quarks, q+ = k+
j − !+j and q′+ = k+

i − !+i ,

and the color factors are implicit in the above equation. Similar expression shall hold for the

5

Brodsky, Pasquini, Xiao, Yuan, arXiv:1001.1163 
Pasquini, Yuan, arXiv:1001.5398 

Sivers function from light-front wave function

[fq⊥
1T ]SIDIS = −[fq⊥

1T ]DY

in all models one has: 

see also Hwang, arXiv:1003.0867 - incorporation of final state 
interactions into the light-cone wave function
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HERMES data on pion Sivers asymmetry

2 〈sin(φ− φS)〉 = Asin(φ−φS)
UT

≡ 2

∫
dφ dφS (dσ↑ − dσ↓) sin(φ− φS)

∫
dφ dφS (dσ↑ + dσ↓)
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FIG. 7: The Sivers distribution functions for u and d flavours as determined by our present fit (solid lines) are compared with
the Sivers distribution functions for u and d flavours as had been determined by our previous fit [2] on SIDIS data (dashed
lines), where π0 and kaon productions were not considered and only valence quark contributions were taken into account. This
plot clearly shows that the Sivers functions previously found are consistent, within the uncertainty bands, with the Sivers
functions presently obtained.

measurements. In particular, a combined analysis of HERMES, COMPASS and JLab SIDIS data will allow a much
better determination of the β parameters, which control the large x behavior of the Sivers distribution functions. In
addition, the combined analysis of proton and neutron target events will help flavour disentangling and a more precise
determination of u and d quark contributions. Our predictions for the JLab SSAs, for pion and kaon production off
proton, neutron and deuteron targets, at 6 and 12 GeV, are presented in Figs. 9–14.

The adopted experimental cuts for JLab operating on a proton or a deuteron target at 6 GeV are, in terms of the
usual SIDIS variables, the following:

0.4 ≤ zh ≤ 0.7 0.02 ≤ PT ≤ 1 GeV/c

0.1 ≤ x
B
≤ 0.6 0.4 ≤ y ≤ 0.85

Q2 ≥ 1 (GeV/c)2 W 2 ≥ 4 GeV2

1 ≤ Eh ≤ 4 GeV ,

(26)

whereas for a beam energy of 12 GeV they are:

0.3 ≤ zh ≤ 0.8 0.05 ≤ PT ≤ 1.5 GeV/c

0.05 ≤ x
B
≤ 0.7 0.25 ≤ y ≤ 0.85

1 ≤ Q2 ≤ 8 (GeV/c)2 W 2 ≥ 4 GeV2

1.5 ≤ Eh ≤ 3.5 GeV .

(27)

u and d functions rather well determined  

M.A., M. Boglione, U. D’Alesio, A. Kotzinian, S. Melis, F. Murgia, A. Prokudin, C. Türk

peaked at x ! 0.2

extraction of Sivers functions from SIDIS data  
(from HERMES proton and COMPASS deuteron data) 
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new

new

predictions for Sivers asymmetry at COMPASS, 
off a proton target - comparison with new data   

A. Martin, DIS2010



Sivers asymmetry off a proton target - 
comparison of HERMES and COMPASS data   

new

new

A. Martin, DIS2010



∑

a

∫
dx d2k⊥ k⊥ fa/p↑(x,k⊥) ≡

∑

a

〈ka
⊥〉 = 0

S

number density of partons 
with longitudinal momentum 
fraction x and transverse 

momentum k┴, inside a proton 
with spin S 

M. Burkardt, PR D69, 091501 (2004) 

What could we learn from the Sivers distribution?

same naive sum rule as expected for free 
partons (no final state interactions)



Total amount of intrinsic momentum carried by 
partons of flavour a

〈ka
⊥〉 =

[
π

2

∫ 1

0
dx

∫ ∞

0
dk⊥ k2

⊥∆Nfa/p↑(x, k⊥)
]

(S × P̂ )

= mp

∫ 1

0
dx∆Nf (1)

q/p↑(x) (S × P̂ ) ≡ 〈ka
⊥〉 (S × P̂ )

Burkardt sum rule almost saturated by u and d quarks 
alone; little residual contribution from gluons

〈ku
⊥〉 + 〈kd

⊥〉 = −17+37
−55 (MeV/c)

〈kū
⊥〉 + 〈kd̄

⊥〉 + 〈ks
⊥〉 + 〈ks̄

⊥〉 = −14+43
−66 (MeV/c)

[
〈ku
⊥〉 = 96+60

−28 〈kd
⊥〉 = −113+45

−51

]

−10 ≤ 〈kg
⊥〉 ≤ 48 (MeV/c)

〈ku
⊥〉

〈kd
⊥〉



Three dimentional picture of the proton

The proton moves along −Z direction (into the screen) and ST is along
Y .
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Sivers u and d quark densities in transverse 
momentum space 

proton moving into the screen, polarization along y-axis
blue: less quarks  red: more quarks   x = 0.2   k in GeV/c

0.0-0.5 -0.5 0.00.5 0.5kx

courtesy of  A. Prokudin
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bx

by

bx

by

uX(x,b⊥) dX(x,b⊥)

Fig. 1. Distribution of the j+ density for u and d quarks in the ⊥ plane (xBj = 0.3 is
fixed) for a proton that is polarized in the x direction in the model from Ref. [2]. For
other values of x the distortion looks similar. The signs of the distortion are determined
by the signs of the contribution from each quark flavor to the proton anomalous magnetic
moment.

the corresponding quark flavor to the anomalous magnetic moment. This
observation is important in understanding the sign of the Sivers function.

