

Towards *ab initio* nuclear structure and reactions with coupled-cluster theory

 $\mathsf{Gaute}\;\mathsf{Hagen}^1$

Collaborators : T. Papenbrock, D. Dean, M. Hjorth-Jensen, Gustav Jansen, Øyvind Jensen and Thomas Duguet

¹Oak Ridge National Laboratory, Physics Division, E-mail: hageng@ornl.gov

CEA Saclay, Orme Des Merisiers, May 13

Outline

- 1 Coupled-Cluster approach to nuclear structure
 - Brief overview of Coupled-Cluster theory
 - Coupled-Cluster approach to medium mass nuclei. ¹⁶O, ^{40,48}Ca with chiral interactions (NN-only)
- 2 Coupled-Cluster approach to loosely bound and unbound nuclear systems.
 - $\bullet\,$ Microscopic description of resonances and halo states in $^{17}{\rm F}\,$ and $^{17}{\rm O}\,$
 - Towards ab-initio reaction theory with coupled-cluster theory: Overlap functions and nucleon-nucleus scattering
- **3** Probing the dripline with Coupled-Cluster theory
 - Low-lying states in ¹⁸O and ¹⁸Ne with two-particle attached EOM-CCSD
 - Shell evolution in Oxygen and Calcium isotopes

Conclusion

Ab-initio approaches to light and medium mass nuclei

CEA, May 13 Coupled-Cluster theory for nuclei

Physics of neutron rich nuclei: A challenge for theory

CEA, May 13 Coupled-Cluster theory for nuclei

N-N force from Chiral perturbation theory

Ab-initio Coupled-Cluster approach

Loosely bound and unbound nuclear systems Open-shell nuclei and CCM Conclusion Coupled-Cluster theory Medium mass nuclei with CCM

Coupled-Cluster Theory

Exponential Ansatz for Ψ

$$|\Psi
angle=e^{\hat{T}}|\Phi_0
angle, \ \ \hat{T}=\hat{T}_1+\hat{T}_2+\ldots+\hat{T}_A$$

$$\hat{\mathcal{T}}_1 = \sum_{i,a} t_i^a \hat{a}_a^\dagger \hat{a}_i, \, \hat{\mathcal{T}}_2 = rac{1}{2} \sum_{i < j,a < b} t_{ij}^{ab} \hat{a}_a^\dagger \hat{a}_b^\dagger \hat{a}_j \hat{a}_i.$$

Coupled-Cluster Equations $\Delta E = \langle \Phi_0 | (H_N exp(T))_C | \Phi_0 \rangle$ $0 = \langle \Phi_\rho | (H_N exp(T))_C | \Phi_0 \rangle$ $\bar{H} = (H_N exp(T))_C$

- Coupled-Cluster Theory is fully microscopic .
- Ocupled-Cluster is size extensive. No unlinked diagrams enters, and error scales linearly with number of particles.
- 3 Low computational cost (CCSD scales as $n_o^2 n_u^4$).
- Gapable of systematic improvements.
- Amenable to parallel computing.

Ab-initio Coupled-Cluster approach

Loosely bound and unbound nuclear systems Open-shell nuclei and CCM Conclusion Coupled-Cluster theory Medium mass nuclei with CCM

Coupled-Cluster in pictures

$$\begin{split} \left| \Psi \right\rangle &= e^{T^{(\mathcal{A})}} \left| \Phi \right\rangle, \quad T^{(\mathcal{A})} = \sum_{k=1}^{m^{\mathcal{A}}} T_{k} \\ T_{1} &= \sum_{i} t_{i}^{a} \left| \Phi_{i}^{a} \right\rangle, \quad T_{2} = \sum_{i>j \atop a>b} t_{ij}^{ab} \left| \Phi_{ij}^{ab} \right\rangle, \quad T_{3} = \sum_{i>j>k \atop a>b>c} t_{ijk}^{abc} \left| \Phi_{ijk}^{abc} \right\rangle \end{split}$$

Coupled-Cluster theory Medium mass nuclei with CCM

Equation-of-Motion CC for open-shell nuclei

Equation-of-Motion Coupled-Cluster theory

The idea of Equation-of-Motion Coupled-Cluster theory is to calculate ground- and excited states of system B by acting with a excitation operator Ω_k on the ground state of system A

$$|\psi_k^B
angle=\Omega_k|\psi_0^A
angle, \ |\psi_0^A
angle=\exp(\mathcal{T})|\phi_0^A
angle$$

