Résumé des conférences d'été Matière Noire - Energie Noire Ch. Yèche

Topics in Astroparticle and Underground Physics

Merci à Eric Armengaud et Fabian Schussler pour leur aide!!!

Saclay, le 03 octobre 2011

Matière ordinaire

4%

Recherche directe Edelweiss CDMS Xenon100 Cresst Cogent

Matière noire 24%

Matière ordinaire

4%

Recherche directe Edelweiss CDMS Xenon100 Cresst Cogent

Matière noire 24%

Eric Armengaud

Wolfgang Rau

Raphael Lang

Edelweiss CDMS

Combinaison CDMS-Edelweiss

- The use of the same target material allows simple combination of data.
- Simple merger of data sets was chosen prior to any analysis.
- EDW: 384 kg.d, [20-200keV], 5 evts
 CDMS: ~379 kg.d, [~10-100keV], 4 evts
- Other methods have also been tested.

~50% gain at high WIMP masses.

Phys. Rev. D 84, 011102 (2011).

Better than ID : the FID800 detector Edeweiss Futur

Increase mass + sensitivity :

- 800g crystal
- two NTD sensors per detector

 interleaved electrodes on all the surface : no « guard » region anymore, ~ 75% fiducial volume

 eight detectors already in commissing

 <u>Detectors</u> : ~ 40 FID800 bolometers installed 2012 : 24 kg fiducial ⇒ 3000 kg.d by end 2012 (5x10⁻⁹ pb)

Xenon 100 Dual-Phase Xenon TPC

3D position information S2 hit pattern: $\delta r < 3 \,\mathrm{mm}$ drift time: $\delta z < 300 \,\mu \text{m}$

S2

Xenon 100 Résultats

strongest limit to date; excludes SUSY parameter space

Futur Xenon 1T

Before this Decade is Out...

Federica Preticca

Juan Collar

CRESST-II

Target crystals operated as cryogenic calorimeters (~10mK)

- energy deposition in the crystal:
- → mainly phonons
 - temperature rise detected with W-thermometers
 - measurement of deposited energy (sub keV resolution at low energy)
- → small fraction into scintillation light
- Separate cryogenic light detector to detect the light signal

Detector module:

- Simultaneous measurement of:
 - →deposited energy E in the crystal (independent of the type of particle) →scintillation light L (characteristic of the type of particle)

3 4 5 6 7 8 9 10 11

Energy spectra of α, neutron or Pb backgrounds do not resemble the expected WIMP signal and only the e/γ contribution has a similar shape

Light yield spectrum of e/γ differs significantly from the expected WIMP signal and thus cannot explain the total LY distribution

CRESST-II

CRESST-II Résultats

r/γ events α events neutron events Pb recoils	$\begin{array}{r} M1 \\ 8.00 \pm 0.05 \\ 11.5^{+2.6}_{-2.3} \\ 7.5^{+6.3}_{-5.5} \\ 15.0^{+5.2}_{-5.1} \end{array}$	$\begin{array}{r} M2 \\ 8.00 \pm 0.05 \\ 11.2^{+2.5}_{-2.3} \\ 9.7^{+6.1}_{-5.1} \\ 18.7^{+4.9}_{-4.7} \end{array}$	10 ⁻³ 01 10 ⁻⁴ 10 ⁻⁵ 10 ⁻⁵ 10 ⁻⁶	M2	M1	CRESST 1σ CRESST 2σ CRESST 2009 - EDELWEISS-II CDMS-II XENON100 DAMA chan. DAMA CoGeNT
signal events	29.4+8.6	24.2+8.1	cleon			
n_{χ} [GeV]	25.3	11.6	2 10			
σ _{wN} [pb]	1.6.10-6	3.7.10-5	₩ 10 ⁻⁸			
Statistica	l significand	e for a sign	₁₀ .,	10	100 WIMP mass [GeV]	100

Statistical significance for a signal:

 4.7σ for M1 4.2 σ for M2

730 kg.days"

458 days collected (442d live) Fiducial mass~330 grams

Phys. Rev. Lett., in press

CoGeNT - Résultats

•CoGeNT region considerably smaller than before (but within previous ROI), next to DAMA.

Beaucoup de transparents (surtout une critique des autres....)

Détection indirecte Fermi Pasquale Serpico

Rayon cosmiques Fermi P. Michelson Claudio Bogazzi

Fermi - Galaxies Naines

Détection indirecte:

≻ Fermi satellite y: 20 MeV - 300 GeV
≻ xx→yy

> 10 galaxies naines (jusqu'à 140 kpc)

Galaxies naines objets très

favorables pour contenir de la DM

(grand rapport M/L~400 pour Draco)

Test « cosmologique »:

> Si Wimps relique en équilibre thermique à l'échelle électrofaible $\Rightarrow < \sigma_A v > ~qqs 10^{-26} cm^3/s$

Fermi commence à exclure cette zone....

The Crab nebula, a "standard candle"?

