Two neutron transfer in Sn isotopes

Grégory Potel Aguilar (Sevilla)
Andrea Idini (Milano)
Francisco Barranco Paulano (Sevilla)
Enrico Vigezzi (Milano)
Francesco Marini (Milano)
Ricardo A. Broglia (Milano)

Kyoto, October 24th, 2011

Introduction and Outline

This talk will be devoted to two particle transfer reactions as the specific probe to study pairing correlations. Emphasis will be made in the connection between structure aspects and the resulting two particle transfer cross sections.

Outline:

- Reaction mechanism : two particle transfer in second order DWBA
- ${ }^{A} \operatorname{Sn}(p, t)^{A-2} \mathrm{Sn}$ reactions: transition between pairing vibrational (closed shell) to pairing rotational (superfluid) regimes in the tin isotopic chain.
- Two valence nucleons go from core b of nucleus a to core A of nucleus B
- Probing two particle correlations.
- Investigating structure properties such as pairing and superfluidity in a finite fermion system (the atomic nucleus).
- Get absolute values as well as the angular distribution for the cross sections in second order DWBA.

$A(a, b) B$
Examples:
${ }^{112} \mathrm{Sn}(\mathrm{p}, \mathrm{t})^{110} \mathrm{Sn}$
${ }^{1} \mathrm{H}\left({ }^{11} \mathrm{Li},{ }^{9} \mathrm{Li}\right){ }^{3} \mathrm{H}$

First Part

Reaction mechanism:

second order DWBA

Elements of the calculation

$\Psi_{a}\left(\vec{r}_{1}, \vec{r}_{2}\right), \Psi_{B}\left(\vec{r}_{1}, \vec{r}_{2}\right)$: internal wave functions of the transferred nucleons in each nucleus
$\chi(R)$: distorted wave describing the relative motion in the optical potential $U(R)=V(R)+i W(R)\left(\frac{P_{R}^{2}}{2 \mu}+U(R)\right) \chi(R)=E_{C M \chi}(R)$

V_{A}, V_{a} : mean field potentials of the two nuclei

Elements of the calculation

$\Psi_{a}\left(\vec{r}_{1}, \vec{r}_{2}\right), \Psi_{B}\left(\vec{r}_{1}, \vec{r}_{2}\right)$: internal wave functions of the transferred nucleons in each nucleus
$\chi(R)$: distorted wave describing the relative motion in the optical potential $U(R)=V(R)+i W(R)\left(\frac{P_{R}^{2}}{2 \mu}+U(R)\right) \chi(R)=E_{C M \chi}(R)$

V_{A}, V_{a} : mean field potentials of the two nuclei
$V_{A}\left(V_{a}\right)$ is the interaction potential that transfers the nucleons from one nucleus to the other in the prior (post) representation

Elements of the calculation

$\Psi_{a}\left(\vec{r}_{1}, \vec{r}_{2}\right), \Psi_{B}\left(\vec{r}_{1}, \vec{r}_{2}\right)$: internal wave functions of the transferred nucleons in each nucleus
$\chi(R)$: distorted wave describing the relative motion in the optical potential $U(R)=V(R)+i W(R)\left(\frac{P_{R}^{2}}{2 \mu}+U(R)\right) \chi(R)=E_{C M} \chi(R)$

V_{A}, V_{a} : mean field potentials of the two nuclei
$V_{A}\left(V_{a}\right)$ is the interaction potential that transfers the nucleons from one nucleus to the other in the prior (post) representation

it is a single particle potential!!

Simultaneous and Successive contributions

$$
\begin{aligned}
& |\alpha\rangle=\phi_{a}\left(\xi_{b}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times \\
& \quad \phi_{A}\left(\xi_{A}\right) \chi_{a A}\left(\mathbf{r}_{a A}\right) \\
& |\beta\rangle=\phi_{b}\left(\xi_{b}\right) \phi_{B}\left(\xi_{A}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times
\end{aligned}
$$

