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 I discuss only leading order hard amplitudes

 I do not consider the whole zoo of GPDs.  By 
default I will talk about a scalar hadron that has only 
one twist-2 GPD. 

 As an example of hard exclusive process I will 
discuss DVCS. Generalization for hard meson 
production is trivial

 The references are given at the end of the talk. 
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Relation of GPDs to 3D image of hadrons

H(x, ξ, t)

these are external kinematical variables

q(x, b⊥) = limξ→0

�
d2∆⊥
(2π)2 e

i∆⊥·b⊥ H(x, ξ,−∆2
⊥)

The detection of the final photon allows to find 3D location of the
hard photon interaction with an (anti) quark. Therefore GPDs are 
related to 3D quark density (in longitudinal momentum and in 
transverse coordinate spaces)

A(ξ, t) =

� 1

−1
dx

H(x, ξ, t)

x− ξ + i0
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The detection of the final photon allows to find 3D location of the
hard photon interaction with an (anti) quark. Therefore GPDs are 
related to 3D quark density (in longitudinal momentum and in 
transverse coordinate spaces)

           Nice, but there are problems!
•This limit is not achievable in an experiment
•The variable x is integrated out in the amplitude.
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Relation of GPDs to 3D image of hadrons

H(x, ξ, t)

these are external kinematical variables

q(x, b⊥) = limξ→0

�
d2∆⊥
(2π)2 e

i∆⊥·b⊥ H(x, ξ,−∆2
⊥)

The detection of the final photon allows to find 3D location of the
hard photon interaction with an (anti) quark. Therefore GPDs are 
related to 3D quark density (in longitudinal momentum and in 
transverse coordinate spaces)

           Nice, but there are problems!
•This limit is not achievable in an experiment
•The variable x is integrated out in the amplitude.

What gives us a hope to get nevertheless 3D image of
the nucleon?
• The amplitude is obtained as the “sectional image”
   of GPD (integration out x depends on      ). That is
   typical problem for tomography! What kind of 
   tomography? 
•               dependences in GPD are interrelated 
    due to polynomiality property of GPDs.

 

ξ

x and ξ

A(ξ, t) =

� 1

−1
dx

H(x, ξ, t)

x− ξ + i0
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Polynomiality of GPDs 

� 1
−1 dx x

N
H(x, ξ, t) = h

(N)
0 (t) + h

(N)
2 (t) ξ2 + . . .+ h

(N)
N+1(t) ξ

N+1

Very nontrivial property!!! The x and xi dependences are interrelated!
The solution in terms of Radyushkin’s double distributions:

H(x, ξ) =
� 1
−1 dβ

� 1−|β|
−1+|β| dα δ(x− β − αξ) F (β,α) + θ

�
1− x2

ξ2

�
D

�
x
ξ

�

Looks like the typical tomography problem!  Unfortunately, to restore DD one needs
                                                         GPD in cross channel           , i.e. one needs an
                                                          analytical continuation, which is almost impossible.

ξ ≥ 1

Another possibility to implement the polynomiality
property of GPD is to use dual representation for GPD
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Dual representation of GPDs 

Idea: to write down the GPD as the sum of t-channel exchanges:

H(x, ξ, t) =
∞�

n=1
odd

n+1�

l=0
even

Bnl(t) θ

�
1− x

2

ξ2

��
1− x

2

ξ2

�
C

3/2
n

�
x

ξ

�
Pl

�
1

ξ

�

Conformal spin Partial wave in the t-channel

Bnl(t)QCD scale dependence of            is simply multiplicative!

Bnl(t;µ) =

�
αs(µ)

αs(µ0)

�γn/2b0

Bnl(t;µ0)

Problems:
• Each term of the sum of the t-channel exchanges has the support
•The sum is divergent for large partial waves, but the Mellin moments of the sum are finite.
•The situation is similar to the sum of t-channel exchanges in hadron hadron interactions
  Solution is the analytical continuation.

|x| ≤ ξ
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Pay attention that for the dual sum representation:

H(x, ξ, t) =
∞�

n=1
odd

n+1�

l=0
even

Bnl(t) θ

�
1− x

2

ξ2

��
1− x

2

ξ2

�
C

3/2
n

�
x

ξ

�
Pl

�
1

ξ

�

the polynomiality property of GPD is automatic! The reason is that upper limit. The physics meaning is 
very simple: the angular momentum in the t-channel can not be larger than the Lorentz spin of the 
local QCD operator (Wigner-Eckart theorem!).
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Pay attention that for the dual sum representation:

H(x, ξ, t) =
∞�

n=1
odd

n+1�

l=0
even

Bnl(t) θ

�
1− x

2

ξ2

��
1− x

2

ξ2

�
C

3/2
n

�
x

ξ

�
Pl

�
1

ξ

�

the polynomiality property of GPD is automatic! The reason is that upper limit. The physics meaning is 
very simple: the angular momentum in the t-channel can not be larger than the Lorentz spin of the 
local QCD operator (Wigner-Eckart theorem!).

Great! But how to sum up such “bad sum”?
Let me illustrate on “toy example”
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The summation of  “bad sums”.  Toy example.

We consider the  following “toy” sum

It has similar problems:
• Each term of the sum has the support at x=0 only
•The sum is divergent for large partial waves, but the Mellin moments of the sum are finite.