Define the excitation operators $\Omega_k = R_k^{(A\pm 1)}$

$$\begin{aligned} R_k^{(A+1)} &= r^a a_a^{\dagger} + \frac{1}{2} r_j^{ab} a_a^{\dagger} a_b^{\dagger} a_j + \dots, \\ R_k^{(A-1)} &= r_i a_i + \frac{1}{2} r_{ij}^{b} a_b^{\dagger} a_i a_j + \dots, \end{aligned}$$

Particle-Attached/Removed EOM-CC equations

$$\left[\overline{H}, R_k^{(A\pm 1)}\right] |\phi_0\rangle = \left(\overline{H} R_k^{(A\pm 1)}\right)_C |\phi_0\rangle = \omega_k R_k^{(A\pm 1)} |\phi_0\rangle,$$

Precision and accuracy: ⁴He and chiral N³LO (500 Mev)

- Results exhibit practically no dependence on the employed model space.
- The Coupled-Cluster method in its Λ-CCSD(T) approximation overbinds by 150 keV, radius too small by about 0.01fm.
- G. Hagen, T. Papenbrock, D. J. Dean, M. Hjorth-Jensen, Phys. Rev. C 82, 034330 (2010).

Ab-initio Coupled-Cluster approach

Loosely bound and unbound nuclear systems Open-shell nuclei and CCM Conclusion Coupled-Cluster theory Medium mass nuclei with CCM

Saturation of N³LO (NN only) in medium mass nuclei

G. Hagen, T. Papenbrock, D. J. Dean, M. Hjorth-Jensen, Phys. Rev. Lett. 101, 092502 (2008).
G. Hagen, T. Papenbrock, D. J. Dean, M. Hjorth-Jensen, Phys. Rev. C 82, 034330 (2010).

- \sim 400keV/A missing for ^{16}O and $^{48}\text{Ca.}$
- Interesting isospin behavior of 3NF in Calcium isotopes.

	CC	CSD	ACCSD(T)			
Nucleus	E/A	$\Delta E/A$	E/A	$\Delta E/A$		
¹⁶ O	-6.72	1.25	-7.56	0.41		
⁴⁰ Ca	-7.72	0.84	-8.63	-0.08		
⁴⁸ Ca	-7.40	1.27	-8.26	0.40		

CEA, May 13

Coupled-Cluster theory for nuclei

Low-lying states in ¹⁷F and ¹⁷O Towards ab-initio reactions

Role of continuum in structure of nuclei

S. Quaglioni and P. Navratil, Phys. Rev. Lett. 101, 092501 (2008)

		${}^{10}\text{Be} = {}^{11}\text{Be}(\frac{1}{2}^-)$				1 ⁺ 2 ⁺)
	$N_{\rm max}$	Eg.s.	E	E_{th}	E	E_{th}
NCSM [13, 14]	8/9	-57.06	-56.95	0.11	-54.26	2.80
NCSM [13, 14], ^a	6/7	-57.17	-57.51	-0.34	-54.39	2.78
NCSM/RGM ^o			-57.59	-0.42	-57.85	-0.68
Expt.		-64.98	-65.16	-0.18	-65.48	-0.50

^opresent calculation

TABLE II: Calculated energies (in MeV) of the ¹⁰Be g.s. and of the lowest negative- and positive-parity states in ¹¹Be, obtained using the CD-Boan NN potential [15] at $M\Omega = 13$ MeV. The NCSM/RGM results were obtained using $n + ^{10}$ Be configurations with $N_{\rm max} = 6$ g.s. 2_1^n , 2_3^n , and 1_3^n states of ¹⁰Be. J. Okolowicz, M. Ploszajczak, Yan-an Luo Acta Phys. Polon B 39, 389 (2008).

CEA, May 13

Coupled-Cluster theory for nuclei

Low-lying states in $^{17}\,\mathrm{F}$ and $^{17}\,\mathrm{O}$ Towards ab-initio reactions

Weakly bound and unbound states in 17 F an ambitious testing ground for ab-initio theory

Low-lying states in $^{17}\mathrm{F}$ and $^{17}\mathrm{O}$ Towards ab-initio reactions

Coupled-Cluster approach to open quantum systems

Low-lying states in ¹⁷F and the role of continuum

- Low-lying single-particle states in ¹⁷F using a Gamow-Hartree-Fock basis (GHF) and a Oscillator-Hartree-Fock (OHF) basis.
- $\bullet\,$ Very weak dependence on the oscillator frequency $\hbar\omega$ for calculations done in a GHF basis.
- Significant effect of continuum coupling on the $1/2^+$ and $3/2^+$ states in ${}^{17}F$.
- G. Hagen, T. Papenbrock, M. Hjorth-Jensen, Phys. Rev. Lett. 104, 182501 (2010).