In a target that is polarized transversely (e.g. vertically), the quarks in
the target nucleon can exhibit a (left/right) asymmetry of the distribution
fq/p↑(xB, kT ) in their transverse momentum kT [3,4]

fq/p↑(xB, kT ) = f q
1 (xB, k2

T ) − f⊥q
1T (xB, k2

T )
(P̂ × kT ) · S

M
, (3)

where S is the spin of the target nucleon and P̂ is a unit vector opposite
to the direction of the virtual photon momentum. The fact that such a
term may be present in (3) is known as the Sivers effect and the function
f⊥q
1T (xB, k2

T ) is known as the Sivers function. The latter vanishes in a naive
parton picture since (P̂ ×kT ) ·S is odd under naive time reversal (a prop-
erty known as naive-T-odd), where one merely reverses the direction of all
momenta and spins without interchanging the initial and final states. The
momentum fraction x, which is equal to xB in DIS experiments, represents
the longitudinal momentum of the quark before it absorbs the virtual pho-
ton, as it is determined solely from the kinematic properties of the virtual
photon and the target nucleon. In contradistinction, the transverse momen-
tum kT is defined in terms of the kinematics of the final state and hence it
represents the asymptotic transverse momentum of the active quark after

it has left the target and before it fragments into hadrons. Thus the Sivers
function for semi-inclusive DIS includes the final state interaction between

q(x, bT ): femtophotography or tomography of the nucleon

Sivers distribution in impact parameter space (M. Burkardt)



∫ 1

0
dx d2k⊥ ∆Nfq/p↑(x, k⊥) = C κq

A
sin(φπ+−φS)
UT

A
sin(φπ−−φS)
UT

∼ κu

κd

Sivers function and proton anomalous magnetic moment
M. Burkardt, S. Brodsky, Z. Lu, I. Schmidt

Both the Sivers function and the proton anomalous magnetic 
moment are related to correlations of proton wave functions 

with opposite helicities 

in qualitative agreement with large z data:

Sivers function and orbital angular momentum

S · LqSivers mechanism originates from              then it is related to 
the quark orbital angular momentum 

D. Sivers



Sivers effect now observed by two 
experiments,                                                                  

... but needs further measurements

and if the Sivers function is zero?            
and if (Sivers)SIDIS      - (Sivers)D-Y?

AN in AB → CX, which Sivers function? other 
mechanisms? Collins effect?                          

!=



Collins effect

Dh/q,sq
(z,p⊥) = Dh/q(z, p⊥) +

1
2

∆NDh/q↑(z, p⊥) sq · (p̂q × p̂⊥)

= Dh/q(z, p⊥) +
p⊥

zMh
H⊥q

1 (z, p⊥) sq · (p̂q × p̂⊥)

p⊥

Sq pq



d∆σ̂ = dσ̂!q↑→!q↑ − dσ̂!q↑→!q↓

Asin(φ+φS)
UT ≡ 2

∫
dφdφS [dσ↑ − dσ↓] sin(φ + φS)

∫
dφdφS [dσ↑ + dσ↓]

Collins effect in SIDIS couples to transversity

F sin(φ+φS)
UTCollins effect in SIDIS - 

Dh/q,sq
(z,p⊥) = Dh/p(z, p⊥) +

1
2
∆NDh/q↑(z, p⊥) sq · (p̂q × p̂⊥)

dσ↑ − dσ↓ =
∑

q

h1q(x, k⊥)⊗ d∆σ̂(y, k⊥)⊗∆NDh/q↑(z,p⊥)

q

q’
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BELLE @ KEK
Collins function from e+e– processes  

q̄

q
e+e−

Sq

Sq̄

θ

e+ 

ϕ1

ϕ2−π e- 

e+ 

thrust-axis

dσe+e−→q↑q̄↑

d cos θ
=

3πα2

4s
e2
q cos2 θ

dσe+e−→q↓q̄↑

d cos θ
=

3πα2

4s
e2
q

A12(z1, z2, θ, ϕ1 + ϕ2) ≡
1

〈dσ〉
dσe+e−→h1h2X

dz1 dz2 d cos θ d(ϕ1 + ϕ2)

= 1 +
1
4

sin2 θ

1 + cos2 θ
cos(ϕ1 + ϕ2)×

∑
q e2

q ∆NDh1/q↑(z1) ∆NDh2/q̄↑(z2)∑
q e2

qDh1/q(z1)Dh2/q̄(z2)



Collins asymmetry best fit
M. A., M.  Boglione, U.  D'Alesio, A. Kotzinian, F. Murgia,         
A. Prokudin, S. Melis , e-Print: arXiv:0812.4366 [hep-ph] 
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Update on transversity and Collins functions from SIDIS and e+e− data 5

are the same for favoured and unfavoured Collins
fragmentation functions; we then remain with a
total number of 9 parameters.

The first study along this line was presented in
Ref. [20]. Here we repeat the analysis, exploit-
ing the new high-precision data recently released
by the HERMES [21] and COMPASS [22] Col-
laborations for SIDIS, and by the Belle Collab-
oration [23] for e+e− annihilation processes, in
order to refine and reduce the uncertainty of the
previous extraction.
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Figure 1. Fit of HERMES [21] data. The shaded
area corresponds to the statistical uncertainty in
the parameter values, see text.

New data from COMPASS operating on a
transversely polarized hydrogen target have re-
cently been released [40]: these are not included
in the fit but compared with our predictions.

The two sets of Belle data, coming from two
analyses of the same experimental events, are not
independent. Therefore we include only one set
of data in the fit, either A0 or A12 data. In this
analysis we report the results obtained by using
A12 data, the cos(ϕ1 + ϕ2) method. The conse-
quences of fitting A0 instead of A12 are presently
under investigation.

In Figs. 1 and 2 we show the best fit to the
HERMES [21] and COMPASS [22] data, respec-
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Figure 2. Fit of COMPASS [22] data. The shaded
area corresponds to the statistical uncertainty in
the parameter values, see text. The extra π phase
in addition to φh + φS comes from the different
convention adopted by COMPASS.

tively. Notice that the π0 data (HERMES) have
not been used in the fit; in Fig. 1 we show our
estimates, based on the extracted transversity
and Collins functions, and compare them to data.
Fig. 3 shows the fit to the Belle A12 asymmetry,
whereas in Fig. 4 our predictions for the A0 asym-
metry are compared with data [23].

The curves shown are evaluated using the cen-
tral values of the parameters in Table 1, while
the shaded areas correspond to a two-sigma devi-
ation at 95.45% Confidence Level (for details see
Appendix A of Ref. [41]).