$$
\chi_{b B}\left(\mathbf{r}_{b B}\right)
$$

Correlation lenght of Cooper pair $=30 \mathrm{fm}$

$$
H_{a} \phi_{a}=E_{a} \phi_{a}
$$

$$
H_{A} \phi_{A}=E_{A} \phi_{A}
$$

$$
\left(T_{a A}+U_{a A}\right) \chi_{a A}=E_{a A} \chi_{a A}
$$

$$
H_{b} \phi_{b}=E_{b} \phi_{b}
$$

$$
H_{B} \phi_{B}=E_{B} \phi_{B}
$$

$$
\left(T_{b B}+U_{b B}\right) \chi_{b B}=E_{b B} \chi_{b B} .
$$

Simultaneous and Successive contributions

Simultaneous and Successive contributions

Simultaneous and Successive contributions

Simultaneous and Successive contributions

$$
\left.\begin{array}{rl}
|\alpha\rangle=\phi_{a}\left(\xi_{b}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times \\
\phi_{A}\left(\xi_{A}\right) \chi_{a A}\left(\mathbf{r}_{a A}\right) \\
|\beta\rangle=\phi_{b}\left(\xi_{b}\right) \phi_{B}\left(\xi_{A}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times \\
\chi_{b B}\left(\mathbf{r}_{b B}\right)
\end{array}\right] \begin{aligned}
& \\
& H_{a} \phi_{a}=E_{a} \phi_{a} \\
& H_{A} \phi_{A}=E_{A} \phi_{A} \\
&\left(T_{a A}+U_{a A}\right) \chi_{a A}=E_{a A} \chi_{a A} \\
& H_{b} \phi_{b}=E_{b} \phi_{b} \\
& H_{B} \phi_{B}=E_{B} \phi_{B} \\
&\left(T_{b B}+U_{b B}\right) \chi_{b B}=E_{b B} \chi_{b B} .
\end{aligned}
$$

successive transfer

Simultaneous and Successive contributions

$$
\left.\begin{array}{rl}
|\alpha\rangle=\phi_{a}\left(\xi_{b}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times \\
\phi_{A}\left(\xi_{A}\right) \chi_{a A}\left(\mathbf{r}_{a A}\right) \\
|\beta\rangle=\phi_{b}\left(\xi_{b}\right) \phi_{B}\left(\xi_{A}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times \\
\chi_{b B}\left(\mathbf{r}_{b B}\right)
\end{array}\right] \begin{aligned}
& \\
& H_{a} \phi_{a}=E_{a} \phi_{a} \\
& H_{A} \phi_{A}=E_{A} \phi_{A} \\
&\left(T_{a A}+U_{a A}\right) \chi_{a A}=E_{a A} \chi_{a A} \\
& H_{b} \phi_{b}=E_{b} \phi_{b} \\
& H_{B} \phi_{B}=E_{B} \phi_{B} \\
&\left(T_{b B}+U_{b B}\right) \chi_{b B}=E_{b B} \chi_{b B} .
\end{aligned}
$$

successive transfer

Simultaneous and Successive contributions

$$
\left.\begin{array}{rl}
|\alpha\rangle=\phi_{a}\left(\xi_{b}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times \\
\phi_{A}\left(\xi_{A}\right) \chi_{a A}\left(\mathbf{r}_{a A}\right) \\
|\beta\rangle=\phi_{b}\left(\xi_{b}\right) \phi_{B}\left(\xi_{A}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times \\
\chi_{b B}\left(\mathbf{r}_{b B}\right)
\end{array}\right] \begin{aligned}
& \\
& H_{a} \phi_{a}=E_{a} \phi_{a} \\
& H_{A} \phi_{A}=E_{A} \phi_{A} \\
&\left(T_{a A}+U_{a A}\right) \chi_{a A}=E_{a A} \chi_{a A} \\
& H_{b} \phi_{b}=E_{b} \phi_{b} \\
& H_{B} \phi_{B}=E_{B} \phi_{B} \\
&\left(T_{b B}+U_{b B}\right) \chi_{b B}=E_{b B} \chi_{b B} .
\end{aligned}
$$