CEA, May 13 Coupled-Cluster theory for nuclei

Low-lying states in ¹⁷F and ¹⁷O Towards ab-initio reactions

Cutoff dependence on Low-lying states in ¹⁷F

- Cuttoff dependence on the low-lying states in ¹⁷F.
- Spin-orbit splitting increases between the $d_{5/2}$ - $d_{3/2}$ orbitals with decreasing cutoff λ .
- s_{1/2} state show very weak dependence on the cutoff.
- The 1/2⁺ state is a halo state which extends far beyond the range of the interaction. Renormalizing the interaction by integrating out high momentum modes does not alter the long range physics.

Low-lying states in ¹⁷F and ¹⁷O Towards ab-initio reactions

Summary of results for ¹⁷O and ¹⁷F

- Our calculations for the 1/2⁺ states in ¹⁷F and ¹⁷O agree remarkably well with experiment.
- Spin-orbit splitting between $d_{5/2}$ - $d_{3/2}$ orbitals too compressed without three-nucleon forces.
- Our calculations of the widhts of the 3/2⁺ resonant states compare reasonably well with experiment.

		¹⁷ 0	¹⁷ F			
	$(1/2)_1^+$	$(5/2)_1^+$	Es.o.	$(1/2)_1^+$	$(5/2)_1^+$	Es.o.
OHF	-1.888	-2.955	4.891	0.976	0.393	4.453
GHF	-2.811	-3.226	4.286	-0.082	0.112	3.747
Exp.	-3.272	-4.143	5.084	-0.105	-0.600	5.000

	¹⁷ 0 (3	$(2)_{1}^{+}$	¹⁷ F (3/2) ₁ ⁺		
	Re[E _{sp}]	Г	$Re[E_{sp}]$	Г	
PA-EOMCCSD	1.059	0.014	3.859	0.971	
Experiment	0.942	0.096	4.399 1.530		

Spectroscopic factors with coupled-cluster theory

Overlap functions for one-nucleon removal.

$$O_{A-1}^{A}(lj;r) \equiv \langle A-1||\tilde{a}_{lj}(r)||A
angle = (-)^{j-m} rac{\langle A-1M_{A-1}|a_{ljm}(r)|AM_{A}
angle}{(J_{A}M_{A}j-m \mid J_{A-1}M_{A-1})}$$

The spectroscopic factor is defined as the norm the overlap function:

$$S_{A-1}^{A}(lj) = \sum_{n} |\langle A - 1 || \tilde{a}_{nlj} || A \rangle|^{2} = \sum_{n} \frac{|\langle A - 1 |a_{nljm}|A \rangle|^{2}}{(J_{A}M_{A}j - m |J_{A-1}M_{A-1})^{2}}$$

Spectroscopic factors in coupled-cluster formalism

$$S_{A-1}^{A}(lj) = \sum_{n} \frac{\langle \phi_{0} | L_{0}^{A} a_{nljm}^{\dagger} R_{\mu}^{A-1} | \phi_{0} \rangle \langle \phi_{0} | L_{\mu}^{A-1} \overline{a_{nljm}} R_{0}^{A} | \phi_{0} \rangle}{(J_{A} M_{A} j - m \mid J_{A-1} M_{A-1})^{2}}$$

First application to SFs in ¹⁶O:

Ø. Jensen, G. Hagen, T. Papenbrock, D. J. Dean, J. S. Vaagen, Phys. Rev. C 82, 014310 (2010).

Low-lying states in ¹⁷F and ¹⁷O Towards ab-initio reactions

Quenching of SFs in the oxygen isotopes

Spectroscopic factor for proton removal from Oxygen isotopes

- We find a significant quenching of the spectroscopic factors due to coupling to the scattering continuum in the neutron rich oxygen isotopes.
- Ø. Jensen, GH, Hjorth-Jensen, Brown, Gade submitted to PRL, arXiv:1104.1552 (2011)

Low-lying states in ¹⁷F and ¹⁷O Towards ab-initio reactions

How closed shell is ²⁴O ?

Spectroscopic factor for nucleon removal from ²⁴O

- We find a large spectroscopic factor for $s_{1/2}$ and $d_{5/2}$ neutron removal in ²⁴O. This is consistent with experiment and indicates shell closure in ²⁴O.
- Removal of deeper lying states in ²⁴O show a considerable $\hbar\omega$ dependence pointing to stronger fragmentation and larger role of correlations.
- Ø. Jensen, G. Hagen and M. Hjorth-Jensen, Phys. Rev. C(R) 83, 021305 (2011)
 R. Kanungo et al, Phys. Rev. Lett. 102, 152501 (2009).

