

Quark Fragmentation and Hadron Formation in Nuclear Matter

Raphaël Dupré

Service de Physique Nucléaire CEA/IRFU

Hadronization

• Non perturbative process

 \rightarrow cannot be exactly calculated

- Can be characterized by two times
 - Color neutralization at **production time**
 - At formation time hadronic properties are definitive

Motivations

- Understanding Hadronization Process
 - Measuring characteristic times
 - Being able to calculate parton energy loss
 - Understand the pre-hadron and the color transparency effects
- Characterization of cold nuclear matter
- Characterization of hot nuclear matter
- Reduce systematic effects in various experiments (such as vA and eA)

Processes Concerned

- Nuclear effects on hadronization important in
 - → Electron scattering
 - \rightarrow Neutrino scattering
 - → Drell Yan

Deep Inelastic Scattering

Momentum transfer

$$Q^2 = -q^2$$

Photon energy

$$v = E_{y}$$

• Fraction of the energy carried by the hadron

$$z = \frac{k.p}{q.p} = E_h / v$$

Transverse momentum

$$\vec{P}_t = \vec{P}_h - \frac{\vec{P}_h \cdot \vec{q}}{\|\vec{q}\|} \vec{q}$$

Observables in Nuclear DIS

Transverse momentum broadening

$$\Delta P_T^2 = \langle P_T^2 \rangle_A - \langle P_T^2 \rangle_D$$

• Multiplicity ratio

$$R_{A}^{h}(Q^{2}, x_{Bj}, z, P_{T}) = \frac{N_{A}^{h}(Q^{2}, x_{Bj}, z, P_{T})/N_{A}^{e}(Q^{2}, x_{Bj})}{N_{D}^{h}(Q^{2}, x_{Bj}, z, P_{T})/N_{D}^{e}(Q^{2}, x_{Bj})}$$

The attenuation is 1-R

Fragmentation

- Target and current fragmentation
- Fragmentation functions describe the current region

Theoretical Scenarios

- Parton energy loss
- (Pre-)Hadron absorption
- Medium modified fragmentation functions
- Models are either pure or combinations of several effects

The General Picture

• Increase with ν

• Slight increase with Q²

• Decrease with z

• Strong increase with $\mathsf{P}_{_{\mathrm{T}}}$

Some Open questions

- K⁺ is less attenuated than pions or K[−]
- Can be due to
 - lower cross section
 - Stronger FF fall
 - $\pi + p \rightarrow \Lambda + K$

A. Airapetian et al. Nucl.Phys., B780 (2007) 1.

Some Open Questions

Cronin effect or target fragmentation?

- Effect is smaller at higher z
- Small effect for anti-p

Some Open Questions

- Pt broadening observed and measured
- Kaon behavior different ?

2

• Q² variation ?

Α

12

A. Airapetian *et al*.

Phys.Lett., B684 (2010) 114.

 $\Delta\langle p_t^2 \rangle \left[\text{GeV}^2
ight]$

Conclusions From HERMES

- Pions have similar behavior
- Demonstrated the raise with $\boldsymbol{\nu}$
- Provides interesting baryon measurement

However

- Target fragmentation might be an issue
- All model types remain

Still to be done

- Some multidimensional results are not confronted to models yet
- Interesting hints for a Q² and flavor effects need to be confirmed

Jefferson Laboratory (JLab)

CLAS

- CEBAF Large Acceptance Spectrometer is composed of:
 - Torus magnet bending particle trajectories
 - Drift Chambers for momentum determination
 - Scintillators for time of flight measurement
 - Identification of pions and heavier particles
 - Cerenkov counters
 - Identification of electrons up to 2.5 GeV
 - Electromagnetic calorimeter
 - Identification of electrons

The eg2 run

- Proposed by W. Brooks et al. in "Quark Propagation Through Cold QCD Matter"
- Running 50 days in Hall B of JLab (CLAS Collaboration)
- 5 GeV electron beam
- Main goal is to obtain statistic for a multidimensional study
- Use 5 targets
 (C, Al, Fe, Sn, Pb)

Analysis Status

• Pion analyses, presented here, are close to completion with preliminary results available

Analysis in parallel of several particles (all 3 pions, K⁺, K⁰, protons, Lambda...)