Table 1 collects the results of our best fit to the
new data sets [21,22,23], while in Figs. 5 and 6 we
show our updated transversity distribution and
Collins fragmentation functions together with the
uncertainty bands of our previous extraction [20].
We can definitely say that the two extractions are
compatible with each other, with the new error
bands strongly reduced. The transversity for up
quarks results now larger (compared to our previ-
ous extraction), while that for down quarks is bet-
ter constrained in sign and non compatible with
zero. In this respect the new data from SIDIS
have been crucial. It is worth noticing that while

fit of COMPASS data, deuteron target
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Figure 5. The transversity distribution functions
for u and d flavours as determined by our global
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ous extraction [?].

transverse single spin asymmetry Asin(φS+φh)
UT has

been recently measured by the COMPASS exper-
iment operating with a polarized hydrogen target
(rather than a deuterium one). In Fig. 9 we show
our predictions against these preliminary data.
The agreement is encouraging.

In Fig. 10 we present our estimates for JLab
operating with a proton target at 12 GeV. Notice
that JLab results will give important information
on the large x region, which is left basically un-
constrained by the present SIDIS data from HER-
MES and COMPASS. In this region our estimates
must be taken with some care. We recall that the
large x behaviour of our parametrization is con-
trolled by the same β parameter for ∆T u and
∆T d (since present data do not cover the large
x region). The same is true for the Collins frag-
mentation functions, whose large z behaviour is
driven by the same parameter δ for favored and
unfavored Collins FF. On the other hand for the
small to medium x region, well constrained by
SIDIS measurements, data support the choice of
a universal behaviour xα for ∆T u and ∆T d. The
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extracted Collins functions



extracted transversity 
and comparison with 

models 

M.A., M. Boglione, U. D’Alesio, A. Kotzinian, S. Melis, F. Murgia, A. Prokudin, C. Türk

Soffer’s bound

helicity distribution



Predictions for COMPASS, with a proton 
target, and comparison with data 

A. Martin, DIS2010



Collins effect observed by three 
independent experiments:

HERMES, BELLE and COMPASS 

Collins function expected to be universal 

Collins function couples to Boer-Mulders 
function in unpolarized SIDIS to give a 

cos(2Φ) asymmetry



Boer-Mulders effect

fq,sq/p(x,k⊥) =
1
2

fq/p(x, k⊥) +
1
2
∆Nfq↑/p(x, k⊥) sq · (p̂× k̂⊥)

=
1
2

fq/p(x, k⊥)− k⊥
2M

h⊥q
1 (x, k⊥) sq · (p̂× k̂⊥)

transversely polarized quarks inside 
unpolarized nucleons; interesting spin 

effects in unpolarized processes  

possible strategy: combined analysis of cos(2Φ) 
asymmetries in unpolarized Drell-Yan (B-M ⊗ B-M) 

and in SIDIS (B-M ⊗ Collins)

X

sq
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FIG. 5: Our Fit 1 to the COMPASS preliminary data (deuteron target) [14, 15]. The line labels are the same as in Fig. 2.
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FIG. 6: Our Fit 2 to the HERMES proton data. The line labels are the same as in Fig. 2.

and are very close to those of Fit 1 (again, h⊥d
1 saturates its positivity bound). Thus, the x-dependence of the Boer-

Mulders functions is essentially the same in the two fits. However, the χ2 per degree of freedom of Fit 2 is significantly
smaller: χ2/d.o.f. = 2.41. In Figs. 6, 7 and 8 we show the results of Fit 2 for Acos 2φ compared to the data.

The main difference between the two fits resides in the Cahn term, which is strongly sensitive to the average value
of k2

T . The fact that the data prefer the fit with 〈k2
T 〉HERMES #= 〈k2

T 〉COMPASS seems to indicate that the twist-4
contributions are different in the kinematics of the two experiments.

Our analysis shows that, as far as the x and z dependences are concerned, both the HERMES and COMPASS

contributions from Cahn effect at order O(k2
⊥/Q2)

Barone, Melis, Prokudin, arXiv:0912.5194

B-M function from SIDIS data alone 

opposite contribution to π+, π- given by B-M effect only   
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FIG. 7: Our Fit 2 to the HERMES deuteron target data. The line labels are the same as in Fig. 2.
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FIG. 8: Our Fit 2 to the COMPASS preliminary data. The line labels are the same as in Fig. 2.

data are fairly well described. The resulting Boer-Mulders distributions of quarks have the expected sign [10, 11, 23].
Moreover, looking at eq. (27) or (33), one sees that the Boer-Mulders u distribution is larger by a factor 2 compared
to the u Sivers distribution, whereas the Boer-Mulders and Sivers d distributions have approximately the same
magnitude. This is in agreement with the predictions of the impact-parameter approach [21] combined with lattice
results [22].

fit based on simple phenomenological assumption 

h⊥q
1 (x, k2

⊥) = λq f⊥q
1T (x, k2

⊥)

COMPASS and HERMES PT data quite different 
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FIG. 4: Our Fit 1 to the HERMES deuteron-target data. The line labels are the same as in Fig. 2.

and, as far as H⊥unf
1 (z) ! −H⊥fav

1 (z) [48], one gets different signs for the Boer-Mulders effect for positive and negative
pions. The combination of the Boer-Mulders term with the Cahn term, which is positive and exactly the same for π+

and π− (if the kT -dependence of the distributions is flavor blind) gives a resulting asymmetry which is larger for π−

than for π+.
Fig. 4 shows our Fit 1 to Acos 2φh at HERMES with a deuteron target. We have neglected nuclear corrections and

used isospin symmetry to relate the distribution functions of the neutron to those of the proton.
The experimental cuts of the COMPASS experiment (which runs with a deuteron target) are:

Q2 ≥ 1 GeV2 , W 2 > 25 GeV2 , (31)

0.2 < z < 0.85 , 0.1 ≤ y ≤ 0.9

PT > 0.1 GeV . (32)

In Fig. 5 we show our fit to the COMPASS data. One clearly sees that the PT dependence of these data is incompatible
with the HERMES one and hard to understand theoretically.