Overlap functions and nucleon-nucleus elastic scattering

Elastic scattering, or capture of a nucleon on a target nucleus with mass A is given by the overlap function

$$O^{A+1}_A(\mathit{lj};r) = ig\langle A \, ig\| \, \widetilde{\mathsf{a}}_{\mathit{lj}}(r) \, ig\| \, A+1 ig
angle \; .$$

The overlap function is given in the coupled-cluster formalism

$$O_A^{A+1}(lj;r) = \sum_n \langle L_0^A(J_A) || \overline{\tilde{a}_{nlj}} || R_\mu^{A+1}(J_{A+1}) \rangle \phi_{nlj}(r)$$

Outside the range of the interaction the overlap function is proportional to a single-particle wave function.

$$O_A^{A+1}(lj;r) = C \frac{e^{-\kappa r}}{\kappa r}$$
(Bound states)
$$O_A^{A+1}(lj;r) = A(j_l(kr) - \tan \delta_l n_l(kr))$$
(Scattering states)

Low-lying states in ¹⁷F and ¹⁷O Towards ab-initio reactions

Asymptotic normalization coeffcients

Overlap function for a bound A + 1 nucleus

- We use an SRG evolved interaction with cutoff 2.66fm^{-1} . The CCSD ground state energy for ¹⁶O in N = 11 major shells is -140.52 MeV.
- One neutron overlap functions for the bound $J^{\pi} = 1/2^+$ state in ¹⁷O with the ground state of ¹⁶O. For ¹⁷O we get $E_{sp}(1/2^+) = -3.83$ MeV.

Low-lying states in ¹⁷F and ¹⁷O Towards ab-initio reactions

Overlap functions for A + 1 scattering states

Overlap functions

 One neutron overlap functions for a J^π = 1/2⁺ scattering state with energy 4.075267MeV in ¹⁷O with the ground state of ¹⁶O. The red line gives the asymptotic form of the radial overlap.

$\frac{s_{1/2}}{^{16}\text{O}}$ and $\frac{d_{3/2}}{^{16}\text{Preliminary}}$ phase shifts for elastic neutron scattering on

CEA, May 13 Coupled-Cluster theory for nuclei

Coupled-cluster approach to open-shell nuclei Shell-evolution towards the dripline

Going beyond closed-shell nuclei. Low-lying states in ¹⁸O and ¹⁸Ne (Preliminary)

- SRG evolved interaction with λ = 2.0 fm⁻¹.
- Model space consists of 8 major oscillator shells.
- Two-particle attached equation-of-motion coupled-cluster works very well for low-lying states in open-shell nuclei like ¹⁸O and ¹⁸Ne.
- G. Jansen, M. Hjorth-Jensen, G. Hagen, T. Papenbrock, Phys. Rev. C 83, 054306 (2011).

Coupled-cluster approach to open-shell nuclei Shell-evolution towards the dripline

Shell evolution towards the drip line

FIG. 4 (color online). The experimental [25,26] (data points) and theoretical [13–15] (lines) one- and two-neutron separation energies for the N = 15–18 oxygen isotopes. The experimental error is shown if it is larger than the symbol size.

25O neutron separation energy: -820 keV the width was measured to be 90(30) keV giving a lifetime of t \sim 7x10-21 sec

C. Hoffman PRL 100 (2008) 152502

Coupled-cluster approach to open-shell nuclei Shell-evolution towards the dripline

Effective single-particle energies in correlated many-nucleon systems

Effective single-particle energies (ESPEs)

- How can we define single-nucleon shell structure in a system that is strongly correlated; i.e. how are ESPEs related to (correlated) observable?
- ESPEs are the eigen solutions of the *centroid* matrix :

$$h_{pq}^{ ext{cent}}\equiv\sum_{\mu\in\mathcal{H}_{A\!+\!1}}ar{S}_{\mu}^{+pq}E_{\mu}^{+}+\sum_{\mu\in\mathcal{H}_{A\!-\!1}}S_{\mu}^{-pq}E_{\mu}^{-}\;.$$

The centroid matrix can be written in terms of the correlated density matrix

$$h_{
m \it pq}^{
m cent} = \, T_{
m \it pq} + \sum_{
m \it rs} ar{V}_{
m \it prqs}^{
m 2N} \,
ho_{
m \it sr}^{
m [1]}$$

