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Outline

1) Controversial issues concerning the polarized parton

densities: Strange quarks and Higher Twist.

2) Validity of the Transverse Angular Momentum Sum

Rule.

3) The controversy about defining quark and gluon an-

gular momenta.
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The strange quark polarization

Now exist two NLO analyses of combined DIS and

SIDIS world data.

DSSV: PR D80 (2009) 034030

LSS: arXiv:1010.0547

Puzzling difference of ∆s(x)+∆s̄(x) between inclusive

DIS and combined DIS + SIDIS results.
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Some red herrings in papers on Polarized DIS

1) .....In Fig X we show the valence densities ∆uV and

∆dV .....

Nonsense!

g1(x,Q
2)LT =

1

2

∑
flavors

e2q

{
[∆q(x,Q2) +∆q̄(x,Q2)]

+ αs(Q2)
2π

∫ 1

x

dy

y
{∆Cq(x/y) [∆q(y,Q2) +∆q̄(y,Q2)]}

+ ∆CG(x/y)∆G(y,Q2)}
}

Inclusive DIS determines ONLY the sum of quark and

antiquark densities.
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.....Inclusive polarized DIS gives no information about

the separate sea quark densities.....

True!

But it does determine unambiguously ∆s(x) +∆s̄(x)
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The controversy

ALL inclusive DIS analyses give negative values for

∆s(x)+∆s̄(x)

ALL SIDIS, or combined DIS and SIDIS analyses, in

LO and in NLO , give either positive or sign-changing

results for ∆s(x) +∆s̄(x).

9



The controversy

ALL inclusive DIS analyses give negative values for

∆s(x)+∆s̄(x)

ALL SIDIS, or combined DIS and SIDIS analyses, in

LO and in NLO , give either positive or sign-changing

results for ∆s(x)+∆s̄(x).

10



The DIS situation
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Constraint on positive values from SU(3) flavour

EL and D.B. Stamenov: PR D67 (2003) 037503

Define

δs(Q2) ≡
∫ 1

0
dx [∆s(x,Q2) +∆s̄(x,Q2)]

Γp1(Q
2) ≡

∫ 1

0
dx g

p
1(x,Q

2) =
1

6

[
1

2
a3 +

5

6
a8 +2δs(Q2)

]

Rewrite as

a8 =
6

5

[
6Γp1(Q

2)−
1

2
a3 − 2δs(Q2)

]
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Feed in

Γp1(Q
2 = 5) = 0.118± 0.004(stat)± 0.007(syst)

Γp1(Q
2 = 3) = 0.133± 0.003(stat)± 0.009(syst)

Then, if δs ≥ 0 find

a8 ≤ 0.089± 0.058 a8 ≤ 0.197± 0.068

But SU(3)F seems good for hyperon decays viz. Fer-
milab KTev Ξ0 → Σ+eν̄ . Expect

a8 = 0.585± 0.025 i.e. 0.47 ≤ a8 ≤ 0.70

Thus δs ≥ 0 implies huge breaking of SU(3)F !
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Combined DIS and SIDIS analysis assuming
∆s = ∆s̄ and using DSS fragmentation functions
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Note: DSSV use αs̄ = αd̄ and find = 0.16
LSS find: αs̄ = 0.05± 0.02 αd̄ = 0.55± 0.12
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Redo DIS including term (1+ γx) to permit sign

change.
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∆s is a serious problem!
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What’s wrong?

1) Maybe we don’t understand connection between DIS

and SIDIS... a horrible thought which I will ignore.

2) SIDIS involves fragmentation functions...... they are

certainly poorly known....LSS will study effect of using

other FFs. 3) Maybe ∆s ̸= ∆s̄
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A little exercise taking ∆s ̸= ∆s̄

Define, at x = 0.1 and Q2 = 2.5,

∆h
exact ≡ x∆sDh

s + x∆s̄ Dh
s̄

=
x

2
[∆s+∆s̄][Dh

s +Dh
s̄ ] +

x

2
[∆s−∆s̄][Dh

s −Dh
s̄ ]

where

Dh
q =

∫ 0.85

0.2
dzDh

q (z)
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DSS: Pions

Dπ+
s = Dπ+

s̄ = Dπ−
s = Dπ−

s̄

∆π
exact = x[∆s+∆s̄][Dπ

s ] = 0.0008±0.0017(COMPASS)

Is this compatible with

∆π
exact = x[∆s+∆s̄]DIS[D

π
s ] = −0.0072?