Let us now come to Fit 2. In this case, the coefficients λu and λd are found to be

λu = 2.1 ± 0.1 , λd = −1.111± 0.001 (Fit 2) , (33)

λu ! 2.1 λd ! −1.1

h⊥u,d
1 both negative, as expected from models

〈k2
⊥〉 = 0.18 (GeV/c)2 〈k2

⊥〉 = 0.20 (GeV/c)2

Gaussian dependence of TMDs assumed,
Sivers and Collins distributions from other fits
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for scattering that has azimuthal symmetry their values are

µ = ν = 0.
This angular distribution has been measured in muon pair

production by pion-nucleon collisions: π−N → µ+µ−X, with
N denoting a nucleon in deuterium or tungsten, and for a

π− beam with energies of 140, 194, 286 GeV [3] and 252

GeV [4]. The experimental data show large values of ν,
near 30%. The most recent measurements of the angular dis-

tribution were performed by the E866 Collaboration [2], in

pd Drell-Yan processes at 800 GeV/c. The measured ν is
about several percent, a result which can not be explained by

leading-twist collinear factorization 1 in QCD. As proposed

by Boer [11], the non-zero cos 2φ term can be produced by

the product of two h⊥
1
s, each coming from one of the two in-

cident hadrons.

The leading order unpolarized Drell-Yan cross section ex-

pressed in the Collins-Soper frame [34] is [11]

dσ(h1h2 → ll̄X)

dΩdx1dx2d2qT
=
α2

3Q2

∑

q,q̄















A(y)F [ f q
1
f
q̄

1
] + B(y)

× cos 2φF















((2ĥ · pT ĥ · kT ) − (pT · kT ))
h
⊥q
1
h
⊥ q̄
1

M1M2





























,

(3)

where Q2 = q2 and qT are the invariance mass square and

the transverse momentum of the lepton pair. The vector ĥ =

qT/QT . We have used the notation

F [ f f̄ ] =
∫

d2pTd
2kTδ

2(pT + kT − qT ) f (x1, p2T ) f̄ (x2, k
2
T ).(4)

The first term in Eq. (3) is azimuthal independent, while the

second term has a cos 2φ azimuthal dependent term which

contributes to the asymmetry ν.
In the case of the p d and pp Drell-Yan processes, the

cos 2φ asymmetry can be expressed as

νpd(x1, x2, qT ) =
Fpd(x1, x2, qT )

M2
p Gpd(x1, x2, qT )

, (5)

νpp(x1, x2, qT ) =
Fpp(x1, x2, qT )

M2
p Gpp(x1, x2, qT )

, (6)

where

Fpd(x1, x2, qT ) = 2F
[

(2ĥ · pT ĥ · kT − pT · kT ) (e2uh
⊥ u
1

+ e2dh
⊥d
1 )(h

⊥ ū
1 + h

⊥ d̄
1 )
]

+ (q↔ q̄), (7)

Gpd(x1, x2, qT ) = F
[

(e2u f
u
1 + e

2
d f

d
1 )( f

ū
1 + f

d̄
1 )
]

+ (q↔ q̄), (8)

Fpp(x1, x2, qT ) = 2F
[

(2ĥ · pT ĥ · kT − pT · kT ) (e2uh
⊥ u
1 h⊥ ū1

+ e2dh
⊥d
1 h⊥ d̄1 )

]

+ (q↔ q̄), (9)

Gpp(x1, x2, qT ) = F [(e2u f
u
1 f

ū
1 + e

2
d f

d
1 f

d̄
1 )] + (q↔ q̄). (10)

1 In has been shown in Ref. [35] that the cos 2φ asymmetries can be ex-

plained by taking into account the twist-three quark-gluon correlations in

collinear factorization which is consistent with the Boer-Mulders effect in

the TMD factorization approach.
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FIG. 1: The qT -dependent cos 2φ asymmetries for unpolarized p d
(left) and pp (right) Drell-Yan process calculated from our fitted re-

sults. Data are from the FNAL E866/NuSea experiments.

For distribution functions for deuteron, we have used the

isospin relation:

f u/deuteron ≈ f u/p + f u/n = f u + f d. (11)

In Ref. [1] we have parameterized the transverse momentum

dependence of Boer-Mulders functions with a Gaussian form

as follows

h
⊥ q
1
(x, p2T ) = h

⊥ q
1
(x)
exp (−p2

T
/p2

bm
)

πp2
bm

. (12)

The x dependence for u, d, ū and d̄ quarks is parameterized,

as follows

h
⊥q
1
(x) = Hq x

c (1 − x) f q
1
(x). (13)

The above parametrizations, with 6 parameters, have been ap-

plied to fit p d Drell-Yan data measured by E866/NuSea Col-

laboration. In the fit the PT -dependent and x1/2-dependent

cos 2φ asymmetry data were used. The fitted result was em-
ployed to predict the x f -dependent and Q-dependent cos 2φ
asymmetries which were compared with the corresponding

data.

Recently the E866/NuSea Collaboration reports measure-

ments [33] of the cos 2φ asymmetries on unpolarized pp

Drell-Yan processes at Ep = 800 GeV. The new pp data, to-

gether with the previous p d data, will provide further infor-

mation on the shape of the Boer-Mulders functions for differ-

ent flavors. In this paper we will combine the previous p d data

and the new pp data in the fit. Further more we will include

x f -dependent and Q-dependent data in our fit. To do this we

will parameterize the Boer-Mulders functions as in Eqs. (12)

and (13), but changing the form slightly.

In our previous fit we modeled the x-dependent behavior

of h
⊥q
1
(x, p2

T
) at small x as xc compared with f

q

1
(x), and we

assumed the value of c to be flavor independent, as shown in

(13). Now with more data available, we are able to release

this constraint to replace c as cq, depending on flavor. Sec-

ondly we model the large x-dependence of the Boer-Mulders

functions by (1 − x)b, different from our previous fit in which

3

0.2 0.4 0.6 0.8
x
1

-0.1

-0.05

0

0.05

0.1

0.15

0.2

!
p
d

0.2 0.4 0.6 0.8
x
1

-0.1

-0.05

0

0.05

0.1

0.15

0.2

!
p
p

FIG. 2: The x1-dependent cos 2φ asymmetries for unpolarized p d
(left) and pp (right) Drell-Yan process calculated from our fitted re-

sults. Data are from the FNAL E866/NuSea collaboration.

