Effective Interactions for Nuclear Structure Calculations

Angelo Signoracci

 $\mathsf{CEA}/\mathsf{Saclay}$

SPhN seminar, 9 March 2012

《曰》 《聞》 《臣》 《臣》 三臣

э

Advertisement

- ESNT Tutorial: 23-27 April, 2012 on shell model techniques
- Registration is full
- Check ESNT website for lecture topics and schedule

Single particle shell structure

- Mean field in the nucleus produced by A nucleons composing it
 - Familiar idea (atoms- low density of electrons and point-like nucleus)
 - Experimental observations: high E(2+), low B(E2), BE...

 \rightarrow "magic" numbers

- Collisions within the nucleus are suppressed due to the Pauli principle
- Nuclear Hamiltonian: $H = T + V = \sum_{i=1}^{A} t(r_i) + \sum_{\substack{j=2 \ i < j}}^{A} v(\mathbf{r}_i, \mathbf{r}_j) + \dots$ = $[T + V_{mf}] + [V - V_{mf}] = H_0 + H_1$
- Analytic solutions to H_0 provide typical single particle bases

Island of Inversion

⁴²Si

Conclusions

Comparison of single particle bases

- Neutron single particle orbits in ¹³²Sn
- Empirically, $\hbar\omega \approx 8$ MeV for 132 Sn, ≈ 12 MeV for A = 30
- Select few orbits which can reproduce low-lying states of nuclei outside a core
- Reduces problem from *A*-body to (*A* - *A*_{core})-body

∃ >

Configuration Interaction (CI) theory

- Limited to specific regions of the nuclear chart, mainly by mass
- $\bullet\,$ With typical computing resources, full CI solutions can be accessed up to $A\approx 60$
- Exact solution of the Schrödinger equation within the model space
- Only need an accurate determination of the Hamiltonian in reduced model space
- General Procedure
 - Select a doubly magic nucleus as the core and treat it as vacuum
 - Select a model space outside of the core
 - Interaction composed of single particle energies (SPE) and two-body matrix elements (TBME)
 - Determine SPE from theoretical or "experimental" single particle states
 - Determine TBME from renormalization procedure
 - Can treat SPE and TBME as parameters and fit to experimental data
- Advantages
 - Accuracy (pprox 150 keV rms)
 - Simple wavefunctions
- Disadvantages
 - Limited in excitation energy and mass
 - Empirical SPE and TBME
 - Each model space requires its own interaction

4 E b

Configuration Interaction (CI) theory

- Limited to specific regions of the nuclear chart, mainly by mass
- $\bullet\,$ With typical computing resources, full CI solutions can be accessed up to $A\approx 60$
- Exact solution of the Schrödinger equation within the model space
- Only need an accurate determination of the Hamiltonian in reduced model space
- General Procedure
 - Select a doubly magic nucleus as the core and treat it as vacuum
 - Select a model space outside of the core
 - Interaction composed of single particle energies (SPE) and two-body matrix elements (TBME)
 - Determine SPE from theoretical or "experimental" single particle states
 - Determine TBME from renormalization procedure
 - Can treat SPE and TBME as parameters and fit to experimental data
- Advantages
 - Accuracy (pprox 150 keV rms)
 - Simple wavefunctions
- Disadvantages
 - Limited in excitation energy and mass
 - Empirical SPE and TBME
 - Each model space requires its own interaction

Configuration Interaction (CI) theory

- Limited to specific regions of the nuclear chart, mainly by mass
- $\bullet\,$ With typical computing resources, full CI solutions can be accessed up to $A\approx 60$
- Exact solution of the Schrödinger equation within the model space
- Only need an accurate determination of the Hamiltonian in reduced model space
- General Procedure
 - Select a doubly magic nucleus as the core and treat it as vacuum
 - Select a model space outside of the core
 - Interaction composed of single particle energies (SPE) and two-body matrix elements (TBME)
 - Determine SPE from theoretical or "experimental" single particle states
 - Determine TBME from renormalization procedure
 - Can treat SPE and TBME as parameters and fit to experimental data

Advantages

- Accuracy (pprox 150 keV rms)
- Simple wavefunctions

Disadvantages

- Limited in excitation energy and mass
- Empirical SPE and TBME
- Each model space requires its own interaction

Configuration Interaction (CI) theory

- Limited to specific regions of the nuclear chart, mainly by mass
- $\bullet\,$ With typical computing resources, full CI solutions can be accessed up to $A\approx 60$
- Exact solution of the Schrödinger equation within the model space
- Only need an accurate determination of the Hamiltonian in reduced model space
- General Procedure
 - Select a doubly magic nucleus as the core and treat it as vacuum
 - Select a model space outside of the core
 - Interaction composed of single particle energies (SPE) and two-body matrix elements (TBME)
 - Determine SPE from theoretical or "experimental" single particle states
 - Determine TBME from renormalization procedure
 - Can treat SPE and TBME as parameters and fit to experimental data
- Advantages
 - Accuracy (pprox 150 keV rms)
 - Simple wavefunctions
- Disadvantages
 - Limited in excitation energy and mass
 - Empirical SPE and TBME
 - Each model space requires its own interaction