H(x, ξ, t) =
∞�

n=1
odd

n+1�

l=0
even

Bnl(t) θ

�
1− x

2

ξ2

��
1− x

2

ξ2

�
C

3/2
n

�
x

ξ

�
Pl

�
1

ξ

�
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We consider the  following “toy” sum
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1
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• Each term of the sum has the support at x=0 only
•The sum is divergent for large partial waves, but the Mellin moments of the sum are finite.
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x− i0
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�
1

ξ
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The summation of  “bad sums”.  Toy example.

We consider the  following “toy” sum

It has similar problems:
• Each term of the sum has the support at x=0 only
•The sum is divergent for large partial waves, but the Mellin moments of the sum are finite.

1st step - introduce generating function: bn =

� 1

0
dy ynQ(y)

2nd step - write delta function as discontinuity:

3d step - use that:

and obtain:

Now compute Im part differently! Just by inspection of the region where one gets negative 
expression under square root!

∞�

n=0

�
y

x− i0

�n

Pn

�
1

ξ

�
=

x�
x2 + y2 − 2xy/ξ

h(x, ξ) =
1

π
Im

� 1

0
dy Q(y)

x�
x2 + y2 − 2xy/ξ

h(x, ξ) =
∞�

n=0

(−1)nbn
(n+ 1)!

δ(n)(x) Pn

�
1

ξ

�

δ(n)(x) = (n+ 1)!(−1)n Im
1

π(x− i0)n
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we obtain that:

=
1

π

� 1

x−x
√

1−ξ2

ξ

dy Q(y)
x�

x2 + y2 − 2xy/ξ

The resulting summation gave us the function that:
• has the support not only at x=0 (remember that each term of 
the “toy sum” lives only at x=0)
• all “polynomiality properties” are the same as for the “bad sum”

h(x, ξ) =
∞�

n=0

(−1)nbn
(n+ 1)!

δ(n)(x) Pn

�
1

ξ

�
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we obtain that:

=
1

π

� 1

x−x
√

1−ξ2

ξ

dy Q(y)
x�

x2 + y2 − 2xy/ξ

The resulting summation gave us the function that:
• has the support not only at x=0 (remember that each term of 
the “toy sum” lives only at x=0)
• all “polynomiality properties” are the same as for the “bad sum”

The same steps we can do for GPD representation in terms of t-
channel exchanges

H(x, ξ, t) =
∞�

n=1
odd

n+1�

l=0
even

Bnl(t) θ

�
1− x

2

ξ2

��
1− x

2

ξ2

�
C

3/2
n

�
x

ξ

�
Pl

�
1

ξ

�

h(x, ξ) =
∞�

n=0

(−1)nbn
(n+ 1)!

δ(n)(x) Pn

�
1

ξ

�
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1st step - introduce generating function: bn =

� 1

0
dy ynQ(y)

h(x, ξ) =
∞�

n=0

(−1)nbn
(n− 1)!

δ(n)(x) Pn

�
1

ξ

�

H(x, ξ, t) =
∞�

n=1
odd

n+1�

l=0
even

Bnl(t) θ

�
1− x

2

ξ2

��
1− x

2

ξ2

�
C

3/2
n

�
x

ξ

�
Pl

�
1

ξ

�

1st step - introduce generating functions: Bn n+1−k(t) =

� 1

0
dy yn Qk(y, t)

Now we have to introduce a set of functions                    because we have an additional
index that counts the partial waves. 

We call this set of functions as forward-like functions because:

•Their evolution is usual DGLAP evolution (the same as for usual forward PDFs)

•                  is directly related to 3D quark distribution  

Qk(y, t)

Q0(y, t)
Bnl(t;µ) =

�
αs(µ)

αs(µ0)

�γn/2b0

Bnl(t;µ0)

Q0(y, t) = q(y, t)− y

2

� 1

y

dz

z2
q(z, t)
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Essence of the dual representation of GPDs 

The GPD                    is equivalent to a (infinite) set of forward-like functions                  H(x, ξ, t) Qk(y, t)

Known (very nice, related to elliptic 
functions) kernel!

H(x, ξ, t) =
∞�

k=0

� 1

0
dy Mk(x, ξ|y) Qk(y, t)

What all these efforts for? What we achieved under guidance of simple physics picture?

(I) We reduced the continuous variable     to a discrete index k
(II)The polynomiality is guaranteed.
(III) We know that k=0 corresponds to 3D parton densities!  
(IV)  We know that k=2 contains FFs of EMT (Jq, shear forces)

ξ

A(ξ, t) =

� 1

−1
dx

H(x, ξ, t)

x− ξ + i0

Can we obtain all forward-like functions from the amplitude?  
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The amplitude in terms of forward-like functions

The GPD                    is equivalent to a (infinite) set of forward-like functions                  
The amplitude:                                                            

H(x, ξ, t) Qk(y, t)

A(ξ, t) =

� 1

−1
dx

H(x, ξ, t)

x− ξ + i0

Im A(ξ, t) =

� 1

1−
√

1−ξ2

ξ

dx

x
N(x, t)