Simultaneous and Successive contributions

$$
\begin{aligned}
|\alpha\rangle=\phi_{a}\left(\xi_{b}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times \\
\phi_{A}\left(\xi_{A}\right) \chi_{a A}\left(\mathbf{r}_{a A}\right) \\
|\beta\rangle=\phi_{b}\left(\xi_{b}\right) \phi_{B}\left(\xi_{A}, \mathbf{r}_{1}, \mathbf{r}_{2}\right) \times \\
\chi_{b B}\left(\mathbf{r}_{b B}\right)
\end{aligned} \quad \begin{aligned}
H_{a} \phi_{a} & =E_{a} \phi_{a} \\
H_{A} \phi_{A} & =E_{A} \phi_{A} \\
\left(T_{a A}+U_{a A}\right) \chi_{a A} & =E_{a A} \chi_{a A} \\
H_{b} \phi_{b} & =E_{b} \phi_{b} \\
H_{B} \phi_{B} & =E_{B} \phi_{B} \\
\left(T_{b B}+U_{b B}\right) \chi_{b B} & =E_{b B} \chi_{b B}
\end{aligned}
$$

during the whole process

Two particle transfer in second order DWBA

Some details of the calculation of the differential cross section for two-nucleon transfer reactions

$$
T_{2 N T}=\sum_{j_{f} j_{i}} B_{j_{f}} B_{j_{i}}\left(T^{(1)}\left(j_{i}, j_{f}\right)+T_{\text {succ }}^{(2)}\left(j_{i}, j_{f}\right)-T_{N O}^{(2)}\left(j_{i}, j_{f}\right)\right)
$$

$$
\frac{d \sigma}{d \Omega}=\frac{\mu_{i} \mu_{f}}{\left(4 \pi \hbar^{2}\right)^{2}} \frac{k_{f}}{k_{i}}\left|T_{2 N T}\right|^{2}
$$

Simultaneous transfer

$$
\begin{aligned}
T^{(1)}\left(j_{i}, j_{f}\right) & =2 \sum_{\sigma_{1} \sigma_{2}} \int d \mathbf{r}_{f F} d \mathbf{r}_{b 1} d \mathbf{r}_{A 2}\left[\Psi^{j_{f}}\left(\mathbf{r}_{A 1}, \sigma_{1}\right) \Psi^{j_{f}}\left(\mathbf{r}_{A 2}, \sigma_{2}\right)\right]_{0}^{0 *} \chi_{b B}^{(-) *}\left(\mathbf{r}_{b B}\right) \\
& \times v\left(\mathbf{r}_{b 1}\right)\left[\Psi^{j_{i}}\left(\mathbf{r}_{b 1}, \sigma_{1}\right) \Psi^{j_{i}}\left(\mathbf{r}_{b 2}, \sigma_{2}\right)\right]_{\mu}^{\Lambda} \chi_{a A}^{(+)}\left(\mathbf{r}_{a A}\right)
\end{aligned}
$$

Two particle transfer in second order DWBA

Some details of the calculation of the differential cross section for two-nucleon transfer reactions

$$
\begin{gathered}
T_{2 N T}=\sum_{j_{f} j_{i}} B_{j_{f}} B_{j_{i}}\left(T^{(1)}\left(j_{i}, j_{f}\right)+T_{\text {succ }}^{(2)}\left(j_{i}, j_{f}\right)-T_{N O}^{(2)}\left(j_{i}, j_{f}\right)\right) \\
\text { Successive transfer }
\end{gathered}
$$

$$
\begin{aligned}
T_{s u c c}^{(2)}\left(j_{i}, j_{f}\right) & =2 \sum_{K, M} \sum_{\sigma_{1} \sigma_{2}} \int d \mathbf{r}_{f F} d \mathbf{r}_{b 1} d \mathbf{r}_{A 2}\left[\Psi^{j_{f}^{\prime}}\left(\mathbf{r}_{A 1}, \sigma_{1}\right) \Psi^{j_{f}}\left(\mathbf{r}_{A 2}, \sigma_{2}\right)\right]_{0}^{0 *} \\
& \times \chi_{b B}^{(-) *}\left(\mathbf{r}_{b B}\right) v\left(\mathbf{r}_{b 1}\right)\left[\Psi^{j_{f}}\left(\mathbf{r}_{A 2}, \sigma_{2}\right) \psi^{j_{i}}\left(\mathbf{r}_{b 1}, \sigma_{1}\right)\right]_{M}^{K} \\
& \times \int d \mathbf{r}_{f F}^{\prime} d \mathbf{r}_{b 1}^{\prime} d \mathbf{r}_{A 2}^{\prime} G\left(\mathbf{r}_{f F}, \mathbf{r}_{f F}^{\prime}\right)\left[\Psi^{j_{f}}\left(\mathbf{r}_{A 2}^{\prime}, \sigma_{2}^{\prime}\right) \psi^{j_{i}}\left(\mathbf{r}_{b 1}^{\prime}, \sigma_{1}^{\prime}\right)\right]_{M}^{K} \\
& \times \frac{2 \mu_{f F}}{\hbar^{2}} v\left(\mathbf{r}_{f 2}^{\prime}\right)\left[\Psi^{j_{i}}\left(\mathbf{r}_{b 2}^{\prime}, \sigma_{2}^{\prime}\right) \Psi^{j_{i}}\left(\mathbf{r}_{b 1}^{\prime}, \sigma_{1}^{\prime}\right)\right]_{\mu}^{\wedge} \chi_{a A}^{(+)}\left(\mathbf{r}_{a A}^{\prime}\right)
\end{aligned}
$$