Marginally
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DSS: Kaons

DK+

s = DK−
s̄ DK−

s = DK+

s̄

∆K+

COMPASS = ∆K−
COMPASS = 0.0013± 0.0026

Is this compatible with

∆K
exact =

x

2
[∆s+∆s̄]DIS[D

K
s +DK

s̄ ]+
x

2
[∆s−∆s̄][DK

s −DK
s̄ ] ?

NO! Find

x

2
[∆s−∆s̄] = −0.207± 0.005 forK+

= 0.212± 0.005 forK−
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Strange quark summary

There is a serious contradiction.

I guess it is caused by bad fragmentation functions

But it could be a signal of failure to understand the

connection between DIS and SIDIS
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The controversy about Higher Twist

Following Operator Product Expansion (OPE), LSS
use

g1(x,Q
2)exp = g1(x,Q

2)LT + g1(x,Q
2)TMC + g1(x,Q

2)HT

= g1(x,Q
2)LT + g1(x,Q

2)TMC +
h(x)

Q2

Higher twist corrections: the exactly known kinematical
target mass corrections (TMC) and genuine dynamical
higher twist terms (HT).
Possible slow scale i.e. Q2 dependence in h(x) , the
precise form of which is unknown, neglected compared
to 1/Q2 variation.
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We find significant HT contribution
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Very important for CLAS data.
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Blümlein and Böttcher (BB) (arXiv:1005.3113 v1)

disagree

They use

g1(x,Q
2)exp = g1(x,Q

2)LT
[
1+

C(x)

Q2

]
where any Q2 dependence in C(x) is neglected.

BB find no evidence for HT i.e.their C(x) for protons

and neutrons is compatible with zero.
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Thus

C(x) =
h(x)

g1(x,Q2)LT

If legitimate to neglect the scale dependence in h(x)
then C(x) must vary considerably with Q2, contradict-
ing the use of C(x) as Q2-independent.

If legitimate to neglect the Q2 dependence in C(x), then
h(x) must vary considerably with Q2.

Two approaches incompatible and their results incom-
mensurate. One of the two methods (or perhaps both)
has to be incorrect.

Since LSS formulation is closer in structure to the OPE
we believe it to be the correct way to implement HT
corrections.
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Another problem: BB utilize above for proton and deuteron

data and extract the neutron value of C(x) via

Cn(x) =
2

1− 1.5ωD
Cd − Cp

This is incorrect. The correct relation should be

Cn(x) =
1

g1n(x,Q2)LT

[ 2

1− 1.5ωD
g1d(x,Q

2)LTCd(x)

− g1p(x,Q
2)LTCp(x)

]
Dangerous, since g1n(x,Q

2)LT has a zero!
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LSS Letter to BB—no response—so

(arXiv:1007.4781) “Comments on BB paper”

followed by Version 2 of BB, abandoning factorized

form for HT

“We prefer the additive case, since the twist-2 scaling

violations of g1(X,Q
2) do not influence Cp,d,n(x).”

No reference to LSS

Claim no evidence for HT, but central values essentially

same as LSS. BB use only statistical errors, but, more

important, define error bars by ∆χ2 = 9.3.
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LSS method agrees with approach to HT of moments.

h̄N ≡
∫ 0.75

0.0045
dxhN(x) N = p, n

h̄p = (−0.028±0.005)GeV 2 h̄n = (0.018±0.008)GeV 2

h̄p − h̄n = (−0.046± 0.009)GeV 2

Agrees first moment analysis of g(p−n)1 of Duer et al.

Also instanton model.

h̄p+ h̄n = (−0.011± 0.009)GeV 2

|h̄p+ h̄n| < |h̄p − h̄n|

Agrees 1/NC expansion.
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Higher Twist: summary

There is no real contradiction. With the revised BB

analysis, the difference is entirely due to definition of

error bars.
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The transverse angular momentum sum rule

Propagation of a myth that one cannot have a sum

rule for a transversely polarized nucleon.

Derivation of a sum rule begins with expression for

expectation value of angular momentum operators in

nucleon state specified by 4-momentum Pµ and

covariant spin vector Sµ

⟨P, S | Ji |P, S ⟩ i = 1,2,3

i.e. show dependence of matrix element on variables

Pµ and Sµ
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BLT [B.L.G.Bakker, E.L. and T.L.Trueman: PR D70

(2004) 114001] demonstrated:standard expression in

literature (Jaffe-Manohar) is correct for nucleons po-

larized longitudinally, but incorrect for the transversely

polarized case.