�
1�

2x
ξ − x2 − 1

�

Re A(ξ, t) =

� 1−
√

1−ξ2

ξ

0

dx

x
N(x, t)

�
1�

1− 2x
ξ + x2

+
1�

1 + 2x
ξ + x2

− 2√
1 + x2

�

+

� 1

1−
√

1−ξ2

ξ

dx

x
N(x, t)

�
1�

1 + 2x
ξ + x2

− 2√
1 + x2

�
+ 2D(t)

N(x, t) =
∞�

k=0

xk Qk(x, t)

The amplitude is expressed in terms of unique combination of forward-like functions!
The information about full GPD is lost in observables! 
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Properties of the amplitude in terms of forward-like functions

Im A(ξ, t) =

� 1

1−
√

1−ξ2

ξ

dx

x
N(x, t)

�
1�

2x
ξ − x2 − 1

�

Re A(ξ, t) =

� 1−
√

1−ξ2

ξ

0

dx

x
N(x, t)

�
1�

1− 2x
ξ + x2

+
1�

1 + 2x
ξ + x2

− 2√
1 + x2

�

+

� 1

1−
√

1−ξ2

ξ

dx

x
N(x, t)

�
1�

1 + 2x
ξ + x2

− 2√
1 + x2

�
+ 2D(t)

The amplitude in this form:

• satisfies automatically the dispersion relations in which

is the corresponding subtraction constant. It is related to the D-form factor.

•it is very easy to work with the amplitude (no singular integrals)

D(t) =
∞�

n=1

dn(t) =
1

2

� 1

−1
dz

D(z, t)

1− z

Here we introduced the function:

N(x, t) =
∞
∑

ν=0

x2νQ2ν(x, t) , (16)

and the D-form factor:

D(t) =
∞
∑

n=1

dn(t) =
1

2

∫ 1

−1
dz

D(z, t)

1 − z
. (17)

Here D(z, t) is the D-term [12].
Now we clearly see that the knowledge of the LO amplitude is equivalent to the

knowledge of the function N(x, t) and D-form factor D(t). Moreover the D-form factor
can be computed in terms of N(x, t) and Q0(x, t). Note that the latter function is to great
extend is fixed by the forward parton distributions, see Eq. (4). Indeed, if we use Eq. (8)
at α = 1, we can write:

D(t) =
∫ 1

0

dz

z
Q0(z, t)

(

1√
1 + z2

− 1

)

+
∫ 1

0

dz

z
[N(z, t) − Q0(z, t)]

1√
1 + z2

(18)

Note that in this equation all integrals are convergent if the functions Q2ν(x, t) satisfy the
small x behaviour discussed at the end of the second section. In Ref. [16] the following
representation for the D-form factor in terms of GPD has been suggested:

D(t) =
∫ 1

−1

dx

x
[H(x, x, t) − H(x, 0, t)] . (19)

Unfortunately, this expression is divergent, as H(x, x) and H(x, 0) have different coef-
ficients in front of leading small-x asymptotic, see Refs. [14, 9]. The reason for this
divergency is that the above expression was obtained by small ξ expansion of GPDs,
which explodes if x ∼ ξ.

Another remarkable physics feature of the function N(x, t) is that its Mellin moments
are related to the contributions of states with fixed angular momentum in the t-channel:

∫ 1

0
dx xJ−1 N(x, t) =

1

2

∫ 1

−1
dz

ΦJ(z, t)

1 − z
, (20)

where ΦJ (z, t) is the distribution amplitude corresponding to two quark exchange in the t-
channel with fixed angular momentum J . The quantity on RHS of Eq. (20) carries valuable
information about the hadron structure – it tells how the target nucleon responses to the
well defined quark-antiquark probe of arbitrary spin J .

Now we turn to the inversion problem: how to obtain the function N(x, t) if we know
the amplitude of a hard exclusive process. This problem is the central for the physics of
hard exclusive processes. To solve the problem we start with the expression (15) for the
imaginary part of the amplitude. It is useful to make the following substitution for the
integration variable x:

1

w
=

1

2

(

x +
1

x

)

.

6
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The GPD quintessence function

The GPD                    is equivalent to a (infinite) set of forward-like functions                  
but the amplitude: 

depends only on one particular combination of them.                                                           

H(x, ξ, t) Qk(y, t)

Im A(ξ, t) =

� 1

1−
√

1−ξ2

ξ

dx

x
N(x, t)

�
1�

2x
ξ − x2 − 1

�

From that we conclude that in observables we definitely loose information about full GPD! 
It is very difficult to separate out              , which is equivalent to 3D parton densities.

Question: can we restore N(x,t) from knowledge of the amplitude?
Answer: YES! Therefore we call N(x,t) as GPD quintessence function, as it contains the maximal
information which we can obtain about GPD from the amplitude.

Note that now the relation between the amplitude and N(x,t) provide us with new type of 
tomographic problem (amplitude is obtained as a “sectional imaging ” of N(x,t)). What kind of
tomography we have now ?

Q0(x, t)

N(x, t) =
∞�

k=0

xk Qk(x, t)
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The Abel tomography

Im A(ξ, t) =

� 1

1−
√

1−ξ2

ξ

dx

x
N(x, t)

�
1�

2x
ξ − x2 − 1

�

After Zhukovsky transformation (used in aerodynamics) 
of the variable x

‡

x

1

w
=

1

2

(

x +
1

x

)

.