Energy Density Functional (EDF) methods

- Treats energy as a functional of one body density matrices
- Standard formulations (e.g. Skyrme, Gogny) are empirical
- \bullet Ultimately should connect to underlying NN and NNN interactions
- Advantages
 - Utilizes full single particle space
 - Single parameterization produces results for all nuclei
 - Relative ease of calculations for ground states
- Disadvantages
 - Lack of universal parameterization
 - 600 keV rms to known binding energies
 - Missing dynamic correlations
 - Limited to certain states

Energy Density Functional (EDF) methods

- Treats energy as a functional of one body density matrices
- Standard formulations (e.g. Skyrme, Gogny) are empirical
- \bullet Ultimately should connect to underlying NN and NNN interactions
- Advantages
 - Utilizes full single particle space
 - · Single parameterization produces results for all nuclei
 - Relative ease of calculations for ground states
- Disadvantages
 - Lack of universal parameterization
 - 600 keV rms to known binding energies
 - Missing dynamic correlations
 - Limited to certain states

Energy Density Functional (EDF) methods

- Treats energy as a functional of one body density matrices
- Standard formulations (e.g. Skyrme, Gogny) are empirical
- Ultimately should connect to underlying NN and NNN interactions
- Advantages
 - Utilizes full single particle space
 - Single parameterization produces results for all nuclei
 - Relative ease of calculations for ground states
- Disadvantages
 - Lack of universal parameterization
 - 600 keV rms to known binding energies
 - Missing dynamic correlations
 - Limited to certain states

Island of Inversion

⁴²Si

Conclusions

Motivation

Motivation

ntror	inction
	decion

Motivation

- Away from stability
 - Rare isotope beams provide access to regions without reliable theoretical predictions
 - Standard formulation of CI theory is less practical
 - Renormalization methods could account for behavior of exotic nuclei
 - Loosely bound orbits are often important valence orbitals
- Desire accuracy of CI theory and generality of EDF methods
- Incorporate both into a new theoretical technique
- Focus on producing reliable calculations outside of standard shell model spaces

Im	ro	duc	IIIO	m
			_	

Island of Inversion

⁴²Si

ヨトィヨト

Conclusions

Procedure

- Choose a model space and target nucleus (not necessarily the core)
- Calculate BE, SPE, and wavefunctions of target via Skyrme Hartree-Fock theory
- Convert NN interaction to a low momentum interaction using "vlowk"
- Similarity transformation in momentum space with sharp cutoff
- Renormalize two-body matrix elements (TBME)
- Sum over contributions outside the model space (basis-dependent)
 - Harmonic Oscillator (HO): HO wavefunctions and single particle energies
 - Skyrme Hartree-Fock (SHF): SHF wavefunctions and single particle energies
- Output TBME are in the form required for CI calculations
- SPE for the effective interaction from Skyrme Hartree-Fock theory are unreliable
- For "doubly magic" target, use experimental one-nucleon separation energies
- Otherwise, parameterize and fit to available data
- S.K. Bogner, R.J. Furnstahl, and A. Schwenk, Prog. Part. Nucl. Phys. **65**, 94 (2010)

Im	ro	duc	IIIO	m
			_	

Island of Inversion

⁴²Si

Conclusions

Procedure

- Choose a model space and target nucleus (not necessarily the core)
- Calculate *BE*, SPE, and wavefunctions of target via Skyrme Hartree-Fock theory
- Convert NN interaction to a low momentum interaction using "vlowk"
- Similarity transformation in momentum space with sharp cutoff
- Renormalize two-body matrix elements (TBME)
- Sum over contributions outside the model space (basis-dependent)
 - Harmonic Oscillator (HO): HO wavefunctions and single particle energies
 - Skyrme Hartree-Fock (SHF): SHF wavefunctions and single particle energies
- Output TBME are in the form required for CI calculations
- SPE for the effective interaction from Skyrme Hartree-Fock theory are unreliable
- For "doubly magic" target, use experimental one-nucleon separation energies
- Otherwise, parameterize and fit to available data

• S.K. Bogner, R.J. Furnstahl, and A. Schwenk, Prog. Part. Nucl. Phys. 65, 94 (2010)

< -□

- 4 E b 4 E b

Im	ro	duc	IIIO	m
			_	

Island of Inversion

⁴²Si

- 4 E b 4 E b

Conclusions

Procedure

- Choose a model space and target nucleus (not necessarily the core)
- Calculate *BE*, SPE, and wavefunctions of target via Skyrme Hartree-Fock theory
- Convert NN interaction to a low momentum interaction using "vlowk"
- Similarity transformation in momentum space with sharp cutoff
- Renormalize two-body matrix elements (TBME)
- Sum over contributions outside the model space (basis-dependent)
 - Harmonic Oscillator (HO): HO wavefunctions and single particle energies
 - Skyrme Hartree-Fock (SHF): SHF wavefunctions and single particle energies
- Output TBME are in the form required for CI calculations
- SPE for the effective interaction from Skyrme Hartree-Fock theory are unreliable
- For "doubly magic" target, use experimental one-nucleon separation energies
- Otherwise, parameterize and fit to available data