This is origin of incorrect claim that there cannot ex-

ist an angular momentum sum rule for a transversely

polarized nucleon.
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Use canonical spin states |P, s⟩ i.e. ‘boost’ states where

the spin state is specified by s, which is twice the spin

eigenvector in the rest frame (s2 = 1).

Correct result for the forward matrix elements of the

angular momentum is

⟨P ′, s|Ji|P, s⟩ = 2P0(2π)3
[
1

2
si+ i(P ×∇P )i

]
δ3(P ′−P ).

and there is then no problem with the transverse case

—it is quite analogous to the longitudinal case.
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Jaffe-Manohar result has

1

4Mp0

{
(3p20 −M

2)si −
3p0 +M

p0 +M
(p · s)pi

}
instead of

1

2
si

For longitudinal case exactly same as BLT, but for

transverse case, for p0 ≫ m

J-M→
3p0
4m
→∞

so no transverse sum rule.

Jaffe-Manohar acknowledge error!
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Thus BLT were able to derive a sum rule relating the

transverse spin of the nucleon to the transverse po-

larized quark densities ∆T q(x) and the transverse

orbital angular momentum carried by quarks and

gluons, namely

1

2
=

1

2

∑
flavours f

{ ∫
dx [∆T q

f(x)+∆T q̄
f ]+

∑
a= q, q̄, G

⟨LsT ⟩
a
}

where LsT is the component of L along sT .

NB sum of quark and antiquark transversity densities,

in contrast to the case of the tensor charge of the

nucleon, where the difference appears.
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BLT used Instant-form Fock expansion for the nucleon

state, in terms of its quark and gluon constituents,

rather than a light-cone expansion.

Questions have been raised as to whether the identifi-

cation of the terms on the RHS is correct, given that

the parton densities are conventionally defined using

light-cone Fock expansions.

We shall show that the identification of terms on the

RHS is correct.
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Instant-form Fock expansion

Show instant-form Fock expansion applied to the ex-

pression for the quark correlator, gives standard connec-

tion between parton densities and the wave-functions

appearing in the expansion.

For simplicity give the proof only for unpolarized quark

density q(x), but the argument holds also for the po-

larized densities ∆q(x) and ∆T q(x).
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The sophisticated expression for the quark correlator

Φαβ(k;P, S), for a given flavour, integrated over k with

the constraint x = k+/P+ yields

Φαβ(x) = P+
∫
dξ−

2π
eixP

+ξ− ⟨P, S | ψ̄β(0)ψα(0, ξ−, 0⊥) |P, S⟩

where

P± =
1√
2
(P0 ± Pz)

At leading twist Φαβ(x) expressed in terms of three LT

quark distribution functions,

Φ(x) =
1

2
̸P{q(x)− 2λ∆q(x)γ5 +∆T q(x)γ5 ̸S⊥}

where λ = ±1/2 is the nucleon helicity.
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The sophisticated expression for the quark correlator

Φαβ(k;P, S), for a given flavour, integrated over k with

the constraint x = k+/P+ yields

Φαβ(x) = P+
∫
dξ−

2π
eixP

+ξ− ⟨P, S | ψ̄β(0)ψα(0, ξ−, 0⊥) |P, S⟩

where

P± =
1√
2
(P0 ± Pz)

At leading twist Φαβ(x) expressed in terms of three LT

quark distribution functions,

Φ(x) =
1

2
̸P{q(x)− 2λ∆q(x)γ5 +∆T q(x)γ5 ̸S⊥}

where λ = ±1/2 is the nucleon helicity.
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However, nucleon, mass m, is moving fast along OZ so

Pµ ≈ (P,0,0, P )

so that

Tr[γ0Φ(x)] ≈ Tr[γ3Φ(x)]

so that

Tr[γ+Φ(x)] ≈
P+

P0
Tr[γ0Φ(x)] ≈

√
2Tr[γ0Φ(x)].

Thus we may take

q(x) =
1

2P0
Tr[γ0Φ(x)],
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Using translation invariance, final expression is

q(x) =
1√
2

∑
X,α

| ⟨X |ψα(0) |P, S⟩|2 δ[P+
X − (1− x)P+]

This corresponds to intuitive definition of quark density!