Im Atw2(ξ, t) =

∫ 1

ξ

dw

w
M(w, t)

√
ξ√

w − ξ
,

M(w, t) N(x, t)

M(w, t) = N

(

1 −
√

1 − w2

w
, t

)

w
√

2(1 − w2)
√

1 −
√

1 − w2
.

a(y) m(ρ)
y

a(y) =

∫ ∞

−∞
dx m(ρ) .

m(ρ)
x2 = ρ2−y2

a(y)

a(y) =

∫ ∞

y2

dρ2 m(ρ)
√

ρ2 − y2
.

§

m(w, t) = M(w,t)
w a(ξ, t) = 1√

ξ
ImA(ξ, t)

ρ2 = w y2 = ξ

a(ξ, t) =

∫ 1

ξ

dw
m(w, t)√

w − ξ
,

‡

§

X =
√

2x

1+x2 − ξ Y =
√

ξ

The amplitude gets very simple form:

with

In “aerodynamics variable” w, the integral for the amplitude has the form of
Abel integral. Typical for Abel tomography! What is this tomography? 
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The Abel tomography
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Suppose we make a photograph of a spherically symmetric 
body.  And we want to derive a 3D distribution of density
in the body. 

The “photograph” is given by: 

Using spherical symmetry of the body we write:

which with obvious renaming of of variables is equivalent to our
expression for the amplitude
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The integral equation:                                      can be easily solved!

Applying this technique to the expression for the amplitude in terms of GPD quintessence function
N(x,t) we obtain:
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The tomography for GPD quintessence function N(x,t)

Im A(ξ, t) =

� 1

1−
√

1−ξ2

ξ

dx

x
N(x, t)

�
1�

2x
ξ − x2 − 1

�

Inversion of this relation:

N(x, t) =
2

π

x(1− x2)

(1 + x2)3/2

� 1

2x
1+x2

dξ

ξ3/2
1�

ξ − 2x
1+x2

�
1

2
Im A(ξ, t)− ξ

d

dξ
Im A(ξ, t)

�

We see that N(x,t) is indeed GPD quintessence function! It is completely restored
from the amplitude.

Remember that N(x,t) contains only part of the information about full GPD and
that is the part of info about GPDs which we can maximally obtain by measurements! 
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The tomography for GPD quintessence function N(x,t)

Im A(ξ, t) =

� 1

1−
√
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dx

x
N(x, t)

�
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2x
ξ − x2 − 1

�

Inversion of this relation:

N(x, t) =
2

π
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(1 + x2)3/2

� 1

2x
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dξ

ξ3/2
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ξ − 2x
1+x2

�
1

2
Im A(ξ, t)− ξ

d

dξ
Im A(ξ, t)

�

We see that N(x,t) is indeed GPD quintessence function! It is completely restored
from the amplitude.

Remember that N(x,t) contains only part of the information about full GPD and
that is the part of info about GPDs which we can maximally obtain by measurements! 

What is the physics content of N(x,t) ?
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Physics content of GPD quintessence N(x,t)

N(x, t) = Q0(x, t) + x2Q2(x, t) + x4Q4(x, t) + . . .

Contains 3D
quark densities

Contains FFs
of energy-momentum
tensor (Jq, shear forces, etc.)

Even if we know complete amplitude, we are not able to separate these contributions :(
However, there is a principle possibility to make the separation via logarithmic 
scaling violation.  (Very difficult to implement in near future experiments.)

What to do?

 Look for new physics motivations! Study in more details the physics content of N(x,t).

Model building for forward-like functions. 
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Physics content of GPD quintessence N(x,t)

What are the Mellin moments of N(x,t)                                   ?

Note that in contrast to the Mellin moments of GPDs these integrals
are direct observables: they are expressed via the amplitude !            

� 1

0
dx xJ−1N(x, t)

The hard pQCD interaction creates for us QCD string operator.

                                                               That softly interacts with the target.

Can we decompose the QCD string into 
states with fixed angular momentum?

Very simple calculations shows that                                             gives FF of QCD string
with fixed angular momentum J! 

It seems that quintessence function N(x,t) provides us with new tool to study QCD strings.
Also it opens a new possibilities for studies of nucleon excitations.

� 1

0
dx xJ−1N(x, t) = FJ(t)
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Possible applications of  GPD quintessence N(x,t)
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Possible applications of  GPD quintessence N(x,t)
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Physics content of GPD quintessence N(x,t)

N(x, t) = Q0(x, t) + x2Q2(x, t) + x4Q4(x, t) + . . .

Contains 3D
quark densities

Contains FFs
of energy-momentum
tensor (Jq, shear forces, etc.)

Even if we know complete amplitude, we are not able to separate these contributions :(
However, there is a principle possibility to make the separation via logarithmic 
scaling violation.  (Very difficult to implement in near future experiments- for that one needs
large lever arm in photon virtuality)

There is also possibility to make the separation via twist-3 effects. 
However this separation requires Wandzura-Wilczek 
approximation for twist-3 GPDs.