 T. Duguet, J. Sadoudi, V. Somà, G. Hagen, and C. Barbieri, In preparation (2011)

Coupled-cluster approach to open-shell nuclei Shell-evolution towards the dripline

Conclusion

Low-lying states in neutron rich Potassium isotopes

- Proton separation energies $S_p = -E_{\mu}^- = E_{\mu}^{A-1} - E_0^A$ in 40,48,52,54,60 Ca.
- Low lying states in Potassium isotopes calculated using PA/PR-EOMCCSD with "bare" chiral interactions.
- Model space consists of 15 major harmonic oscillator shells with fixed oscillator frequency ħω = 30MeV.

	39	γĸ	⁴⁷ K			
J^{π}	$E_{ m CC}$ (MeV)	E_{Exp} (MeV)	$E_{\rm CC}$ (MeV)	E_{Exp} (MeV)		
3/2+	0.00	0.00	0.00	0.00		
1/2+	2.90	2.52	-0.75	-0.36		
5/2+	5.84	4.51	2.22	3.00		

Shell evolution and the dripline in Oxygen isotopes

- Evidence of new magic numbers in oxygen isotopes N = 14 and N = 16.
- All shell model calculation in the s d shell with realistic NN interactions predicts dripline beyond ²⁸O.
- Results from Otsuka et al. with inclusion of 3NF predicts ²⁸O unstable.
- Adding one more proton binds 6 more neutrons in fluorine isotopes.
- Can Ab-initio theory throw light on this ?
- T. Otsuka et al, Phys. Rev. Lett. 105, 032501 (2010)

Coupled-cluster approach to open-shell nuclei Shell-evolution towards the dripline

Conclusion

Shell evolution and separation energies in oxygen isotopes

- Low lying states in oxygen and fluorine isotopes calculated using PA/PR-EOMCCSD with "bare" chiral interactions.
- Model space consists of 15 major harmonic oscillator shells with fixed oscillator frequency $\hbar \omega = 32$ MeV.
- ²⁵O is stable with respect to neutron emission. Interesting inversion of ground state in ²⁵F.
- What is the role of continuum and three-body forces ?

Coupled-cluster approach to open-shell nuclei Shell-evolution towards the dripline

Cutoff dependence in ²⁴O and ²⁵F

Conclusion

- Variation of the cutoff as a tool to probe the effects of missing many-body forces.
- No unique cutoff that will reproduce data in ²⁴O and ²⁵F simultaneously.
- Three-nucleon forces are needed. Continuum coupling might bring additional binding in the low-lying states in ²⁵F.

Conclusion

Coupled-cluster approach to open-shell nuclei Shell-evolution towards the dripline

Cutoff dependence in ²⁵O

- Cuttoff dependence on the $3/2^+$ state in ${}^{25}O$.
- Calculations done in 15 major oscillator shells with fixed oscillator frequency $\hbar\omega=32 {\rm MeV}.$
- There are no two-body forces within the family of phase-equivalent low-momentum interactions derived from N³LO that will make ²⁵O unstable.
- Three-nucleon forces are needed to match theory with experiment in ²⁵O!

Coupled-cluster approach to open-shell nuclei Shell-evolution towards the dripline

Conclusion

Can theory support the existence of ²⁸O ?

G. Hagen, T. Papenbrock, D. J. Dean, M. Hjorth-Jensen, B. Velamur Asokan, Phys. Rev. C 80, 021306 (2009).

- No sign of dramatic increase in binding energies of oxygen isotopes.
- Ab-initio Coupled-Cluster calculations can not rule out the existence of ²⁸O.
- Cutoff variation indicates that three-nucleon forces will play a crucial role in the determination of the neutron dripline.

Conclusion

- Coupled-Cluster approach to medium mass and driplines with "bare" chiral interactions. ~ 400keV/A missing for ¹⁶O and ⁴⁸Ca.
- PA-EOM Coupled-Cluster method has been succesfully applied to the description of weakly bound and unbound states in ¹⁷O and ¹⁷F.
- Coupling to the continuum plays a significant role on states close to the particle emission threshold.
- Ab-initio coupled-cluster computation of one-nucleon overlap functions allows for a simple and intuitive description of nuclear reactions.
- Presented the first successful calculation of scattering phaseshifts with coupled-cluster theory, the results for ¹⁷O are very promising!
- Study of evolution of proton and neutron single-particle energies in Oxygen and Calcium isotopes.
- Energy spacing between excited states in 39,47 K and the level inversion in 47 K are well reproduced.
- Coupled-cluster calculations of oxygen isotopes cannot rule out a stable ²⁸O.