• S.K. Bogner, R.J. Furnstahl, and A. Schwenk, Prog. Part. Nucl. Phys. **65**, 94 (2010)

Im	ro	duc	IIIO	m
			_	

Island of Inversion

⁴²Si

- 4 E M - E M

Conclusions

Procedure

- Choose a model space and target nucleus (not necessarily the core)
- Calculate BE, SPE, and wavefunctions of target via Skyrme Hartree-Fock theory
- Convert NN interaction to a low momentum interaction using "vlowk"
- Similarity transformation in momentum space with sharp cutoff
- Renormalize two-body matrix elements (TBME)
- Sum over contributions outside the model space (basis-dependent)
 - Harmonic Oscillator (HO): HO wavefunctions and single particle energies
 - Skyrme Hartree-Fock (SHF): SHF wavefunctions and single particle energies
- Output TBME are in the form required for CI calculations
- SPE for the effective interaction from Skyrme Hartree-Fock theory are unreliable
- For "doubly magic" target, use experimental one-nucleon separation energies
- Otherwise, parameterize and fit to available data

• S.K. Bogner, R.J. Furnstahl, and A. Schwenk, Prog. Part. Nucl. Phys. **65**, 94 (2010)

Im	ro	duc	IIIO	m
			_	

Island of Inversion

⁴²Si

- 4 E M - E M

Conclusions

Procedure

- Choose a model space and target nucleus (not necessarily the core)
- Calculate BE, SPE, and wavefunctions of target via Skyrme Hartree-Fock theory
- Convert NN interaction to a low momentum interaction using "vlowk"
- Similarity transformation in momentum space with sharp cutoff
- Renormalize two-body matrix elements (TBME)
- Sum over contributions outside the model space (basis-dependent)
 - Harmonic Oscillator (HO): HO wavefunctions and single particle energies
 - Skyrme Hartree-Fock (SHF): SHF wavefunctions and single particle energies
- Output TBME are in the form required for CI calculations
- SPE for the effective interaction from Skyrme Hartree-Fock theory are unreliable
- For "doubly magic" target, use experimental one-nucleon separation energies
- Otherwise, parameterize and fit to available data

• S.K. Bogner, R.J. Furnstahl, and A. Schwenk, Prog. Part. Nucl. Phys. **65**, 94 (2010)

Im	ro	duc	IIIO	m
			_	

Island of Inversion

⁴²Si

Conclusions

Procedure

- Choose a model space and target nucleus (not necessarily the core)
- Calculate BE, SPE, and wavefunctions of target via Skyrme Hartree-Fock theory
- Convert NN interaction to a low momentum interaction using "vlowk"
- Similarity transformation in momentum space with sharp cutoff
- Renormalize two-body matrix elements (TBME)
- Sum over contributions outside the model space (basis-dependent)
 - Harmonic Oscillator (HO): HO wavefunctions and single particle energies
 - Skyrme Hartree-Fock (SHF): SHF wavefunctions and single particle energies
- Output TBME are in the form required for CI calculations
- SPE for the effective interaction from Skyrme Hartree-Fock theory are unreliable
- For "doubly magic" target, use experimental one-nucleon separation energies
- Otherwise, parameterize and fit to available data
- S.K. Bogner, R.J. Furnstahl, and A. Schwenk, Prog. Part. Nucl. Phys. 65, 94 (2010)

Typical implementation

- Target nucleus must have closed-subshell structure
- Low-energy degrees of freedom expressed in choice of model space
- Skyrme interaction: Skxtb (includes tensor force)
- $\bullet~$ NN-interaction: N3LO interaction derived from $\chi {\rm EFT},$ fit to scattering data
- v_{lowk} cutoff $\Lambda = 2.0 \text{ fm}^{-1}$
- $\bullet\,$ Second order in perturbation theory up to $6\hbar\omega\,$ excitations
- Unless specified, SHF basis

⁴²Si

Conclusions

Application to *sdpf* model space

Model Space Neutron Orbits in SHF Basis

- Model space: *sd* protons, *pf* neutrons
- Two target nuclei ³⁴Si and ⁴⁰Ca

• Four interactions total

- New empirical interaction (SDPF-U)
 - Different TBME for $Z \leq 14$ and $Z \geq 15$
 - Reproduces data for exotic isotopes
- Reduced *nn* pairing TBME by 300 keV for $Z \le 14$
- Amount determined empirically
- Reduction ≈ decrease in core polarization
- Nowacki and Poves, Phys. Rev. C 79 014310 (2009)