Equivalent to
the amplitude

The WW approximation consists in neglecting the operators which contain gluon field strength.
The theory of instanton vacuum predicts that contribution of such operators is parametrically
small in the instanton packing fraction.  
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Cross process 

Dispersion relations and crossing

Up to now we made use of only the imaginary part of the amplitude, let us study the real
part of the amplitude. For this we take the expression (24) for the N(x, t) in terms of
ImA(ξ, t) and substitute it into Eq. (15). After some simple calculations we arrive to the
following expression for real part of the amplitude:

ReA(ξ, t) = 2D(t) +
1

π
vp

∫ 1

0
dζ ImA(ζ , t)

(

1

ξ − ζ
−

1

ξ + ζ

)

, (30)

in which we can immediately recognize the dispersion relation for the amplitude with
one subtraction at non-physical point ξ = ∞ (corresponding to ν = (s − u)/4m = 0).
The D-form factor is the corresponding subtraction constant. This result was obtained
recently in Refs. [16, 17] by independent methods. We see that the dual parametrization
automatically ensures the dispersion relations for the amplitudes.

The very idea of the dual parametrization of GPDs in terms of t-channel exchanges
was motivated by the crossing relations [10] between GPDs and generalized distribution
amplitude [18]. The later enter the description of the hard exclusive processes in the
cross channel, like γ∗ + γ → h + h̄. In the LO the amplitude of the cross process can be
expressed in terms of the function N(x, t) analytically continued to time-like t (t > 0)§:

Across(η, t) =
∫ 1

0

dx

x
N(x, t)

[

1√
1 − 2xη + x2

+
1√

1 + 2xη + x2
−

2√
1 + x2

]

+ 2D(t) . (31)

Here −η is directly related to the cos(θcm)– cosine of scattering angle in centre of mass
system, see for details Refs. [18, 10]. Now substituting our inversion formula (24) into
this expression we obtain, rather simple result:

Across(η, t) =
2

π

∫ |η|

0
dξ

ξ

1 − ξ2
ImA

(

ξ

|η|
, t

)

+ 2 D(t) . (32)

Actually this equation is the consequence of the dispersion relation (30).

A way to model Q2ν(x, t)

As we mentioned above the complete knowledge of GPD is equivalent to the knowledge
of function (29). In this section we consider possible ways to model this function. For
simplicity we do not consider the t− dependence and that why we do not write the
corresponding argument. Without loss of generality we can represent the function Q2ν as
the Mellin convolution:

Q2ν(x) =
∫ 1

x

dz

z
Q0(z) Pν

(

x

z

)

, (33)

§Such continuation can be performed with help of dispersion relations in variable t, see e.g. Ref. [10]
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η = cos θcm

A possibility to “touch” N(x,t) at BABAR, BELLE or PANDA ?! Or at EIC through “generalized
Primakoff process”

If one uses the Abel tomography formula, one gets the relation between DVCS amplitude
and 

Dispersion relations and crossing

Up to now we made use of only the imaginary part of the amplitude, let us study the real
part of the amplitude. For this we take the expression (24) for the N(x, t) in terms of
ImA(ξ, t) and substitute it into Eq. (15). After some simple calculations we arrive to the
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Dispersion relations and crossing

Up to now we made use of only the imaginary part of the amplitude, let us study the real
part of the amplitude. For this we take the expression (24) for the N(x, t) in terms of
ImA(ξ, t) and substitute it into Eq. (15). After some simple calculations we arrive to the
following expression for real part of the amplitude:
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, (30)

in which we can immediately recognize the dispersion relation for the amplitude with
one subtraction at non-physical point ξ = ∞ (corresponding to ν = (s − u)/4m = 0).
The D-form factor is the corresponding subtraction constant. This result was obtained
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Here −η is directly related to the cos(θcm)– cosine of scattering angle in centre of mass
system, see for details Refs. [18, 10]. Now substituting our inversion formula (24) into
this expression we obtain, rather simple result:
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Actually this equation is the consequence of the dispersion relation (30).

A way to model Q2ν(x, t)

As we mentioned above the complete knowledge of GPD is equivalent to the knowledge
of function (29). In this section we consider possible ways to model this function. For
simplicity we do not consider the t− dependence and that why we do not write the
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Physics content of GPD quintessence N(x,t)

N(x, t) = Q0(x, t) + x2Q2(x, t) + x4Q4(x, t) + . . .

Contains 3D
quark densities

Contains FFs
of energy-momentum
tensor (Jq, shear forces, etc.)

Even if we know complete amplitude, we are not able to separate these contributions :(
However, there is a principle possibility to make the separation via logarithmic 
scaling violation.  (Very difficult to implement in near future experiments- for that one needs
large lever arm in photon virtuality)

What to do?

 Look for new physics motivations! Study in more details the physics content of N(x,t).

Model building for forward-like functions. 

Equivalent to
the amplitude
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Modeling the quintessence N(x,t)

N(x, t) = Q0(x, t) + x2Q2(x, t) + x4Q4(x, t) + . . .

Contains 3D
quark densities

Contains FFs
of energy-momentum
tensor (Jq, shear forces, etc.)