$\frac{s_{1/2}}{^{16}}$ and $\frac{d_{3/2}}{^{16}}$ phase shifts for elastic neutron scattering on 16 (Preliminary)

CEA, May 13 Coupled-Cluster theory for nuclei

Overlap functions for A + 1 scattering states: Accuracy

ϵ_{μ}^{A+1} (MeV)	<i>r</i> ^a ²	$ r_{i}^{ab} ^{2}$	δ_0
0.00025	0.99999	0.00000	-0.01664
0.00716	0.99999	0.00000	-0.08917
0.04465	0.99997	0.00003	-0.22240
0.15869	0.99985	0.00015	-0.41719
0.41917	0.99951	0.00049	-0.67063
0.91951	0.99873	0.00127	-0.97373
1.77221	0.99719	0.00281	-1.31085
3.10046	0.99443	0.00557	-1.66256
5.02790	0.98938	0.01061	-2.00957
7.66533	0.97913	0.02087	-2.33112
11.0793	0.95347	0.04652	-2.58973
15.2047	0.86866	0.13133	-2.69405
19.4601	0.52493	0.47506	-2.32111
22.2231	0.27238	0.72762	-0.76552

A + 1 scattering states from *ab initio* coupled cluster theory

The lowest lying $J^{\pi} = 1/2^+$ single-particle energies with corresponding squared sum of the 1p and 2p1h amplitudes and computed phases shifts

Coupled-Cluster versus DMC for quantum dots.

ω	R	E ₀	CCSD	CCSD(T)	A-CCSD(T)	DMC
0.28	14	63.2557	62.0634	61.9265	61.9466	
	16	63.3032	62.0646	61.9214	61.9423	
	18	63.3369	62.0656	61.9181	61.9395	
	20	63.3621	62.0664	61.9156	61.9375	61.922(2)
0.5	14	95.4164	93.9921	93.8700	93.8833	
	16	95.4676	93.9904	93.8632	93.8771	
	18	95.5043	93.9895	93.8588	93.8730	
	20	95.5320	93.9891	93.8558	93.8702	93.867(3)
1.0	14	157.6437	155.9740	155.8795	155.8863	
	16	157.7002	155.9669	155.8687	155.8758	
	18	157.7413	155.9627	155.8618	155.8690	
	20	157.7725	155.9601	155.8571	155.8646	155.868(6)

Table: Coupled-Cluster versus DMC for 20 electrons confined in a two-dimensional quantum dot. M. Pedersen Lohne, G. Hagen, M. Hjorth-Jensen, S. Kvaal, F. Pederiva, arXiv:1009.4833.

CCSD results for Chiral N³LO (NN only)

- Mirror nuclei ^{48}Ca and ^{48}Ni differ by 1.38 MeV/A \rightarrow close to mass table predictions.
- 3NF and triples expected to yield $\sim 1 \text{MeV/A}$?
- Radii and and densities stronger model space dependence.
- G. Hagen et. al, Phys. Rev. Lett. 101, 092502 (2008).

Nucleus	E/A	V/A	Q	$\Delta E/A$	$< r^2 >_{ch}^{1/2}$	$< r^2 >_{ch}^{1/2} (Exp)$
⁴ He	-5.99	-22.75	0.90	1.08		1.673(1)
¹⁶ O	-6.72	-30.69	0.69 1.08 1.		2.72(5)	2.737(8)
⁴⁰ Ca	-7.72	-36.40	1.18	0.84	3.25(9)	3.4764
⁴⁸ Ca	-7.40	-37.97	1.21	1.27	3.24(9)	3.4738
⁴⁸ Ni	-6.02	-36.04	1.20	1.21	3.52(15)	?

Coupled-Cluster method and the Center of Mass

Center of mass issues

- **()** Is factorization of CoM wave function and intrinsic wave function possible in finite spaces other than the $N\hbar\Omega$ space of the No-Core shell-model approach ?
- 3 Is the expectation value of $H_{cm}(\omega) = T_{cm} + \frac{1}{2}mA\omega^2 R_{cm}^2 \frac{3}{2}\hbar\omega$ a meassure of the quality of the calculated intrinsic energy ?