Electron Identification

 Use Cerenkov counter's photo-electrons

 Electromagnetic calorimeter energy deposit

Pion Identification

• Use time of flight difference between electron and pion

Acceptance Correction

- Weights = generated / reconstructed
- Weights are applied to all events

General Picture

• Similar to HERMES in z and P_{τ}

The v dependence

No clear v dependence observed.

Not visible because of Fermi-motion?

The v dependence

- According to HERMES not a big effect in CLAS
- Multiplicity ratio based on carbon \rightarrow Expected effect visible

No modification of the transverse momentum broadening observed with Q²

The A Dependence

- Non-linear with $A^{1/3}$ neither $A^{2/3}$
- Nuclear effect seem to saturate

P_T Broadening

- Fermi-motion influence also in function of $\mathsf{P}_{\scriptscriptstyle\mathsf{T}}$

P_T Broadening

- Multi-dimensional bins give results opposite to HERMES
- Fermi-motion vs. Target fragmentation?

P_{T} Broadening

Relative to carbon \rightarrow modest effect

(coherent with results from SLAC)

Possibilities with CLAS Data

Extraction of the production time !

Kopeliovich *et al.* Nucl.Phys.A782:224-233,2007

Other Possibilities with CLAS Data

What's Next?

- Planned experiment at CLAS 12 (11 GeV beam)
 - "Quark Propagation and Hadron Formation" proposal,
 K. Hafidi et al.
 - To explore both attenuation and ΔP_T^2
 - Many particles available as in HERMES
 - Larger kinematic coverage than CLAS
 - Larger luminosity than CLAS (x10) and HERMES (x1000)

The EIC Projects (1)

- Project of electron ion collider (EIC)
 - JLab and RHIC projects s~1000GeV² and more
 - Low to no attenuation region \rightarrow centered on ΔP_T^2 measurement
 - Isolate energy loss effects and eventually modification of FF
 - Access to heavy flavor for comparison with Heavy Ion Collisions

Raphaël Dupré - Quark Fragmentation and Hadron formation in Nuclear Matter - 13/01/2012

- Accelerator characteristics are still evolving
- Medium energy version for both
- Goals for both: high energy and high luminosity

Exploring Pt Broadening

Large Q² coverage and many flavor available

Large Q² Leverage

Also available for multiplicity ratio using the medium energy setting

Precise Heavy Flavor Study

- Charm mesons available with high precision with 200 fb⁻¹ (115 days per target)
- Bottom also available but need important luminosity or high reconstruction efficiency

Summary

- Great progress achieved by HERMES
 - But issues with target fragmentation
 - They raised new questions
- CLAS helps clarify some of these questions
 - No Q² evolution observed
 - Cronin Effect could be mimicked by other effects
- CLAS provides new results at low energy to test models
 - Saturation of the nuclear effects at high A
 - Clean measurement of $\nu,\,Q^2,\,z$ and $P_{_T}$
- The Future
 - More results can be extracted from CLAS data
 - CLAS12 to improve the observations of HERMES and CLAS
 - EIC to explore parton energy loss and medium FF

Backup Slides

A Monte-Carlo generator to evaluate the Fermi-motion effects

• Nuclear Fermi-motion of the nucleons

- PYTHIA Monte-Carlo
 - Simulation of the electron-nucleon scattering
 - Fragmentation of the products

- Basic acceptance cuts
 - Allows more precise comparison with data

Fermi-motion effect on CLAS (1)

Fermi-motion can mimic the expected effects!

Fermi-motion effect on CLAS (2)

- Fermi-motion can mimic the expected effects again!
- But it can also cancel them!

HERMES