Equivalent to
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FIG. 1: Azimuthal angular dependence of the e−p → e−pγ
polarized cross section difference (d4σ+−d4σ−)/2 for different
beam helicities. The black bands are JLab/Hall A data [18].
Dashed (blue) curves : double distribution parameterization
with profile parameter b = 1; solid (red) curves : dual param-
eterization including only the forward function Q0.

ties for which the first data have been published by the
JLab/Hall A Coll. [18]. This observable is directly pro-
portional to the imaginary part of the DVCS amplitude.
The data are compared with predictions computed in
the dual parameterization and in a double distribution
model. For both models we use the same Regge-type t-
dependence for forward t-dependent quark densities. For
the double distribution we use the profile function with
parameter b = 1 as in estimates performed in Refs. [2, 21].
It is seen that the double distribution model yields po-
larized cross sections that have a tendency to be some-
what larger than the data. When using only the forward
function Q0 in the dual parameterization, it is seen from
Eq. (3) that the imaginary part of the DVCS amplitude
yields a parameter free prediction at t = 0 2. It is seen
that this parameter free prediction yields an amazingly
consistent description of the polarized cross sections.

The JLab/Hall A Coll. also published results for un-
polarized cross sections that are shown in Fig. 2. When

2 We checked that in the t range shown, the dependence on α′ is
much smaller than the difference between the curves.
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FIG. 2: Azimuthal angular dependence of the e−p → e−pγ
unpolarized cross section. The black bands are JLab/Hall A
data [18]. The dashed blue curves show the double distri-
bution result with profile parameter b = 1. The results in
the dual parameterization including only Q0 are shown for
D(0) = 0 (thick solid red curves), D(0) = −4/3 (dashed-
dotted curves), and D(0) = +4/3 (dotted curves). The lower
thin solid green curves are the Bethe-Heitler cross section.

comparing the unpolarized cross sections with the model
independent Bethe-Heitler result, one sees that the latter
dominates the cross section at Φ = 0, where it makes up
for about 85 % of the cross section, at −t = 0.23 GeV2.
However, at Φ = 180 deg it is more than a factor 2 below
the data. Although both double distribution and dual pa-
rameterization models can explain part of the difference
with the data, no single model is able to simultaneously
describe the cross section at Φ = 0 and Φ = 180 deg,
in line with the finding of [22]. In particular, within the
dual parameterization in twist-2 approximation, adjust-
ing the one subtraction constant D(t) does not allow to
describe this Φ dependence, as is also shown on Fig. 2.
It was also checked that when adding an estimate for the
non-forward function Q2 no agreement can be found ei-
ther over the whole Φ range. Although the region around
Φ = 180 deg yields zero for the beam helicity asymmetry,
it is very worthwhile to cross-check this puzzle further.

In Fig. 3, we show recent exclusive measurements
of e−p → e−pγ beam helicity asymmetries from
JLab/CLAS [20] and JLab/HallA [18]. We note that
for two middle bins in Fig. 3, where both experiments

Friday, March 25, 2011



Modeling the quintessence N(x,t)

N(x, t) = Q0(x, t) + x2Q2(x, t) + x4Q4(x, t) + . . .

Contains 3D
quark densities

Equivalent to
the amplitude

Advantage of QCD strings to excite exotic baryons 

Strong colour field 
Strong reararngenemt of colour 

Hard photon removes a quark from N at once 

The quark returns back 

New Narrow Nucleon N*(1685) 
Revealed in eta photoproduction 
/Kuznetsov, MVP, JETP Lett. 88 (2008) 399/ 

Can we describe DVCS data with such minimalist model?
3

0.005

0.01

0.015

0.005

0.01

0.015

0.02

e- + p ! e- + p + "     (Ee = 5.75 GeV)

Q2 = 2.3 GeV2

xB = 0.36

t = -0.17 GeV2

t = -0.23 GeV2

(d
4 #

+ -
 d

4 #
-)/

2 
  (

nb
/G

eV
4 )

t = -0.28 GeV2

$ (deg)

0

0.005

0.01

0.015

0.02

0 20 40 60 80 100 120 140 160 180

FIG. 1: Azimuthal angular dependence of the e−p → e−pγ
polarized cross section difference (d4σ+−d4σ−)/2 for different
beam helicities. The black bands are JLab/Hall A data [18].
Dashed (blue) curves : double distribution parameterization
with profile parameter b = 1; solid (red) curves : dual param-
eterization including only the forward function Q0.

ties for which the first data have been published by the
JLab/Hall A Coll. [18]. This observable is directly pro-
portional to the imaginary part of the DVCS amplitude.
The data are compared with predictions computed in
the dual parameterization and in a double distribution
model. For both models we use the same Regge-type t-
dependence for forward t-dependent quark densities. For
the double distribution we use the profile function with
parameter b = 1 as in estimates performed in Refs. [2, 21].
It is seen that the double distribution model yields po-
larized cross sections that have a tendency to be some-
what larger than the data. When using only the forward
function Q0 in the dual parameterization, it is seen from
Eq. (3) that the imaginary part of the DVCS amplitude
yields a parameter free prediction at t = 0 2. It is seen
that this parameter free prediction yields an amazingly
consistent description of the polarized cross sections.