Application to *sdpf* model space

Model Space Neutron Orbits in SHF Basis

- Model space: *sd* protons, *pf* neutrons
- $\bullet\,$ Two target nuclei ^{34}Si and ^{40}Ca
- Four interactions total
- New empirical interaction (SDPF-U)
 - Different TBME for $Z \leq$ 14 and $Z \geq$ 15
 - Reproduces data for exotic isotopes
- Reduced *nn* pairing TBME by 300 keV for $Z \le 14$
- Amount determined empirically
- Reduction \approx decrease in core polarization
- Nowacki and Poves, Phys. Rev. C 79 014310 (2009)

Application to *sdpf* model space

Model Space Neutron Orbits in SHF Basis

- Model space: *sd* protons, *pf* neutrons
- Two target nuclei ³⁴Si and ⁴⁰Ca
- Four interactions total
- New empirical interaction (SDPF-U)
 - Different TBME for $Z \leq$ 14 and $Z \geq$ 15
 - Reproduces data for exotic isotopes
- Reduced *nn* pairing TBME by 300 keV for $Z \le 14$
- Amount determined empirically
- Reduction \approx decrease in core polarization
- Nowacki and Poves, Phys. Rev. C 79 014310 (2009)

Application to *sdpf* model space

Model Space Neutron Orbits in SHF Basis

- Model space: *sd* protons, *pf* neutrons
- Two target nuclei ³⁴Si and ⁴⁰Ca
- Four interactions total
- New empirical interaction (SDPF-U)
 - Different TBME for $Z \leq$ 14 and $Z \geq$ 15
 - Reproduces data for exotic isotopes
- Reduced *nn* pairing TBME by 300 keV for $Z \le 14$
- Amount determined empirically
- Reduction \approx decrease in core polarization
- Nowacki and Poves, Phys. Rev. C 79 014310 (2009)

⁴²Si

Conclusions

Wavefunction expansions

• 99% of $f_{7/2}$ orbit and 97% of $f_{7/2}$ orbit represented by R_{03}^{HO} • 80% of $p_{3/2}$ orbit and 78% of $p_{1/2}$ orbit represented by R_{11}^{HO}

Results for matrix elements in MeV

- Pairing matrix elements singled out
- Important in ground state properties of even-even nuclei
- In HO basis, change in nucleus does not affect *nn* pairing TBME
- Diagrams involving excitations of protons are unlinked

Results for matrix elements in MeV

- Pairing matrix elements singled out
- Important in ground state properties of even-even nuclei
- Pairing matrix elements reduced in SHF basis
- On average, 214 keV reduction for ³⁴Si target relative to ⁴⁰Ca target
- Microscopic procedure- no parameters tuned

Calculations for ³⁶Si

- Simplest system outside of ³⁴Si core that depends on TBME
- Neutron-rich isotope with well-known level scheme
- \bullet For consistency, SDPF-U SPE and pp/pn TBME are used
- Isolates the effect due to *nn* TBME
- Calculations with NUSHELLX in sdpf model space

Calculations for ³⁶Si

- Simplest system outside of ³⁴Si core that depends on TBME
- Neutron-rich isotope with well-known level scheme
- $\bullet\,$ For consistency, SDPF-U SPE and pp/pn TBME are used
- Isolates the effect due to nn TBME
- Calculations with NUSHELLX in *sdpf* model space

- Experimental data not reproduced
- $\bullet\,$ Level density too low for ^{40}Ca target
- 36 Si 0⁺ changes by 300 keV
- Better agreement after reduction in TBME
- 223 keV rms to the four known states for ³⁴Si SHF
- Inclusion of *NNN* forces necessary for hundred keV accuracy

- Experimental data not reproduced
- $\bullet\,$ Level density too low for ^{40}Ca target
- ${}^{36}Si 0^+$ changes by 300 keV
- Better agreement after reduction in TBME
- 223 keV rms to the four known states for ³⁴Si SHF
- Inclusion of *NNN* forces necessary for hundred keV accuracy

- Experimental data not reproduced
- $\bullet\,$ Level density too low for ^{40}Ca target
- 36 Si 0⁺ changes by 300 keV
- Better agreement after reduction in TBME
- 223 keV rms to the four known states for ³⁴Si SHF
- Inclusion of *NNN* forces necessary for hundred keV accuracy

- Experimental data not reproduced
- $\bullet\,$ Level density too low for ^{40}Ca target
- 36 Si 0⁺ changes by 300 keV
- Better agreement after reduction in TBME
- $\bullet~223~keV$ rms to the four known states for $^{34}{\rm Si~SHF}$
- Inclusion of *NNN* forces necessary for hundred keV accuracy

Island of Inversion region

- Exotic isotopes $Z \approx 11, N \approx 20$
- Ground state configurations contain 2p2h ($2\hbar\omega$) excitations
- \bullet Observed for some nuclei with $N\geq19$ and $Z\leq13$
- Experimental boundaries may be outside the reach of current rare isotope facilities