Gamma-ray flares from the Crab nebula (Fermi)

Antares: Point source search

- \Rightarrow Looking for an excess of signal events everywhere in the (visible) sky.
- ⇒ Most signal-like cluster at $\alpha = -46.5$, $\delta = -65.00$; it consists of 9 events inside a 3° cone.

Nsig = 5 Q = 13.02 p-value = 0.026Significance = 2.2σ

- *'hottest'* spot in the neutrino sky
- compatible with the background hypothesis

Energie Noire Delphine Hardin

Michael Drinkwater

Ch. Y.

SNLS:

Télescope de 3.6m (CFHT)
 à Hawaï équipé avec MegaCam
 500 SN Ia attendues (2003-2008)

SNLS: SuperNova Legacy Survey

MegaCam:

- Conçue et construite par l'Irfu
- Plus grande camera CCD au monde:
 36 CCD 2k × 4.5k pixels.
- > Grand champ: 1 deg²

SNLS: Résultats

Cosmologie avec SNLS

<u>Combining SNLS-3 with other cosmological probes</u>: SDSS + WMAP7 + H_0 + (no flat prior) :

BAO: Une nouvelle règle standard

Empreinte dans l'Univers: Les galaxies ne sont pas réparties uniformément Empreinte des fluctuations

primordiales

En 2005: premières observations par_50 SDSS observe un pic à ~150 Mpc

BAO : « Règle standard »

Distorsions de la règle autour de nous dues à l'énergie noire

Energie noire avec SDSS-III/BOSS

Consortium SDSS-III

Félescope avec un grand champ focal ~ 7 deg²

Caméra avec 5 filtres (~120 millions de pixels)

Spectrographe avec des fibres optiques : ~ 1000 « z » simultanés

Projet BOSS

1.5 millions de galaxies rouges encore plus loin, jusqu'à z~0.7

> Utilisation des phares les plus lointains de l'univers:

Quasars pour 2.2<z<3.5 à 10 Milliards d'années de nous

Status BOSS of the survey

On average ~4000 high-z QSOs per month > So far, ~92 000 new QSOs (including ~61 500 z>2.15 QSOs) over $\sim 4000 \text{ deg}^2$ \succ This sample (1/3 of entire survey) will be DR9 (July 2012) > End of the survey: 150k - 200k high-z QSOs !!!

Ly- α forests for BAO

Principles

Use Ly-α forests of quasars (2.2<z<4)
HI absorption in IGM along the line of sight of QSOs
We expect low density gas (IGM) to follow the dark matter density (validations : measured 1D power spectrum and N-body simulations...)

BAO specifications:

3D BAO: Correlation between the different lines of sight
BAO measurement for z~2.5
Better precision in radial direction (H(z) measurement).

Ly- α forests for BAO

Principles

 \succ Use Ly- α forests of quasars (2.2<z<4) > HI absorption in IGM along the line of sight of QSOs > We expect low density gas (IGM) to follow the dark matter density (validations : measured 1D power spectrum and N-body simulations...)

BAO specifications:

> 3D BAO: Correlation between the different lines of sight \blacktriangleright BAO measurement for z~2.5 Better precision in radial direction (H(z) measurement).

Ly- α absorption correlations

z[Mpc/h]

-80 L

Correlation Function

Correlations in HI seen to 50 Mpc/h

First observation in 3D of matter in IGM

Results consistent with ACDM simulations

Large-scale Redshift Distortions

Redshift Space

- Acceleration toward overdense regions
- Flattening in radial direction
 from real space to redshift space
 (over tens Mpc)
- Measurable with Kaiser formula N. Kaiser

MNRAS 227, 1 (1987)"

$$P_F(\vec{k}) = P_F(k,\cos(\theta))$$

$$= b^2 P_L(k) \cdot (1 + \beta \cos(\theta)^2)^2$$

•P_L(k) linear power
 spectrum

 $\boldsymbol{\cdot}\boldsymbol{\theta}$ angle between vector k and QSO line of sight

Large-scale Redshift Distortions

M. White et al., ApJ 728, 126 (2011)"

Redshift distortion clearly

<z>~0.6 in BOSS (spring 2010)

observed with 44000 LRGs

Flattening of (r_{tran}, r_{rad}) correlation function distribution

First observation of redshift distortion at z~2.5

Distortion are quantitatively measured by multi-poles decomposition

Wigglez

WiggleZ survey fields (compared to other AAT surveys)

7 equatorial fields, each 100-200 deg² >9° on side, ~3 x BAO scale at *z* > 0.5 Physical size ~ 1300 x 500 x 500 Mpc/h

- 0.2 < z < 1.0
- 220,000 blue galaxies
- 1 GPc³
- Observations finished Jan 2011

20

6dFGS (purple), 2dFGRS (blue), MGC (conc), GAMA (cyan), 2SLAQ-LRG (green), WiggleZ (yellow), 2SLAQ-QSO (orange), 2QZ (red); the celestial sphere is at z=1.

Wigglez - RS distorsion

Eté 2012 futurs points à z=0.5, 0.7 et 2.5 - BOSS

 Double diagramme:
 Directions longitudinale et transverse

Wigglez

-BAO