0.05 0.1 0.15 0.2
x
2

-0.1

-0.05

0

0.05

0.1

0.15

0.2

!
p
d

0.05 0.1 0.15 0.2
x
2

-0.1

-0.05

0

0.05

0.1

0.15

0.2

!
p
p

FIG. 3: The x2-dependent cos 2φ asymmetries for unpolarized p d
(left) and pp (right) Drell-Yan process calculated from our fitted re-

sults. Data are from the FNAL E866/NuSea collaboration.

the large x dependence is 1 − x. Therefore we have the new
parametrizations for h

⊥q
1
(q = u, d, ū and d̄) as follows:

h
⊥ q
1
(x) = Hq x

cq (1 − x)b f q
1
(x), (14)

The first p2
T
-moment of Boer-Mulders function is defined

as

h
⊥ (1) q
1

(x) =

∫

d2 pT
p2
T

2M2
h⊥1 (x, p

2
T ) (15)

From Eqs. (12) and (14) one can calculate h
⊥ (1) q
1

(x) from our

parametrization as

h
⊥ (1) q
1

(x) =
p2
BM

2M2
h
⊥ q
1
(x) (16)

With the Gaussian form for the pT dependence of Boer-

Mulders functions and the unpolarized TMD distribution

f
q

1
(x, p2T ) = f

q

1
(x)
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πp2un
exp
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T
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, (17)

the transverse momentum integrations in Eqs. (7) – (10) can

be deconvoluted and the results are:

Fpd(x1, x2, qT ) = Fpd(x1, x2)
q2
T

36πp2
bm

exp
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, (19)

Gpd(x1, x2, qT ) = Gpd(x1, x2)
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exp
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, (20)

Gpp(x1, x2, qT ) = Gpp(x1, x2)
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18πp2un
exp













−
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. (21)

where the x1/2 dependent parts are

Fpd(x1, x2) =
(

4 h⊥u1 (x1) + h⊥d1 (x1)
)

×
(

h⊥ ū1 (x2) + h⊥ d̄1 (x2)
)

+ (q → q̄)

= (1 − x1)b (1 − x2)b(4H1 xcu1 f u1 (x1) x
cū
2
f ū1 (x2)

+ H2 x
cd
1
f d1 (x1) x

cd̄
2
f d̄1 (x2) + 4H3 x

cu
1
f u1 (x1) x

cd̄
2
f d̄1 (x2)

+ (H1H2/H3) x
cd
1
f d1 (x1) x

cd̄
2
f ū1 (x2)) + (q → q̄), (22)

Fpp(x1, x2) = 4 h
⊥u
1 (x1)h

⊥ ū
1 (x2) + h

⊥d
1 (x1)h

⊥ d̄
1 (x2) + (q→ q̄)

= (1 − x1)b (1 − x2)b(4H1 xcu1 f u1 (x1) x
cū
2
f ū1 (x2)

+ H2 x
cd
1
f d1 (x1) x

cd̄
2
f d̄2 (x2)) + (q → q̄), (23)

Gpd(x1, x2) =
(

4 f u1 (x1) + f d1 (x1)
)

×
(

f ū1 (x2) + f
d̄
1 (x2)

)

+ (q → q̄), (24)

Gpp(x1, x2) = 4 f
u
1 (x1) f

ū
1 (x2) + f d1 (x1) f

d̄
1 (x2) + (q→ q̄),

(25)

where H1 = Hu Hū, H2 = Hd Hd̄, H3 = Hu Hd̄ and

H1H2/H3 = Hū Hd. Since Hu, Hd, Hū and Hū always appear

as products of two of them, we will apply H1, H2 and H3 as

the parameters in the fit. Therefore the actual number of free

parameters is reduced to 9.

The qT -, x1- and x2-dependent cos 2φ asymmetries in unpo-
larized p d and pp Drell-Yan processes can then be expressed

as

νNN (qT ) =

∫

dx1
∫

dx2 FNN(x1, x2, qT )

M2
p

∫

dx1
∫

dx2GNN(x1, x2, qT )
, (26)

νNN(x1) =

∫

dx2
∫

dq2
T
FNN (x1, x2, qT )

M2
p

∫

dx2
∫

dq2
T
GNN (x1, x2, qT )

, (27)
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the large x dependence is 1 − x. Therefore we have the new
parametrizations for h
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(q = u, d, ū and d̄) as follows:
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cq (1 − x)b f q
1
(x), (14)

The first p2
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as
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From Eqs. (12) and (14) one can calculate h
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(x) from our

parametrization as
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(x) =
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With the Gaussian form for the pT dependence of Boer-

Mulders functions and the unpolarized TMD distribution
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the transverse momentum integrations in Eqs. (7) – (10) can

be deconvoluted and the results are:
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, (19)

Gpd(x1, x2, qT ) = Gpd(x1, x2)
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exp
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2p2un













, (20)

Gpp(x1, x2, qT ) = Gpp(x1, x2)
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18πp2un
exp
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2p2un













. (21)

where the x1/2 dependent parts are

Fpd(x1, x2) =
(

4 h⊥u1 (x1) + h⊥d1 (x1)
)

×
(

h⊥ ū1 (x2) + h⊥ d̄1 (x2)
)

+ (q → q̄)

= (1 − x1)b (1 − x2)b(4H1 xcu1 f u1 (x1) x
cū
2
f ū1 (x2)

+ H2 x
cd
1
f d1 (x1) x

cd̄
2
f d̄1 (x2) + 4H3 x

cu
1
f u1 (x1) x

cd̄
2
f d̄1 (x2)

+ (H1H2/H3) x
cd
1
f d1 (x1) x

cd̄
2
f ū1 (x2)) + (q → q̄), (22)

Fpp(x1, x2) = 4 h
⊥u
1 (x1)h

⊥ ū
1 (x2) + h

⊥d
1 (x1)h

⊥ d̄
1 (x2) + (q→ q̄)