Island of Inversion region

- Theoretical calculations can predict the properties of unknown exotic isotopes
- Model space composed of sd protons and $0d_{3/2}, 1s_{1/2}, 0f_{7/2}, 1p_{3/2}, 1p_{1/2}$ neutrons
- Can calculate nuclei throughout island of inversion region with one interaction
- Need accurate SPE and reasonable *NNN* forces to reproduce low-energy behavior
- 13 parameters: 8 SPE, 4 for three-body forces, and overall normalization
- ullet Normalization pprox 10% reduction to reproduce 2⁺ states
- 43 states are implemented in an iterative fitting procedure
- rms deviation is 370 keV
- Theoretical calculations can predict the properties of unknown exotic isotopes
- Model space composed of sd protons and $0d_{3/2}, 1s_{1/2}, 0f_{7/2}, 1p_{3/2}, 1p_{1/2}$ neutrons
- Can calculate nuclei throughout island of inversion region with one interaction
- Need accurate SPE and reasonable NNN forces to reproduce low-energy behavior
- 13 parameters: 8 SPE, 4 for three-body forces, and overall normalization
- ullet Normalization pprox 10% reduction to reproduce 2 $^+$ states
- 43 states are implemented in an iterative fitting procedure
- rms deviation is 370 keV

- Theoretical calculations can predict the properties of unknown exotic isotopes
- Model space composed of sd protons and $0d_{3/2}, 1s_{1/2}, 0f_{7/2}, 1p_{3/2}, 1p_{1/2}$ neutrons
- Can calculate nuclei throughout island of inversion region with one interaction
- Need accurate SPE and reasonable NNN forces to reproduce low-energy behavior
- 13 parameters: 8 SPE, 4 for three-body forces, and overall normalization
- ullet Normalization pprox 10% reduction to reproduce 2^+ states
- 43 states are implemented in an iterative fitting procedure
- rms deviation is 370 keV

- Theoretical calculations can predict the properties of unknown exotic isotopes
- Model space composed of sd protons and $0d_{3/2}, 1s_{1/2}, 0f_{7/2}, 1p_{3/2}, 1p_{1/2}$ neutrons
- Can calculate nuclei throughout island of inversion region with one interaction
- Need accurate SPE and reasonable NNN forces to reproduce low-energy behavior
- 13 parameters: 8 SPE, 4 for three-body forces, and overall normalization
- \bullet Normalization $\approx 10\%$ reduction to reproduce 2^+ states
- 43 states are implemented in an iterative fitting procedure
- rms deviation is 370 keV

- Theoretical calculations can predict the properties of unknown exotic isotopes
- Model space composed of sd protons and $0d_{3/2}, 1s_{1/2}, 0f_{7/2}, 1p_{3/2}, 1p_{1/2}$ neutrons
- Can calculate nuclei throughout island of inversion region with one interaction
- Need accurate SPE and reasonable NNN forces to reproduce low-energy behavior
- 13 parameters: 8 SPE, 4 for three-body forces, and overall normalization
- \bullet Normalization $\approx 10\%$ reduction to reproduce 2^+ states
- 43 states are implemented in an iterative fitting procedure
- rms deviation is 370 keV

⁴²Si

Conclusions

э

- Example of possible calculation
- States in ²⁷Ne populated by transfer

Э

- $\bullet\,$ Comparison between spectroscopic factors for states in $^{27}\mathrm{Ne}$
- Experimental values from Phys. Rev. C 85, 011302(R) (2012)

$\int J^{\pi}$	E _{Exp.}	E _{IOI}	$C^2 S_{Exp.}$	$C^2 S_{IOI}$
3/2+	0.000	0.000	0.42(22)	0.58
3/2-	0.765	0.960	0.64(33)	0.63
1/2+	0.885	0.318	0.17(14)	0.41
7/2-	1.74	1.670	0.35(10)	0.46

33 Mg β^- decay

- Two recent experiments have led to conflicting parity assignments
- Four theoretical states occur at $E_x \leq 370 \text{ keV}$
- $3/2^{-}$ states: $E_x = 0, E_x = 186 \text{ keV}$
- $3/2^+$ state: $E_x = 316$ keV

- V. Tripathi et al., Phys. Rev. Lett. 101, 142504 (2008)
- D.T. Yordanov et al., Phys. Rev. Lett. 99, 212501 (2007)

33 Mg β^- decay

- \bullet Transitions from theoretical $3/2^+$ agree with experiment
- $\bullet~\gamma$ decay (not pictured) used to match transitions

$^{33}{ m Mg}~eta^-$ decay

- $\bullet\,$ Decay from the $3/2^+$ state in ^{33}Mg matches experimental transitions
- $\bullet\,$ Half-life is 49 ms in comparison to 89(1) ms, but is ≈ 0.5 s for $3/2^-$ states
- However: measured magnetic moment is -0.75 μ_{N} , 3/2⁺ state is 0.88 μ_{N}
- $\bullet\,$ Excited 3/2 $^-$ state is in reasonable agreement with experiment at -0.82 $\mu_{\textsc{N}}$
- $\bullet\,$ No state reproduces both the β decay and magnetic moment
- $\bullet\,$ Possible isomer \to for small energy differences, γ decay is suppressed
- $\bullet\,$ Estimate for upper limit on half-life comes from theoretical β decay
- Next step: additional measurements which resolve isomers