16 O with $V_{\rm low-k}$ (1.8/fm, smooth) within CCSD

- Center of mass energy $E_{cm}(\omega) = \langle H_{cm} \rangle$ does vanish at $\hbar \omega \sim 20$ MeV, and we have $\psi_{int}\psi_{cm}$.
- Take expectation value of the generalized CoM Hamiltonian $H_{cm}(\tilde{\omega}) = T_{cm} + \frac{1}{2}mA\tilde{\omega}^2 R_{cm}^2 \frac{3}{2}\hbar\tilde{\omega}.$
- CC wave function factorizes and the CoM wave function is a Gaussian with almost constant width $\hbar\tilde\omega\sim 20 MeV$
- G. Hagen, T. Papenbrock, D. J. Dean, Phys. Rev. Lett. 103, 062503 (2009).
- G. Hagen, T. Papenbrock, D. J. Dean, M. Hjorth-Jensen, Phys. Rev. C 82, 034330 (2010).

CEA, May 13 Coupled-Cluster theory for nuclei

$^{16}{ m O}$ with $V_{ m low-k}$ (1.8/fm, smooth) within CCSD

- Center of mass energy $E_{cm}(\omega) = \langle H_{cm} \rangle$ does vanish at $\hbar \omega \sim 20 \text{MeV}$.
- At this model-space the CC wave function factorizes: \u03c6_{int}\u03c6_{cm}.
- Approximate constancy of energy suggests that it factorizes approximately for many frequencies.
- What is ψ_{cm} ?
- G. Hagen, T. Papenbrock, D. J. Dean, Phys. Rev. Lett. 103, 062503 (2009).

If CC wave function factorizes what is ψ_{cm} ?

- Assumption: CoM wave function is always a gaussian (approximately).
- Take expectation value of the generalized CoM Hamiltonian $H_{cm}(\tilde{\omega}) = T_{cm} + \frac{1}{2}mA\tilde{\omega}^2 R_{cm}^2 \frac{3}{2}\hbar\tilde{\omega}.$

• Use
$$E_{cm}(\tilde{\omega}) = 0$$
 and $\langle T_{cm} \rangle = \frac{3}{4}\hbar\tilde{\omega}$.

• Determine unknown frequency from taking the expectation value of the identity

$$H_{cm}(\omega) + \frac{3}{2}\hbar\omega - T_{cm} = \frac{\omega^2}{\tilde{\omega}^2} \left(H_{cm}(\tilde{\omega}) + \frac{3}{2}\hbar\tilde{\omega} - T_{cm} \right)$$

• Gives quadratic equation for unknown frequency: $\hbar \tilde{\omega} = \hbar \omega + \frac{2}{3} E_{cm}(\omega) \pm \sqrt{\frac{4}{9}(E_{cm})^2 + \frac{4}{3} \hbar \omega E_{cm}(\omega)}$

Coupled-Cluster wave function factorizes: $\psi_{int}\psi_{cm}$

- CC wave function factorizes and the CoM wave function is a Gaussian with almost constant width $\hbar\tilde{\omega} \sim 20 MeV$ for all different $\hbar\omega$ values of the basis !
- Expectation value of T_{cm} is 3/4 of oscillator spacing $\hbar \tilde{\omega}$.
- Why is the CoM wave function a Gaussian ?
- Why does the CoM wave function come at a constant $\hbar\omega$ independent of basis ?

CEA, May 13 Coupled-Cluster theory for nuclei

Convergence of ²⁴O and ²⁸O with chiral interactions

- Λ-CCSD(T) ground state calculations of ²⁴O and ²⁸O using chiral interactions with cutoffs 500 and 600 MeV respectively.
- $\bullet\,$ Convergence is slower for the 600 MeV cutoff interaction, and need N \sim 20 major shells to reach convergence for $^{28}O.$

G. Hagen, T. Papenbrock, D. J. Dean, M. Hjorth-Jensen, B. Velamur Asokan, PRC(R), 80, 021306 (2009)

Cutoff dependence and summary of results for Oxygen isotopes

Energies	¹⁶ 0	²² 0	²⁴ O	²⁸ 0
$(\Lambda_{\chi} = 500 \text{ MeV})$				
E ₀	25.946	46.52	50.74	63.85
$\Delta E_{ m CCSD}$	-133.53	-171.31	-185.17	-200.63
ΔE_3	-13.31	-19.61	-19.91	-20.23
E	-120.89	-144.40	-154.34	-157.01
$(\Lambda_{\chi} = 600 \text{ MeV})$				
E ₀	22.08	46.33	52.94	68.57
$\Delta E_{ m CCSD}$	-119.04	-156.51	-168.49	-182.42
ΔE_3	-14.95	-20.71	-22.49	-22.86
E	-111.91	-130.89	-138.04	-136.71
Experiment	-127.62	-162.03	-168.38	