Two particle transfer in second order DWBA

Some details of the calculation of the differential cross section for two-nucleon transfer reactions

$$
\begin{gathered}
T_{2 N T}=\sum_{j_{f} j_{i}} B_{j_{f}} B_{j_{i}}\left(T^{(1)}\left(j_{i}, j_{f}\right)+T_{\text {succ }}^{(2)}\left(j_{i}, j_{f}\right)-T_{N O}^{(2)}\left(j_{i}, j_{f}\right)\right) \\
\text { Non-orthogonality term }
\end{gathered}
$$

$$
\begin{aligned}
T_{N O}^{(2)}\left(j_{i}, j_{f}\right) & =2 \sum_{K, M} \sum_{\substack{\sigma_{1} \sigma_{2} \\
\sigma_{1}^{\prime} \sigma_{2}^{\prime}}} \int d \mathbf{r}_{f f} d \mathbf{r}_{b 1} d \mathbf{r}_{A 2}\left[\psi^{j_{f}}\left(\mathbf{r}_{A 1}, \sigma_{1}\right) \Psi^{j_{f}}\left(\mathbf{r}_{A 2}, \sigma_{2}\right)\right]_{0}^{0 *} \\
& \times \chi_{b B}^{(-) *}\left(\mathbf{r}_{b B}\right) v\left(\mathbf{r}_{b 1}\right)\left[\Psi^{j_{f}}\left(\mathbf{r}_{A 2}, \sigma_{2}\right) \psi^{j_{i}}\left(\mathbf{r}_{b 1}, \sigma_{1}\right)\right]_{M}^{K} \\
& \times \int d \mathbf{r}_{b 1}^{\prime} d \mathbf{r}_{A 2}^{\prime}\left[\psi^{j_{f}}\left(\mathbf{r}_{A 2}^{\prime}, \sigma_{2}^{\prime}\right) \psi^{j_{i}}\left(\mathbf{r}_{b 1}^{\prime}, \sigma_{1}^{\prime}\right)\right]_{M}^{K} \\
& \times\left[\Psi^{j_{i}}\left(\mathbf{r}_{b 2}^{\prime}, \sigma_{2}^{\prime}\right) \psi^{j_{i}}\left(\mathbf{r}_{b 1}^{\prime}, \sigma_{1}^{\prime}\right)\right]_{\mu}^{\Lambda} \chi_{a A}^{(+)}\left(\mathbf{r}_{a A}^{\prime}\right)
\end{aligned}
$$

Cancellation of simultaneous and non-orthogonal contributions

very schematically, the first order (simultaneous) contribution is

$$
T^{(1)}=\langle\beta| V|\alpha\rangle,
$$

while the second order contribution can be separated in a successive and a non-orthogonality term

$$
\begin{aligned}
T^{(2)} & =T_{\text {succ }}^{(2)}+T_{N O}^{(2)} \\
& =\sum_{\gamma}\langle\beta| V|\gamma\rangle G\langle\gamma| V|\alpha\rangle-\sum_{\gamma}\langle\beta \mid \gamma\rangle\langle\gamma| V|\alpha\rangle .
\end{aligned}
$$

If we sum over a complete basis of intermediate states γ, we can apply the closure condition and $T_{N O}^{(2)}$ exactly cancels $T^{(1)}$
the transition potential being single particle, two-nucleon transfer is a second order process.