Ground State Occupations

- \bullet Single configuration has $1\hbar\omega$ excitation if sd neutron is promoted into pf shell
- At N = 20, corresponds to 1p1h configuration
- $\bullet\,$ Average $\hbar\omega$ of many-body ground state is plotted
- Island of inversion represented by red, orange, and yellow boxes

Application to ⁴²Si

- Three different interactions were produced for calculations of ⁴²Si:
 - (i) the interaction from the island of inversion region
 - (ii) same as (i), but with SPE "evolved" to reproduce behavior at ⁴²Si
 - (iii) new interaction in the sdpf model space with ^{42}Si as the target
- Compare to experiment and to empirical SDPF-U interaction
- Provide information on applying renormalization procedure for exotic nuclei

Application to ⁴²Si

- \bullet Three different interactions were produced for calculations of $^{42}{\rm Si:}$
 - (i) the interaction from the island of inversion region
 - (ii) same as (i), but with SPE "evolved" to reproduce behavior at ⁴²Si
 - (iii) new interaction in the sdpf model space with ^{42}Si as the target
- Level density and behavior very different for three cases
- $\bullet\,$ Theoretical conclusions depend on experimental determination of 4^+_1 and 0^+_2

• Realistic Basis

- Loosely bound orbits exhibit long tail, reducing TBME involving those orbits
- Energy of single particle orbits can differ greatly for stable and exotic isotopes
- HO basis results in stronger interaction and overbinding
- Shown for two particle case, effect gets magnified as more particles are added
- A realistic basis is essential for an accurate description of the effective interaction for exotic nuclei as determined by the renormalization of an *NN* interaction

- BE and low-lying states agree with experiment for 100 nuclei
- All level schemes accessible http://www.nscl.msu.edu/~brown/resources/island/jpg/island.htm
- Neutron dripline and boundaries of island of inversion have been determined
- \bullet lsotopes in the island of inversion region extend beyond those observed to date
- ⁴²Si
 - Three different applications of the method reproduce the known states in ⁴²Si
 - Predictions of 4_1^+ and 0_2^+ states vary significantly
 - Detection enables an evaluation of techniques to calculate exotic isotopes

• Realistic Basis

- Loosely bound orbits exhibit long tail, reducing TBME involving those orbits
- Energy of single particle orbits can differ greatly for stable and exotic isotopes
- HO basis results in stronger interaction and overbinding
- Shown for two particle case, effect gets magnified as more particles are added
- A realistic basis is essential for an accurate description of the effective interaction for exotic nuclei as determined by the renormalization of an *NN* interaction

- BE and low-lying states agree with experiment for 100 nuclei
- All level schemes accessible http://www.nscl.msu.edu/~brown/resources/island/jpg/island.htm
- Neutron dripline and boundaries of island of inversion have been determined
- Isotopes in the island of inversion region extend beyond those observed to date
- ⁴²Si
 - Three different applications of the method reproduce the known states in ⁴²Si
 - Predictions of 4_1^+ and 0_2^+ states vary significantly
 - Detection enables an evaluation of techniques to calculate exotic isotopes

- Realistic Basis
 - Loosely bound orbits exhibit long tail, reducing TBME involving those orbits
 - Energy of single particle orbits can differ greatly for stable and exotic isotopes
 - HO basis results in stronger interaction and overbinding
 - Shown for two particle case, effect gets magnified as more particles are added
 - A realistic basis is essential for an accurate description of the effective interaction for exotic nuclei as determined by the renormalization of an *NN* interaction

- BE and low-lying states agree with experiment for 100 nuclei
- All level schemes accessible http://www.nscl.msu.edu/~brown/resources/island/jpg/island.htm
- Neutron dripline and boundaries of island of inversion have been determined
- ${\ensuremath{\, \bullet \,}}$ lsotopes in the island of inversion region extend beyond those observed to date
- ⁴²Si
 - Three different applications of the method reproduce the known states in ⁴²Si
 - Predictions of 4⁺₁ and 0⁺₂ states vary significantly
 - Detection enables an evaluation of techniques to calculate exotic isotopes

- Realistic Basis
 - Loosely bound orbits exhibit long tail, reducing TBME involving those orbits
 - Energy of single particle orbits can differ greatly for stable and exotic isotopes
 - HO basis results in stronger interaction and overbinding
 - Shown for two particle case, effect gets magnified as more particles are added
 - A realistic basis is essential for an accurate description of the effective interaction for exotic nuclei as determined by the renormalization of an *NN* interaction
- Island of Inversion Region
 - BE and low-lying states agree with experiment for 100 nuclei
 - All level schemes accessible http://www.nscl.msu.edu/~brown/resources/island/jpg/island.htm
 - Neutron dripline and boundaries of island of inversion have been determined
 - Isotopes in the island of inversion region extend beyond those observed to date
- ⁴²Si
 - Three different applications of the method reproduce the known states in ⁴²Si
 - Predictions of 4_1^+ and 0_2^+ states vary significantly
 - Detection enables an evaluation of techniques to calculate exotic isotopes