= (1 − x1)b (1 − x2)b(4H1 xcu1 f u1 (x1) x
cū
2
f ū1 (x2)

+ H2 x
cd
1
f d1 (x1) x

cd̄
2
f d̄2 (x2)) + (q → q̄), (23)

Gpd(x1, x2) =
(

4 f u1 (x1) + f d1 (x1)
)

×
(

f ū1 (x2) + f
d̄
1 (x2)

)

+ (q → q̄), (24)

Gpp(x1, x2) = 4 f
u
1 (x1) f

ū
1 (x2) + f d1 (x1) f

d̄
1 (x2) + (q→ q̄),

(25)

where H1 = Hu Hū, H2 = Hd Hd̄, H3 = Hu Hd̄ and

H1H2/H3 = Hū Hd. Since Hu, Hd, Hū and Hū always appear

as products of two of them, we will apply H1, H2 and H3 as

the parameters in the fit. Therefore the actual number of free

parameters is reduced to 9.

The qT -, x1- and x2-dependent cos 2φ asymmetries in unpo-
larized p d and pp Drell-Yan processes can then be expressed

as

νNN (qT ) =

∫

dx1
∫

dx2 FNN(x1, x2, qT )

M2
p

∫

dx1
∫

dx2GNN(x1, x2, qT )
, (26)

νNN(x1) =

∫

dx2
∫

dq2
T
FNN (x1, x2, qT )

M2
p

∫

dx2
∫

dq2
T
GNN (x1, x2, qT )

, (27)
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the large x dependence is 1 − x. Therefore we have the new
parametrizations for h
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1
(q = u, d, ū and d̄) as follows:

h
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(x) = Hq x

cq (1 − x)b f q
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(x), (14)
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as
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From Eqs. (12) and (14) one can calculate h
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(x) from our

parametrization as
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With the Gaussian form for the pT dependence of Boer-

Mulders functions and the unpolarized TMD distribution
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the transverse momentum integrations in Eqs. (7) – (10) can

be deconvoluted and the results are:
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. (21)

where the x1/2 dependent parts are

Fpd(x1, x2) =
(

4 h⊥u1 (x1) + h⊥d1 (x1)
)

×
(

h⊥ ū1 (x2) + h⊥ d̄1 (x2)
)

+ (q → q̄)

= (1 − x1)b (1 − x2)b(4H1 xcu1 f u1 (x1) x
cū
2
f ū1 (x2)

+ H2 x
cd
1
f d1 (x1) x

cd̄
2
f d̄1 (x2) + 4H3 x

cu
1
f u1 (x1) x

cd̄
2
f d̄1 (x2)

+ (H1H2/H3) x
cd
1
f d1 (x1) x

cd̄
2
f ū1 (x2)) + (q → q̄), (22)

Fpp(x1, x2) = 4 h
⊥u
1 (x1)h

⊥ ū
1 (x2) + h

⊥d
1 (x1)h

⊥ d̄
1 (x2) + (q→ q̄)

= (1 − x1)b (1 − x2)b(4H1 xcu1 f u1 (x1) x
cū
2
f ū1 (x2)

+ H2 x
cd
1
f d1 (x1) x

cd̄
2
f d̄2 (x2)) + (q → q̄), (23)

Gpd(x1, x2) =
(

4 f u1 (x1) + f d1 (x1)
)

×
(

f ū1 (x2) + f
d̄
1 (x2)

)

+ (q → q̄), (24)

Gpp(x1, x2) = 4 f
u
1 (x1) f

ū
1 (x2) + f d1 (x1) f

d̄
1 (x2) + (q→ q̄),

(25)

where H1 = Hu Hū, H2 = Hd Hd̄, H3 = Hu Hd̄ and

H1H2/H3 = Hū Hd. Since Hu, Hd, Hū and Hū always appear

as products of two of them, we will apply H1, H2 and H3 as

the parameters in the fit. Therefore the actual number of free

parameters is reduced to 9.

The qT -, x1- and x2-dependent cos 2φ asymmetries in unpo-
larized p d and pp Drell-Yan processes can then be expressed

as

νNN (qT ) =

∫

dx1
∫

dx2 FNN(x1, x2, qT )

M2
p

∫

dx1
∫

dx2GNN(x1, x2, qT )
, (26)

νNN(x1) =

∫

dx2
∫

dq2
T
FNN (x1, x2, qT )

M2
p

∫

dx2
∫

dq2
T
GNN (x1, x2, qT )

, (27)

Lu, Schmidt, arXiv:0912.2031
B-M function from Drell-Yan data alone 

1
σ

dσ

dΩ
=

3
4π

1
λ + 3

(
1 + λ cos2 θ + µ sin 2θ cos φ +

ν

2
sin2 θ cos 2φ
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(left) and pp (right) Drell-Yan process calculated from our fitted re-

sults. Data are from the FNAL E866/NuSea collaboration.

FIG. 6: The first p2T -moments of Boer-Mulders functions for u, d, ū

and d̄ quarks.

νNN (x2) =

∫

dx1
∫

dq2
T
FNN(x1, x2, qT )

M2
p

∫

dx1
∫

dq2
T
GNN (x1, x2, qT )

, (28)

where the subscript NN denotes p d and pp.

One can also express the cross-section of the Drell-Yan pro-

cess, depending on Feynman xF and the mass of the lepton

pair Q as

dσ

dxFdQ2d2qT
=

1

s

√

x2
F
+ Q2/s

dσ

dx1dx2d2qT
, (29)

with

x1/2 =
±xF +

√

x2
F
+ Q2/s

2
, Q2 = x1 x2 s. (30)

Therefore the xF- and Q-dependent cos 2φ asymmetries can

be expressed as

νNN (xF) =

∫

dQ2
∫

dq2
T

FNN (x1,x2,qT )√
x2
F
+Q2/s

M2
p

∫

dQ2
∫

dq2
T

GNN (x1,x2,qT )√
x2
F
+Q2/s

, (31)

νNN (Q) =

∫

dxF
∫

dq2
T

Fpd (x1,x2,qT )√
x2
F
+Q2/s

M2
p

∫

xF
∫

q2
T

GNN (x1,x2,qT )√
x2
F
+Q2/s

. (32)

III. FITTING BOER-MULDERS FUNCTIONS TO THE

UNPOLARIZED E866/NUSEA p d AND pp DATA

The E866/NuSea Collaboration measured νpd and νpd vs
QT , x1, x2, xF and mµµ in the following kinematical region:

4.5GeV < Q < 9GeV and 10.7GeV < Q < 15GeV,

qT < 4GeV, 0.15 < x1 < 0.85, 0.02 < x2 < 0.24.