X
P

q

2
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Matrix element involves field at only one time, so eval-

uate in Interaction Picture i.e use free-field expansion

ψα(0) =
∑
λ

∫
d3p

(2π)3 2Ep
b(p, λ)uα(p, λ)

+
∑
λ

∫
d3p̄

(2π)3 2Ep̄
d†(p̄, λ)uα(p̄, λ)

where we use p̄ to emphasize that d† creates an anti-

quark. Note that

Ep =
√
p2 +m2

q and Ep̄ =
√
p̄2 +m2

q
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The nucleon, P = (0,0, P ), expanded as superposition

of n-parton Fock states

|P ,m⟩ = [(2π)32P0]
1/2∑

n

∑
µ

∫
d3k1√

(2π)32k01

. . .
d3kn√

(2π)32k0n
×ψP ,m(k1, µ1, ...kn, µn)

×δ(3)(P − k1 − ...− kn)|k1, µ1, ...kn, µn⟩.

where µi denotes helicity.

ψP ,m is the partonic wave function of nucleon normal-

ized so that∑
{σ}

∫
d3k1 . . . d

3kn|ψP ,m(k1, µ1, ...kn, µn)|2δ(3)(p−k1−...−kn) = Pn.

with Pn the probability of the n-parton state.
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Consider contribution to the matrix element ⟨X |ψα(0)|P ⟩
when the nucleon is represented by Fock state with n

constituents

|k1, µ1;−−−−−kn, µn⟩ with
∑
j

kjT = 0 and
∑
j

kjz = P

Because ψα(0) contains both creation and annihilation

operators, might expect its modulus squared involves

the modulus squared of a sum of two wave-functions,

referring to different numbers of partons.

Would imply that q(x) is not given simply by the mod-

ulus squared of a wave-function, as it ought to be.

Sometimes said that the latter form is a miracle of the

Light Cone expansion.

Show that this is not quite a miracle and that there is

no problem also in the Instant form.
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Focus on the d† term in ψα(0)

⟨X |d†(p̄, λ)|k1, µ1;−−−−−kn, µn⟩ =

⟨X | p̄, λ : k1, µ1;−−−−−kn, µn⟩
Aside from combinatoric factors this implies

|X ⟩ = | p̄, λ : k1, µ1;−−−−−kn, µn⟩
For this state

PXz =
∑
j

kjz + p̄z = P + p̄z

Its energy is

EX =
∑
j

√
k2j +m2

q + Ep̄

≥
∑
j

kjz + Ep̄

≥ P + Ep̄
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This implies

P+
X > P+ + p̄+ > P+

so that the delta-function condition cannot be fulfilled

since x > 0.

Thus the d† term does not contribute.

The rest of the derivation is standard giving q(x) as

the sum of wave-functions squared for helicity +1/2 +

helicity −1/2.

Thus the identification of the wave functions used by

BLT with the standard parton densities is correct
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Summary of Transverse Angular Momentum Sum

Rule

The myth that such a sum rule cannot exist is traced

back to the incorrect result in the Jaffe-Manohar

paper

When this is corrected there is no essential difference

between longitudinal and transverse cases

The simplification of using instant from wave

functions does not affect the partonic interpretation

of the terms in the sum rule.
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EXTRA SLIDES
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A peculiarity concerning the parton orbital angular

momentum in a transversely polarized nucleon

In this section we shall draw attention to a peculiarity

regarding the quark and gluon orbital angular momen-

tum inside a transversely polarized nucleon, which does

not depend on the precise definition of quark vs gluon

angular momentum.

The shortest and most direct way to obtain the correct

expression for the angular momentum matrix element

⟨P ′, s|Ji|P, s⟩ is actually from consideration of the effect

of rotations on a state vector.
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But if one uses the traditional approach, via the energy

momentum tensor Tµν, then to begin with the matrix

element of Mjk, where

J(i=x,y,z) = ϵijkM
jk (1)

depends on some of the scalar functions appearing in

the matrix element of Tµν. Using Ji’s notation A and

B for these, one has

⟨P, s|M ij|P, s⟩ =
A

2M(P0 +M)
[P i(P × s)j − P j(P × s)i]

+
1/2(A+B)