Conclusion and Outlook

• Overall Methodology

- Microscopic NN interaction can be renormalized directly in reduced model space
- Interactions do not need to be determined empirically
- Basis and target nucleus used in renormalization are important- choose judiciously
- Single particle energies from EDF methods are unreliable and need to be improved

Outlook

- More calculations outside of standard model spaces (⁶⁸Ni, ²⁰C, ...)
- Addition of three-body forces at the effective two-body level
- More accurate determination of SPE

- B.A. Brown, A.S., and M. Hjorth-Jensen, Phys. Lett. B 695, 507 (2011)
- J.D. Holt and A. Schwenk, arXiv:1108.2680

Conclusion and Outlook

- Overall Methodology
 - Microscopic NN interaction can be renormalized directly in reduced model space
 - Interactions do not need to be determined empirically
 - Basis and target nucleus used in renormalization are important- choose judiciously
 - Single particle energies from EDF methods are unreliable and need to be improved
- Outlook
 - More calculations outside of standard model spaces (⁶⁸Ni, ²⁰C, ...)
 - Addition of three-body forces at the effective two-body level
 - More accurate determination of SPE

- B.A. Brown, A.S., and M. Hjorth-Jensen, Phys. Lett. B 695, 507 (2011)
- J.D. Holt and A. Schwenk, arXiv:1108.2680

Current Research

• Standard coupled cluster (CC) theory

- Like CI, another method to approximate the Schrödinger equation in realistic nuclei
- Exponential ansatz: $|\Psi\rangle = e^T |\Phi\rangle$ where T is the cluster operator
- Physical wavefunction is built through np-nh excitations of HF wavefunction
- Primarily employed for light and closed-shell nuclei
- Extension to Bogoliubov coupled cluster (BCC) theory
 - For calculations of open-shell nuclei, expansion techniques like CC break down
 - Reference state explicitly breaks symmetry to account for superfluid character
 - BCC equations have been derived
 - Evaluated in simple truncation schemes (comparable to implementations to CC)
 - Progress toward first calculations by the end of year 1

Current Research

• Standard coupled cluster (CC) theory

- Like CI, another method to approximate the Schrödinger equation in realistic nuclei
- Exponential ansatz: $|\Psi\rangle = e^{T} |\Phi\rangle$ where T is the cluster operator
- Physical wavefunction is built through np-nh excitations of HF wavefunction
- Primarily employed for light and closed-shell nuclei

• Extension to Bogoliubov coupled cluster (BCC) theory

- For calculations of open-shell nuclei, expansion techniques like CC break down
- Reference state explicitly breaks symmetry to account for superfluid character
- BCC equations have been derived
- Evaluated in simple truncation schemes (comparable to implementations to CC)
- Progress toward first calculations by the end of year 1

 $\Xi \rightarrow$

Additional Information

- Harmonic oscillator basis implemented easily
 - $\psi_{nlm_l}^{HO}(\vec{r}) = R_{nl}^{HO}(r)Y_{lm_l}(\theta,\phi)$
 - Typically implemented in nuclear structure calculations
- Skyrme Hartree-Fock basis is chosen for realistic basis
 - Does not have a clean analytic expression
 - Radial wavefunctions implemented via an expansion of the HO basis

$$\psi_{nlj}^{SHF}(\vec{r}) = \sum_{n} a_n R_{nl}^{HO}(r) [Y_l(\theta, \phi) \otimes \chi_s]_j$$

- In practice, expansion is limited to n_{max}
- Percentage of HO basis radial wavefunction given by a_n^2
- SHF can only be solved for bound orbits
- Orbits unbound by few MeV solved approximately
- HO basis used for more unbound orbits
- Gram-Schmidt process is used to ensure orthonormality of basis
- Single Particle Energies
 - Renormalization procedure sums over diagrams with energy denominators
 - Divergences can occur for model space orbits with small energy differences
 - Identical valence energies for model space orbits to prevent divergences

- Harmonic oscillator basis implemented easily
 - $\psi_{nlm_l}^{HO}(\vec{r}) = R_{nl}^{HO}(r)Y_{lm_l}(\theta,\phi)$
 - Typically implemented in nuclear structure calculations
- Skyrme Hartree-Fock basis is chosen for realistic basis
 - Does not have a clean analytic expression
 - Radial wavefunctions implemented via an expansion of the HO basis

$$\psi_{nlj}^{SHF}(\vec{r}) = \sum_{n} a_n R_{nl}^{HO}(r) [Y_l(\theta, \phi) \otimes \chi_s]_j$$

- In practice, expansion is limited to nmax
- Percentage of HO basis radial wavefunction given by a_n^2
- SHF can only be solved for bound orbits
- Orbits unbound by few MeV solved approximately
- HO basis used for more unbound orbits
- Gram-Schmidt process is used to ensure orthonormality of basis
- Single Particle Energies
 - Renormalization procedure sums over diagrams with energy denominators
 - Divergences can occur for model space orbits with small energy differences
 - Identical valence energies for model space orbits to prevent divergences