The JLab/Hall A Coll. also published results for un-
polarized cross sections that are shown in Fig. 2. When

2 We checked that in the t range shown, the dependence on α′ is
much smaller than the difference between the curves.

0.02

0.04

0.06

0.08

0.1

0.025

0.05

0.075

0.1

e- + p ! e- + p + "     (Ee = 5.75 GeV)

Q2 = 2.3 GeV2

xB = 0.36

t = -0.17 GeV2

t = -0.23 GeV2

d4 #
/d

Q
2 dx

B
dt

d$
 (n

b/
G

eV
4 )

t = -0.28 GeV2

$ (deg)

0

0.025

0.05

0.075

0.1

0 20 40 60 80 100 120 140 160 180

FIG. 2: Azimuthal angular dependence of the e−p → e−pγ
unpolarized cross section. The black bands are JLab/Hall A
data [18]. The dashed blue curves show the double distri-
bution result with profile parameter b = 1. The results in
the dual parameterization including only Q0 are shown for
D(0) = 0 (thick solid red curves), D(0) = −4/3 (dashed-
dotted curves), and D(0) = +4/3 (dotted curves). The lower
thin solid green curves are the Bethe-Heitler cross section.

comparing the unpolarized cross sections with the model
independent Bethe-Heitler result, one sees that the latter
dominates the cross section at Φ = 0, where it makes up
for about 85 % of the cross section, at −t = 0.23 GeV2.
However, at Φ = 180 deg it is more than a factor 2 below
the data. Although both double distribution and dual pa-
rameterization models can explain part of the difference
with the data, no single model is able to simultaneously
describe the cross section at Φ = 0 and Φ = 180 deg,
in line with the finding of [22]. In particular, within the
dual parameterization in twist-2 approximation, adjust-
ing the one subtraction constant D(t) does not allow to
describe this Φ dependence, as is also shown on Fig. 2.
It was also checked that when adding an estimate for the
non-forward function Q2 no agreement can be found ei-
ther over the whole Φ range. Although the region around
Φ = 180 deg yields zero for the beam helicity asymmetry,
it is very worthwhile to cross-check this puzzle further.

In Fig. 3, we show recent exclusive measurements
of e−p → e−pγ beam helicity asymmetries from
JLab/CLAS [20] and JLab/HallA [18]. We note that
for two middle bins in Fig. 3, where both experiments

3

0.005

0.01

0.015

0.005

0.01

0.015

0.02

e- + p ! e- + p + "     (Ee = 5.75 GeV)

Q2 = 2.3 GeV2

xB = 0.36

t = -0.17 GeV2

t = -0.23 GeV2

(d
4 #

+ -
 d

4 #
-)/

2 
  (

nb
/G

eV
4 )

t = -0.28 GeV2

$ (deg)

0

0.005

0.01

0.015

0.02

0 20 40 60 80 100 120 140 160 180

FIG. 1: Azimuthal angular dependence of the e−p → e−pγ
polarized cross section difference (d4σ+−d4σ−)/2 for different
beam helicities. The black bands are JLab/Hall A data [18].
Dashed (blue) curves : double distribution parameterization
with profile parameter b = 1; solid (red) curves : dual param-
eterization including only the forward function Q0.

ties for which the first data have been published by the
JLab/Hall A Coll. [18]. This observable is directly pro-
portional to the imaginary part of the DVCS amplitude.
The data are compared with predictions computed in
the dual parameterization and in a double distribution
model. For both models we use the same Regge-type t-
dependence for forward t-dependent quark densities. For
the double distribution we use the profile function with
parameter b = 1 as in estimates performed in Refs. [2, 21].
It is seen that the double distribution model yields po-
larized cross sections that have a tendency to be some-
what larger than the data. When using only the forward
function Q0 in the dual parameterization, it is seen from
Eq. (3) that the imaginary part of the DVCS amplitude
yields a parameter free prediction at t = 0 2. It is seen
that this parameter free prediction yields an amazingly
consistent description of the polarized cross sections.

The JLab/Hall A Coll. also published results for un-
polarized cross sections that are shown in Fig. 2. When

2 We checked that in the t range shown, the dependence on α′ is
much smaller than the difference between the curves.

0.02

0.04

0.06

0.08

0.1

0.025

0.05

0.075

0.1

e- + p ! e- + p + "     (Ee = 5.75 GeV)

Q2 = 2.3 GeV2

xB = 0.36

t = -0.17 GeV2

t = -0.23 GeV2

d4 #
/d

Q
2 dx

B
dt

d$
 (n

b/
G

eV
4 )

t = -0.28 GeV2

$ (deg)

0

0.025

0.05

0.075

0.1

0 20 40 60 80 100 120 140 160 180

FIG. 2: Azimuthal angular dependence of the e−p → e−pγ
unpolarized cross section. The black bands are JLab/Hall A
data [18]. The dashed blue curves show the double distri-
bution result with profile parameter b = 1. The results in
the dual parameterization including only Q0 are shown for
D(0) = 0 (thick solid red curves), D(0) = −4/3 (dashed-
dotted curves), and D(0) = +4/3 (dotted curves). The lower
thin solid green curves are the Bethe-Heitler cross section.

comparing the unpolarized cross sections with the model
independent Bethe-Heitler result, one sees that the latter
dominates the cross section at Φ = 0, where it makes up
for about 85 % of the cross section, at −t = 0.23 GeV2.
However, at Φ = 180 deg it is more than a factor 2 below
the data. Although both double distribution and dual pa-
rameterization models can explain part of the difference
with the data, no single model is able to simultaneously
describe the cross section at Φ = 0 and Φ = 180 deg,
in line with the finding of [22]. In particular, within the
dual parameterization in twist-2 approximation, adjust-
ing the one subtraction constant D(t) does not allow to
describe this Φ dependence, as is also shown on Fig. 2.
It was also checked that when adding an estimate for the
non-forward function Q2 no agreement can be found ei-
ther over the whole Φ range. Although the region around
Φ = 180 deg yields zero for the beam helicity asymmetry,
it is very worthwhile to cross-check this puzzle further.