Ingredients of the calculation

Structure input for, e.g., the ${ }^{112} \mathrm{Sn}(\mathrm{p}, \mathrm{t})^{110} \mathrm{~S} n$ reaction:

plus the B_{j} spectroscopic amplitudes needed to define the two-neutron wavefunction:

$$
\Phi\left(\mathbf{r}_{1}, \sigma_{1}, \mathbf{r}_{2}, \sigma_{2}\right)=\sum_{j} B_{j}\left[\psi^{j}\left(\mathbf{r}_{1}, \sigma_{1}\right) \psi^{j}\left(\mathbf{r}_{2}, \sigma_{2}\right)\right]_{0}^{0}
$$

"Standard procedure" : first order DWBA

${ }^{112} \mathrm{Sn}(\mathrm{p}, \mathrm{t})^{110} \mathrm{Sn}$ reaction, $E_{p}=26 \mathrm{MeV}$ (Guazzoni et al. PRC 74054605 (2006)) with first order DWBA one obtains the angular distribution of the angular differential cross section

${ }^{112} \mathrm{Sn}(\mathrm{p}, \mathrm{t})^{110} \mathrm{Sn}$ reaction, $E_{p}=26 \mathrm{MeV}$ (Guazzoni et al. PRC 74054605 (2006)) with first order DWBA one obtains the angular distribution of the angular differential cross section absolute normalization \Rightarrow relative cross sections

${ }^{112} \mathrm{Sn}(\mathrm{p}, \mathrm{t})^{110} \mathrm{Sn}$ reaction, $E_{p}=26 \mathrm{MeV}$ (Guazzoni et al. PRC 74054605 (2006)) with first order DWBA one obtains the angular distribution of the angular differential cross section absolute normalization \Rightarrow relative cross sections

Give up absolute cross sections!!

Early results with second order DWBA

Götz, Ichimura, Broglia and Winther, Phys. Rep. 16 (1975) Igarashi, Kubo and Yagi, Phys. Rep. 199(1991)1 Bayman and Chen, PRC 26 (1982)1509, respectively

Examples of calculations

good results obtained for halo nuclei, population of excited states, superfluid nuclei, normal nuclei (pairing vibrations), heavy ion reactions...
Potel et al., arXiv:0906.4298.

From pairing vibrations

to pairing rotations:

Tin isotopic chain

enhancement factor with respect to the transfer of uncorrelated neutrons:
$\varepsilon=20.6$

Experimental data and shell model wavefunction from Guazzoni et al. PRC 74054605 (2006)
two-particle transfer transition strength: $\left.\left|\left\langle\Psi_{A-2}\right| P\right| \Psi_{A}\right\rangle\left.\right|^{2}$ In superfluid nuclei (open shell):

$$
\begin{gathered}
\left\langle\Psi_{A-2}\right| P\left|\Psi_{A}\right\rangle \approx\langle B C S| P|B C S\rangle=\alpha_{0}=\sum_{\nu>0} U_{\nu} V_{\nu}=\Delta / G \\
d \sigma / d \Omega(A, g . s \rightarrow A+2, \text { g.s. }) \sim \alpha_{0}^{2}
\end{gathered}
$$

In normal nuclei (closed shell), $\Delta=\alpha_{0}=0$:

$$
d \sigma / d \Omega \sim\left\langle\left(\alpha-\alpha_{0}\right)^{2}\right\rangle=\left[\left\langle\Psi_{A}\right| P^{\dagger} P\left|\Psi_{A}\right\rangle-\left\langle\Psi_{A}\right| P P^{\dagger}\left|\Psi_{A}\right\rangle\right] / 2
$$

Comparison with the experimental data available so far for superfluid tin isotopes
Potel et al., PRL 107, 092501 (2011)

${ }^{A} S n(p, t)^{A-2} S n$, superfluid isotopic chain

Conclusions

- Second order DWBA has proven to be a valuable reaction formalism to obtain reliable absolute values,along with angular distributions, for the two particle transfer nuclear reactions angular differential cross sections.
- Two nucleon transfer reactions are an ideal tool to probe two neutrons correlations in nuclei.
- We have studied the transition between pairing vibrational (closed shell) to pairing rotational (superfluid) regimes in the tin isotopic chain.
- We hope that the predictions made for reactions with exotic beams such as ${ }^{132} \mathrm{Sn}(\mathrm{p}, \mathrm{t})^{130} \mathrm{Sn}$ will stimulate future experiments!.

Thank You!