M
ϵijαβSαPβ

85



Using the fact that T00 is the energy density one can

show that the energy of the nucleon fixes the value of

A so that

A(nucleon) = 1. (2)

Applying Eqn. (2) to the case of a longitudinally polar-

ized nucleon with helicity 1/2 implies that 1/2(A+B) =

1/2. It follows that

B(nucleon) = 0 (3)
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Suppose now that we split A and B into quark (meaning

a sum over flavours of quarks and antiquarks) and gluon

pieces:

A(nucleon) = Aq +Ag = 1 (4)

B(nucleon) = Bq +Bg = 0 (5)

Then the quark and gluon components of Mij will be

given by
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⟨ P, s|M ij
q,g|P, s⟩ =

Aq,g

2M(P0 +M)
[P i(P × s)j − P j(P × s)i]

+
1/2(A+B)q,g

M
ϵijαβSαPβ (6)

For a transversely polarized nucleon, say along OX,
with sT = (1,0,0) and P = (0,0, P ) this becomes

⟨P, sT |Jqx|P, sT ⟩ =
1

2M
[(M − P0)Aq +2P0 1/2(A+B)q]

=
1

2M
[MAq + P0Bq] (7)
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Thus for a fast moving nucleon, as P0 → ∞, Jqx, and

similarly J
g
x, becomes infinite. Of course Jnucleonx is fi-

nite, since, as mentioned above, Bq +Bg = 0.

Examination of the Fock expansion shows that the P0
term can only come from the orbital angular momen-

tum. This is supported by a purely classical picture

where the orbital angular momentum is generated by

the quark rotating about the CM of the nucleon.

Thus irrespective of how the angular momentum is split

into quark and gluon components, the separate quark

and gluon orbital angular momentum in a fast moving

transversely polarized nucleon becomes infinite. Their

sum, however, is finite.

89



Thus for a fast moving nucleon, as P0 → ∞, Jqx, and

similarly J
g
x, becomes infinite. Of course Jnucleonx is fi-

nite, since, as mentioned above, Bq +Bg = 0.

Examination of the Fock expansion shows that the P0
term can only come from the orbital angular momen-

tum. This is supported by a purely classical picture

where the orbital angular momentum is generated by

the quark rotating about the CM of the nucleon.

Thus irrespective of how the angular momentum is split

into quark and gluon components, the separate quark

and gluon orbital angular momentum in a fast moving

transversely polarized nucleon becomes infinite. Their

sum, however, is finite.

90



Thus for a fast moving nucleon, as P0 → ∞, Jqx, and
similarly J

g
x, becomes infinite. Of course Jnucleonx is fi-

nite, since, as mentioned above, Bq +Bg = 0.

Examination of the Fock expansion shows that the P0
term can only come from the orbital angular momen-
tum. This is supported by a purely classical picture
where the orbital angular momentum is generated by
the quark rotating about the CM of the nucleon.

Thus irrespective of how the angular momentum is split
into quark and gluon components, the separate quark
and gluon orbital angular momentum in a fast moving
transversely polarized nucleon becomes infinite. Their
sum, however, is finite.

91



The controversy concerning the definition of

quark and gluon angular momentum

• Controversy in QCD : how to split the total angular

momentum into separate quark and gluon components

• Ji vs Chen, Lu, Sun, Wang and Goldman (Chen etal)

vs Matsuda Ji stresses: gauge invariant operators; co-

variance; local operators

Chen at al: don’t like Ji; don’t like any previous theory;

claim even in QED the traditional, decades-old identi-

fication of electron and photon angular momentum is

incorrect

• Different results for momentum and angular momen-

tum carried by quarks and gluons e.g. as µ2 →∞

92



The controversy concerning the definition of

quark and gluon angular momentum

• Controversy in QCD : how to split the total angular

momentum into separate quark and gluon components

• Ji vs Chen, Lu, Sun, Wang and Goldman (Chen etal)

vs Matsuda

• Ji stresses: gauge invariant operators; covariance; lo-

cal operators

• Chen at al: don’t like Ji; don’t like any previous the-

ory; claim even in QED the traditional, decades-old

identification of electron and photon angular momen-

tum is incorrect

• Different results for momentum and angular momen-

tum carried by quarks and gluons e.g. as µ2 →∞
93



The controversy concerning the definition of

quark and gluon angular momentum

• Controversy in QCD : how to split the total angular

momentum into separate quark and gluon components

• Ji vs Chen, Lu, Sun, Wang and Goldman (Chen etal)