In Fig. 3, we show recent exclusive measurements
of e−p → e−pγ beam helicity asymmetries from
JLab/CLAS [20] and JLab/HallA [18]. We note that
for two middle bins in Fig. 3, where both experiments

Friday, March 25, 2011



Modeling the quintessence N(x,t)

N(x, t) = Q0(x, t) + x2Q2(x, t) + x4Q4(x, t) + . . .

Contains 3D
quark densities

Contains FFs
of energy-momentum
tensor (Jq, shear forces, etc.)

Equivalent to
the amplitude

Friday, March 25, 2011



Modeling the quintessence N(x,t)

N(x, t) = Q0(x, t) + x2Q2(x, t) + x4Q4(x, t) + . . .

Contains 3D
quark densities

Equivalent to
the amplitude

Friday, March 25, 2011



Modeling the quintessence N(x,t)

N(x, t) = Q0(x, t) + x2Q2(x, t) + x4Q4(x, t) + . . .

Contains 3D
quark densities

Equivalent to
the amplitude

Friday, March 25, 2011



Modeling the quintessence N(x,t)

N(x, t) = Q0(x, t) + x2Q2(x, t) + x4Q4(x, t) + . . .

Contains 3D
quark densities

Equivalent to
the amplitude

Advantage of QCD strings to excite exotic baryons 

Strong colour field 
Strong reararngenemt of colour 

Hard photon removes a quark from N at once 

The quark returns back 

New Narrow Nucleon N*(1685) 
Revealed in eta photoproduction 
/Kuznetsov, MVP, JETP Lett. 88 (2008) 399/ 

Friday, March 25, 2011



Modeling the quintessence N(x,t)

N(x, t) = Q0(x, t) + x2Q2(x, t) + x4Q4(x, t) + . . .

Contains 3D
quark densities

Equivalent to
the amplitude

Advantage of QCD strings to excite exotic baryons 

Strong colour field 
Strong reararngenemt of colour 

Hard photon removes a quark from N at once 

The quark returns back 

New Narrow Nucleon N*(1685) 
Revealed in eta photoproduction 
/Kuznetsov, MVP, JETP Lett. 88 (2008) 399/ 

But the minimalist model fails at small Bjorken x!

Friday, March 25, 2011



Modeling the quintessence N(x,t)

N(x, t) = Q0(x, t) + x2Q2(x, t) + x4Q4(x, t) + . . .

Contains 3D
quark densities

Equivalent to
the amplitude

Advantage of QCD strings to excite exotic baryons 

Strong colour field 
Strong reararngenemt of colour 

Hard photon removes a quark from N at once 

The quark returns back 

New Narrow Nucleon N*(1685) 
Revealed in eta photoproduction 
/Kuznetsov, MVP, JETP Lett. 88 (2008) 399/ 

But the minimalist model fails at small Bjorken x!

of [2] (labeled ”Regge”), the factorized exponential model of [2] (labeled ”Exponential”)

and the nonfactorized Regge-motivated model of [10] (labeled ”Regge 2”). The message of

Fig. 1 is clear: once the missing factor of two is restored, the minimal model of the dual

parameterization [2] significantly (by the factor of four) oversestimates the normalization of

the data. Therefore, the claim that the minimal model of the dual parameterization gives a

good, essentially model-independent description of high-energy data on DVCS is false.
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FIG. 1: A comparison of the corrected predictions of the dual parameterization to the H1 [12, 13]

and ZEUS [14] DVCS data. The experimental statistical and systematic errors are added in quadra-

ture. The curves correspond to the three used models of the t-dependence of GPDs: the nonfac-

torized Regge-motivated model of [2] (labeled ”Regge”), the factorized exponential model of [2]

(labeled ”Exponential”) and the nonfactorized Regge-motivated model of [10] (labeled ”Regge 2”).

Similarly, the corrected minimal model of the dual parameterization overestimates the
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That shows that                    are
large in the small x region! One should
expect that:

That makes our life complicated,
but more interesting! 

The presence of strong small x singularity
can bring new insight into structure
of GPDs! Possibility for a holography (in 
progress).

Q2,4,...(x, t)

Q2(x, t)

Q0(x, t)
∼ 1

x2
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Conclusions

 We can not restore full GPDs from the amplitudes. (Different GPDs can give the same 
amplitudes) 

 The maximally restorable info about GPDs is contained in quintessence function.

 The quintessence function can be restored from the amplitude via the Abel tomography

 Mellin moments of N(x,t) have nice interpretation in terms of QCD string operator of fixed 
angular momentum.  
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