- Harmonic oscillator basis implemented easily
 - $\psi_{nlm_l}^{HO}(\vec{r}) = R_{nl}^{HO}(r)Y_{lm_l}(\theta,\phi)$
 - Typically implemented in nuclear structure calculations
- Skyrme Hartree-Fock basis is chosen for realistic basis
 - Does not have a clean analytic expression
 - Radial wavefunctions implemented via an expansion of the HO basis

$$\psi_{nlj}^{SHF}(\vec{r}) = \sum_{n} a_n R_{nl}^{HO}(r) [Y_l(\theta, \phi) \otimes \chi_s]_j$$

- In practice, expansion is limited to nmax
- Percentage of HO basis radial wavefunction given by a_n^2
- SHF can only be solved for bound orbits
- Orbits unbound by few MeV solved approximately
- HO basis used for more unbound orbits
- Gram-Schmidt process is used to ensure orthonormality of basis
- Single Particle Energies
 - Renormalization procedure sums over diagrams with energy denominators
 - Divergences can occur for model space orbits with small energy differences
 - Identical valence energies for model space orbits to prevent divergences

- Harmonic oscillator basis implemented easily
 - $\psi_{nlm_l}^{HO}(\vec{r}) = R_{nl}^{HO}(r)Y_{lm_l}(\theta,\phi)$
 - Typically implemented in nuclear structure calculations
- Skyrme Hartree-Fock basis is chosen for realistic basis
 - Does not have a clean analytic expression
 - Radial wavefunctions implemented via an expansion of the HO basis

$$\psi_{nlj}^{SHF}(\vec{r}) = \sum_{n} a_n R_{nl}^{HO}(r) [Y_l(\theta, \phi) \otimes \chi_s]_j$$

- In practice, expansion is limited to nmax
- Percentage of HO basis radial wavefunction given by a_n^2
- SHF can only be solved for bound orbits
- Orbits unbound by few MeV solved approximately
- HO basis used for more unbound orbits
- Gram-Schmidt process is used to ensure orthonormality of basis
- Single Particle Energies
 - Renormalization procedure sums over diagrams with energy denominators
 - Divergences can occur for model space orbits with small energy differences
 - Identical valence energies for model space orbits to prevent divergence

4 E b

- Harmonic oscillator basis implemented easily
 - $\psi_{nlm_l}^{HO}(\vec{r}) = R_{nl}^{HO}(r)Y_{lm_l}(\theta,\phi)$
 - Typically implemented in nuclear structure calculations
- Skyrme Hartree-Fock basis is chosen for realistic basis
 - Does not have a clean analytic expression
 - Radial wavefunctions implemented via an expansion of the HO basis

$$\psi_{nlj}^{SHF}(\vec{r}) = \sum_{n} a_n R_{nl}^{HO}(r) [Y_l(\theta, \phi) \otimes \chi_s]_j$$

- In practice, expansion is limited to nmax
- Percentage of HO basis radial wavefunction given by a_n^2
- SHF can only be solved for bound orbits
- Orbits unbound by few MeV solved approximately
- HO basis used for more unbound orbits
- Gram-Schmidt process is used to ensure orthonormality of basis
- Single Particle Energies
 - Renormalization procedure sums over diagrams with energy denominators
 - Divergences can occur for model space orbits with small energy differences
 - Identical valence energies for model space orbits to prevent divergences

Wavefunction expansions

- $\bullet\,$ Renormalization cutoff at 6 $\hbar\omega$
 - Sets $n_{max} = 4$ for $p_{3/2}, p_{1/2}$ orbits and $n_{max} = 3$ for $f_{7/2}, f_{5/2}$ orbits
 - Only 1% and 3% of $f_{7/2}$ and $f_{5/2}$ strength missing due to cutoff
 - Significant strength missing for $p_{3/2}$ and $p_{1/2}$ (16% and 18%)
- Calculation to $n_{max} = 6$ for all four orbits
 - Possible to first order in perturbation theory
 - Missing strength for $f_{7/2}, f_{5/2}, p_{3/2}, p_{1/2}$: 0%,0%,2%,3%
 - a_n coefficients then renormalized so that $\sum_{n=0}^{n_{max}} a_n^2 = 1$
 - Expansion accounts for "long-tail" behavior of p orbits due to loose binding

Wavefunction expansions

• 99% of $f_{7/2}$ orbit and 97% of $f_{7/2}$ orbit represented by R_{03}^{HO} • 80% of $p_{3/2}$ orbit and 78% of $p_{1/2}$ orbit represented by R_{11}^{HO}

⁴²Si

Conclusions

Island of Inversion

Conclusions

Representative Nuclei

• Towards stability by the removal of four neutrons

Island of Inversion

Conclusions

Representative Nuclei

- Into the island of inversion ($\approx 20\%$ of the wavefunction in standard configuration)
- Comparison to data is often difficult because few states are known

Island of Inversion

Conclusions

Representative Nuclei

- Includes data from D. Miller et al., Phys. Rev. C 79, 054306 (2009)
- · Lowest four experimental states were included in the fit