vs Matsuda

• Ji stresses: gauge invariant operators; covariance; lo-

cal operators

• Chen at al: don’t like Ji; don’t like any previous the-

ory; claim even in QED the traditional, decades-old

identification of electron and photon angular momen-

tum is incorrect

• Different results for momentum and angular momen-

tum carried by quarks and gluons e.g. as µ2 →∞
94



The controversy concerning the definition of

quark and gluon angular momentum

• Controversy in QCD : how to split the total angular

momentum into separate quark and gluon components

• Ji vs Chen, Lu, Sun, Wang and Goldman (Chen etal)

vs Matsuda

• Ji stresses: gauge invariant operators; covariance; lo-

cal operators

• Chen at al: don’t like Ji; don’t like any previous the-

ory; claim even in QED the traditional, decades-old

identification of electron and photon angular momen-

tum is incorrect

• Different results for momentum and angular momen-

tum carried by quarks and gluons e.g. as µ2 →∞
95



Since problem already arises in QED, will illustrate via

QED

Since problem already arises for linear momentum will

discuss that.
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Consequence of differences in definitions of linear mo-

mentum.

Example: Asymptotically what fraction of total mo-

mentum is carried by gluons?

Ji: 16
16+3nf

≃ 1/2 for nf = 5

Chen et al: 8
8+6nf

≃ 1/5 for nf = 5 !
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Some red herrings (again)

•“Measurable operators must be gauge invariant”

No: physical matrix elements of measurable operators

must be gauge invariant

•“Aµ should transform as a 4-vector”

Beware quantization conditions! Bellinfante, as used,

does not correspond to covariant quantization.

•“OK to use non-local field operators”

Not OK if they are dynamical variables. In Coulomb

gauge A0 is not an independent dynamical variable.

•“If E and F are interacting particles, definition of e.g.

J(E) should satisfy [J i(E), Jj(E)] = i ϵijkJk(E)”

Impossible. Cannot be checked!
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The momentum operator in gauge-invariant theories

Theory invariant under translations; Noether construc-

tion, from classical Lagrangian; canonical e-m density

t
µν
can(x). A conserved density, generally not symmetric

under µ↔ ν.

∂µt
µν
can(x) = 0

Canonical total linear momentum operator P jC

P
j
C =

∫
d3x t0jcan(x)

independent of time.
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Canonical momentum operator as generator of trans-
lations

Classically : P jC generates spatial translations.
Quantum theory: check correct commutation relations
with fields i.e. for any field ϕ(x)

i [P jC, ϕ(x)] = ∂j ϕ(x)

Interacting theory: cannot calculate arbitrary commu-
tation relation between the fields.
But Equal Time Commutators (ETC) fixed in quan-
tizing theory. Thus can check above because P jC inde-

pendent of time. Take time variable of fields in P
j
C to

coincide with time variable in ϕ(x) ≡ ϕ(t,x).
Crucial when discussing division of total momentum
into contributions from different fields .
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The Bellinfante e-m density

Construct from t
µν
can(x) and the Lagrangian, the con-

served, symmetric, Bellinfante density t
µν
bel(x), which

may be gauge invariant.

Differs from t
µν
can(x) by a divergence term:

t
µ ν
bel (x) = tµ νcan(x) +

1

2
∂ρ[H

ρµν −Hµρν −Hνρν]

where Hρµν = −Hρνµ and is a local operator.
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Then P
j
B defined by

P
j
B ≡

∫
d3x t

0j
bel(x)

differs from P
j
C by the integral of a spatial divergence

of a local operator.

Usually stated that since the fields must vanish at in-

finity, such a contribution can be neglected, leading to

the equality

P
j
B = P

j
C

For a classical c-number field it is meaningful to argue

that the field vanishes at infinity. Much less obvious

what this means for a quantum operator.
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Quantum theory

Consistency of operator equations requires OK to

neglect spatial integrals of divergences of local

operators.

Thus, for total system it is OK to state P jB = P
j
C.
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Non-gauge invariance of the QED momentum operator

Can prove following result:

Theorem : Consider a theory which is invariant under

local c-number gauge transformations. Let Pµ be the

total momentum operator, defined as the generator of

space-time translations. Then Pµ cannot be a gauge

invariant operator.

Does that matter?