We apply the theoretical expressions (26) - (28), (31) and

(32) to fit the unpolarized p d and pp Drell-Yan cos 2φ asym-
metry data [2, 33], For the parton distribution f

q

1
(x) we adopt

the MSTW2008 LO set [36]. The best fit results for the pa-

rameters are as follows:

H1 = 0.64, H2 = 1.70, H3 = 0.65,

cu = 0.63, cd = 0.50, cū = 0.09, (33)

cd̄ = 0.80, b0 = 0.17, p
2
bm = 0.17.

The χ2 of this fit is 47 for 54 data points, resulting χ2/d.o. f =
1.04. In Figs. 1, 2, 3, 4 and 5 we show the qT -, x1-, x2-, xF-
and Q-dependent cos 2φ asymmetries for unpolarized p d and
pp Drell-Yan process calculated from our fitted results and

compare them with FNAL E866/NuSea data.

The possible range of coefficients Hq are obtained from

the values of H1, H2 and H3, by employing the positivity

bound [37] for h
⊥q
1
(x, p2

T
) for the entire x and pT regions:

|pTh
⊥ q
1
(x, p2

T
)|

M
≤ f

q

1
(x, p2T ). (34)

We have

Hu = 0.55+0.57− 0.28, Hd = 1.43
+1.5
− 0.73,

Hū = 1.16+1.21− 0.59, Hd̄ = 1.18
+1.23
− 0.60. (35)

The upper and lower limits for Hq are determined by the

positivity bound for h
⊥q
1
(x, p2

T
). In our previous work [1]

the variation ranges of Hq allowed by the positivity bound

was described by the coefficient ω, namely, the substitution
Hq → ωHq for q = u, d and Hq → 1

ω
Hq for q = ū, d̄ will not

change the result. In our new fit presented here, the range of

ω is 0.5 < ω < 2.0.
The positivity bound given in (34) implies

h
⊥(1) q
1

(x) ≤
〈pT 〉un
2M

f
q

1
(x). (36)

best fit results, antiquark distribution needed

only relative signs of B-M functions can be fixed



what about the last 3 TMDs? any relation with 
the others? 

g⊥(1)a
1T (x) ! x

∫ 1

x

dy

y
ga
1 (y)

h⊥(1)a
1L (x) ! −x2

∫ 1

x

dy

y2
ha

1(y)

h⊥(1)a
1T (x) ! ga

1 (x)− ha
1(x)

neglecting 
twist-3 

contributions 

similar to the Wandzura-Wilczek relation 

ga
T (x) !

∫ 1

x

dy

y
ga
1 (y) supported by experiment

g⊥(1)a
1T (x) =

∫
d2k⊥

k2
⊥

2m2
N

g⊥a
1T (x, k2

⊥)
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Fig. 4. Longitudinal target SSA Asin 2φ
UL as function of x. The proton (a, b) and deuterium (c,d) target

data are from HERMES [28,30]. The theoretical curves are obtained using information on H⊥
1 [61,62],

predictions from the instanton vacuum model and chiral quark soliton model for ha
L and ha

1 [86,88],
and — this is crucial in our context — assuming the validity of the WW-type approximation (13). The
shaded error bands are due to the uncertainties in H⊥

1 , see [67] for details.

What is convenient for our purposes is that the Gauss Ansatz allows to solve the convolution
integral. Using the WW-type approximation (13) with ha

1(x) from the χQSM [88], and informa-
tion on the Collins effect from [60–62], we obtain the results shown in Fig. 4. The error bands
of the theoretical curves reflect the present uncertainties in the quantitative understanding of
the Collins effect, see [67] for explicit expressions and details.

Our results shown in Fig. 4 for pion production from proton and deuteron targets are con-
sistent with the HERMES data [28–30], and do not exclude that (13) is a useful approximation.

Further insights are expected from the CLAS experiment at Jefferson Lab, which promises
higher statistics due to two orders of magnitude higher luminosity, and provides access to
much larger x and larger z than HERMES and COMPASS. Large 〈z〉 may also enhance the

SSA due to Collins function H⊥(1/2)a
1 (z) ∝ zDa

1(z), as observed in [61]. This makes CLAS an
ideal experiment for studies of this SSA in particular and spin-orbit correlations in general.
Comparison of the various data sets will also allow to draw valuable conclusions on the energy
dependence of the process, possible power-corrections, etc.

The preliminary data from CLAS [37] have shown non-zero SSAs for charged pions, and
a compatible with zero within error bars result for π0. Within our approach it is possible to
understand the results for π+ and π0, however, we obtain for π− an opposite sign compared
to the data. In view of this observation, it is worth to look again on Fig. 4b which shows
HERMES data on the π−-SSA. Does Fig. 4b hint at an incompatibility? Charged pions and in
particular the π− may have significant higher twist contributions, in particular from exclusive
vector mesons and semi-exclusive pion production at large z.

New data expected from CLAS with Ebeam = 6 GeV [98], will increase the existing statistics
by about an order of magnitude and more importantly provide comparable to π+ sample of π0

events. Neutral pion sample is not expected to have any significant contribution from exclusive
vector mesons, neither it is expected to have significant higher twist corrections due to semi-
exclusive production of pions with large z [99], where the separation between target and current
fragmentation is more pronounced. The JLab upgrade to 12 GeV [100] will allow to run at an
order of magnitude higher luminosity than current CLAS, providing a comprehensive set of
single and double spin asymmetries covering a wide range in x and z. That will allow detailed
studies of kinematic dependence of target SSA and clarify the situation.