	¹⁶ 0	²² 0	²⁴ 0	²⁸ O
$\langle r^2 \rangle^{1/2}$	2.296	2.405	2.658	2.825
Expt.	2.54(2)	2.88(6)	3.19(13)	

Low-lying states in ¹⁷O with $V_{\rm srg}$ (2.8/fm) and the center of mass

- Low-lying 1/2⁺, 3/2⁺ and 5/2⁺ states in ¹⁷O calculated using PA-EOM-CCSD in 13 major oscillator shells.
- The expectation value of $H_{cm}(\omega) = T_{cm} + \frac{1}{2}mA\omega^2 R_{cm}^2 \frac{3}{2}\hbar\omega$ meassures to what degree the CoM is a Gaussian with oscillator frequency ω .

CEA, May 13 Coupled-Cluster theory for nuclei

Coupled-Cluster wave function factorizes: $\psi_{int}\psi_{cm}$

- Assumption: CoM wave function is always a gaussian (approximately).
- Take expectation value of the generalized CoM Hamiltonian $H_{cm}(\tilde{\omega}) = T_{cm} + \frac{1}{2}mA\tilde{\omega}^2 R_{cm}^2 \frac{3}{2}\hbar\tilde{\omega}.$
- CC wave function factorizes and the CoM wave function is a Gaussian with almost constant width $\hbar\tilde{\omega} \sim 16 MeV$ for all different $\hbar\omega$ values of the basis.

Most nuclei are open-shell. How to access these nuclei with coupled-cluster method?

z				19Mg	20Mg	21Mg	22Mg	23Mg	24Mg	25Mg	26Mg	27Mg	28Mg	29Mg	30Mg	31Mg	32Mg
				18Na	19Na	20Na	21Na	22Na	23Na	24Na	25Na	26Na	27Na	28Na	29Na	30Na	31Na
10			16Ne	17Ne	18Ne	19Ne	20Ne	21Ne	22Ne	23Ne	24Ne	25Ne	26Ne	27Ne	28Ne	29Ne	BONe
		14F	15F	16F	17F	18F	19F	20F	21F	22F	23F	24F	25F	26F	27F	28F	29F
8	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	270	280
	11N	12N	13N	14N	15N	16N	17N	18N	19N	20N	21N	22N	23N	24N	25N		
6	10C	110	12C	13C	14C	15C	16C	17C	18C	19C	200	21C	22C				
	9B	10B	11B	12B	13B	14B	15B	16B	17B	18B	19B						
4	8Be	9Be	10Be	11Be	12Be	13Be	14Be	15Be	16Be								
	4		6		8		10		12		14		16		18		N

CEA, May 13

Coupled-Cluster theory for nuclei

Low-lying states in ¹⁷O and ¹⁷F

 Low-lying states in ¹⁷F and ¹⁷O using a Gamow-Hartree-Fock basis and a Oscillator-Hartree-Fock basis.

Approximate factorization also for "hard" interactions

- Ground state of 4 He using HF basis and N = 18 for the bare N³LO (500 MeV) chiral interaction.
- CC wave function factorizes (approximately) and the CoM wave function is a Gaussian with almost constant width \sim 19.1 MeV, for all different $\hbar\omega$ values of the basis.

Approximate factorization also for "hard" interactions

- Ground state of ¹⁶O, using HF basis and N = 18 for the bare N³LO (500 MeV) chiral interaction, factorizes approximately within Λ -CCSD(T).
- RMS radii, $\langle \frac{1}{A} \sum_{i=1}^{A} r_i^2 R_{cm}^2 \rangle^{1/2}$, using intrinsic radius operator and subtracting $\langle R_{cm}^2 \rangle \sim \frac{62.2071}{A \hbar \omega}$, assuming a Gaussian for the center of mass agrees.
- Small negative values for E_{cm}(ω̃) coming from cluster truncation and non-varitional character of CCM.

CEA, May 13 Coupled-Cluster theory for nuclei

CCSD results for Helium chain using V_{low-k}

- $V_{\text{low}-k}$ from N3LO with $\Lambda = 1.9 \text{fm}^{-1}$.
- G. Hagen et al., Phys. Lett. B 656, 169 (2007). arXiv:nucl-th/0610072.
- First *ab-initio* calculation of decay widths of a whole isotopic chain.
- CCM unique method for dripline nuclei.
- ~ 1000 active orbitals
- Underbinding hints at missing 3NF