NO
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Can show that the matrix element of P jC between

any normalizable physical states, is unaffected by

gauge changes in the operator.
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The problem of defining separate quark and gluon

momenta

Heart of the controversy between Ji, Chen at al and

Matsuda: how to define the separate contributions of

quarks and gluons to the momentum and angular mo-

mentum of a nucleon.

Two separate issues:

(1) General how to define the separate momenta for a

system of interacting particles.

(2) Specific to gauge theories, including the issue of

splitting the angular momentum of a gauge particle into

a spin and orbital part.
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The problem of defining separate quark and gluon
momenta

Heart of the controversy between Ji, Chen at al and
Matsuda: how to define the separate contributions of
quarks and gluons to the momentum and angular mo-
mentum of a nucleon.
Two separate issues:
(1) General how to define the separate momenta for a
system of interacting particles.
(2) Specific to gauge theories, including the issue of
splitting the angular momentum of a gauge particle into
a spin and orbital part.

Can only discuss the general question in this talk.
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Interacting particles: the general problem

System of interacting particles E and F . Split the total

momentum into two pieces

P j = P
j
E + P

j
F

associated with momentum carried by the individual

particles E and F respectively.

Crucial: above equarion, as it stands, is totally mislead-

ing, and should be written

P j = P
j
E(t) + P

j
F (t)

to reflect the fact that the particles exchange momen-

tum as a result of their interaction.
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Criterion for identifying PE,F as the momentum asso-

ciated with particles E,F respectively?????

Seductively obvious answer would be to demand that

i[P jE, ϕE(x)] = ∂jϕE(x) (14)

but no way we can check this, since P
j
E(t) depends

on t and, without solving the theory, can only compute

equal time commutators .

Suggest: minimal requirement for identifying an opera-

tor P jE with the momentum carried by E , is to demand

that at equal times the analogue of Eq. (14) holds

i[P jE(t) , ϕE(t,x)] = ∂jϕE(t,x).

131



Criterion for identifying PE,F as the momentum asso-

ciated with particles E,F respectively?????

Seductively obvious answer would be to demand that

i[P jE, ϕE(x)] = ∂jϕE(x)

but no way we can check this, since P jE(t) depends on

t and, without solving the theory, can only compute

equal time commutators .

Suggest: minimal requirement for identifying an opera-

tor P jE with the momentum carried by E , is to demand

that at equal times the analogue of this holds

i[P jE(t) , ϕE(t,x)] = ∂jϕE(t,x).

132



Criterion for identifying PE,F as the momentum asso-

ciated with particles E,F respectively?????

Seductively obvious answer would be to demand that

i[P jE, ϕE(x)] = ∂jϕE(x)

but no way we can check this, since P jE(t) depends on

t and, without solving the theory, can only compute

equal time commutators .

Suggest: minimal requirement for identifying an opera-

tor P jE with the momentum carried by E , is to demand

that at equal times the analogue of this holds

i[P jE(t) , ϕE(t,x)] = ∂jϕE(t,x).

133



Criterion for identifying PE,F as the momentum asso-

ciated with particles E,F respectively?????

Seductively obvious answer would be to demand that

i[P jE, ϕE(x)] = ∂jϕE(x)

but no way we can check this, since P jE(t) depends on

t and, without solving the theory, can only compute

equal time commutators .

Suggest: minimal requirement for identifying an op-

erator P jE with the momentum carried by E , is to

demand that at equal times the analogue of this

holds

i[P j
E(t) , ϕE(t, x)] = ∂jϕE(t, x).

134



For the total momentum PC and PB are equivalent,

since their integrands differ by the spatial divergence of

a local operator.

But if split PC into PCE+PCF and PB into PBE+PBF ,

then the integrands of PCE and PBE do not differ by

a spatial divergence, and hence PCE and PBE do not

generate the same transformation on ϕE(x).

Example:Could identify

t0jcan(electron) =
i

2
ψ̄γ0
←→
∂ j ψ (8)

and

t
0j
bel(electron) =

i

4
ψ̄(γ0

←→
D j + γj

←→
D 0)ψ (9)

and these do not differ by a spatial divergence.
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By construction, PCE and PCF generate the correct

transformations on ϕE(x) and ϕF (x) respectively.

We conclude that with the above minimal requirement

we are forced to associate the momentum of E and F

with the canonical version of the relevant operators.

This disagrees with both Ji and Chen et al.
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