COMPASS has taken data with a longitudinally polarized deuterium target which are being
analyzed, and soon also a proton target will be used. The 160 GeV muon beam allows to
extend the measurements of SSAs to small x. With the cut Q2 > 1 GeV2 the average 〈Q2〉 at
COMPASS is comparable to that at HERMES. Therefore Fig. 4 shows roughly our predictions

for COMPASS. One may expect Asin 2φ
UL to be substantially smaller than Asin(φ+φS)

UT , especially at
small x. It will be interesting to see whether these predictions will be confirmed by COMPASS.

HERMES data, PRL 84 (2000) 4047; PL B562 (2003) 182 

F sin(2φ)
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FIG. 9: The SSA A
sin(3φ−φS)
UT in π+ production from a proton target in the kinematics of CLAS 12 as function of x. The error

projections are from [96]. The shaded areas indicate the range allowed by positivity bounds. The bag model (obtained here)
and spectator model [73] predict a negative sign for the SSA, i.e. in the lower shaded area.

VIII. CONCLUSIONS

We reviewed and discussed the properties of the pretzelosity distribution function h⊥
1T , and presented a study of

this leading-twist, chiral-odd, transverse parton momentum dependent distribution function in the bag model, and
supplemented our findings with a detailed comparison to spectator model results [73].

In these models we observed an interesting relation, which we expect to be valid at low scales in a wide class of
relativistic models. It can be summarized for illustrative purposes by the following assertion:

helicity − transversity = pretzelosity. (50)

That the difference between the helicity and transversity distributions is ’a measure of relativistic effects’ is known
since long ago [86] (and was also recognized in a bag model calculation). However, now we are in a position to
make this statement more precise. This difference is just pretzelosity. Thus, h⊥

1T ’measures’ relativistic effects in the
nucleon, and vanishes in the non-relativistic limit where helicity and transversity distributions become equal.

This relation is not supported in models with explicit gluon degrees of freedom [75], and, of course, cannot be true
in QCD where all (eight) transverse momentum dependent parton distribution functions are linearly independent.
Nevertheless, the relation (50), see Eq. (36) for its precise formulation, could turn out to be a useful approximation.
In view of the numerous novel functions involved, any well-motivated approximation is welcome and valuable [64].

Besides being useful for extending our intuition on relativistic spin-orbit effects in nucleon [67, 74], the relation (50)
has also an important consequence on transversity. In the bag and spectator model h⊥u

1T is negative. Since gu
1 (x) is

positive, this implies that hu
1 (x) > gu

1 (x). For the d-flavor signs are reversed, but in any case |hq
1(x)| > |gq

1(x)|. This
is found also in models, e.g. [95].

In the bag model, the negative sign of h⊥u
1T arises because it is proportional to minus the square of the p-wave com-

ponent of the nucleon wave function. Thus, in models with no higher orbital momentum (d-wave, etc.) components,
h⊥u

1T is manifestly negative (h⊥d
1T has opposite sign dictated by SU(6) symmetry, and predicted in large Nc [72]).

This prediction can be tested at JLab. Since the production of positive pions from a proton target is dominated by
the u-flavor, one expects a negative sin(3φ − φS) SSA, see Fig. 9.

Forthcoming analyses and experiments at COMPASS, HERMES and JLab [96–98] will provide valuable information
on the pretzelosity distribution function, and deepen our understanding of the nucleon structure.
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FIG. 7: The transverse target SSA A
sin(3φ−φS)
UT, π for deuteron estimated on the basis of the positivity bound vs. preliminary

COMPASS data [41].

This could hint at the following. Either, the chiral-odd pretzelosity is suppressed at small-x with respect to the
chiral-even f1, which is expected, see Sec. III. Or, the u and d-flavors have opposite signs, as predicted in the large-Nc

limit and the models. Or, both. In view of the early stage of art it is too early to draw definite conclusions.
An important observation, however, is that in spite of the small (consistent with zero) effect observed at COMPASS,

pretzelosity does not need to be small in the region x > 0.1, see Fig. 7, where JLab can measure with great precision.
So there is no discouragement due to small COMPASS pretzelosity effect for the planned CLAS measurements!

It remains to be mentioned that HERMES also studied the sin(3φ − φS) azimuthal modulation in the transverse
target experiments. It was quoted that this SSA is zero within error bars, see e.g. [29, 31, 40]. Presumably, an SSA
as large as what we obtain from saturating positivity (see below) would have been seen at HERMES. However, since
no HERMES data were shown on that observable, we cannot draw quantitative conclusions from that.

In order to see how further analyses from HERMES, as well as future experiments at COMPASS and Jefferson Lab
could improve our understanding of pretzelosity, let us estimate the upper bounds for the modulus of the SSA for
charged pion production from various targets. Using the positivity bound (17) we obtain the results in Fig. 8.

The SSAs for charged pions could reach up to ∼ 5%. Even asymmetries reaching half or one third of that size
would be measured, especially in the region of x ∼ (0.1–0.4) in the CLAS experiment. This is shown in Fig. 9, where
we plot the π+ SSA from a proton target in the kinematics of CLAS with 12 GeV beam upgrade. Shown are also
error projections for 2000 hours run time from [96]. Notice that the models predict a negative SSA.

We add that the π0 SSA is small on any target, because the modulus of this SSA is proportional to |H⊥fav
1 +H⊥unf

1 |
which is small (actually zero within error bars), since H⊥unf

1 ≈ −H⊥fav
1 holds within error bars [57–59].
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FIG. 8: The modulus of the transverse target SSA A
sin(3φ−φS)
UT in charged pion production from proton, deuteron, and neutron

targets as function of x. Estimates on the basis of the positivity bound.
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Future ....

3-dimensional exploration of nucleon has just started: 
collect as much data as possible on TMDs and GPDs 
and try to reconstruct the complete phase-space 

distribution  

ideal machine: 
high luminosity 

x-range including the valence region 
Q2 high enough to neglect higher-twist corrections 

PT high enough to see transition from TMDs to pQCD
precise PT-Q2 bins ....

plenty of challenging theoretical issues....


