High neutrino astronomy with IceCube and beyond

Marek Kowalski University Bonn

Sacley, 30.1.2012

Outline

- Introduction to high energy neutrino astrophysics
- The IceCube observatory at the South Pole
- First results from IceCube
- Optical follow-up for the IceCube experiment
- Beyond IceCube

Why do High Energy Neutrino Physics

Astrophysical questions:

Origin of the cosmic rays

Uncovering "invisible" phenomena

Cosmic ray physics

Particle physics:

Search for dark matter

Quantum gravity (and other BSM physics)

Magnetic Monopoles

Neutrino-oscillations

The energetic Universe

Cosmic Rays

Cosmic rays have been observed up to 10²⁰ eV!

What are the sources?How are particles accelerated?

High-energy neutrinos can be important messenger particles.

Neutrino production in cosmic sources

Neutrino propagation

$$p + X \rightarrow \pi^{+-} + \pi^{0} + \dots$$
$$\downarrow \rightarrow \nu + \mu + \dots$$

Neutrino oscillation length: $\lambda_{23} \approx 10^{11} (E_v/TeV) \text{ cm}$

Flavor ratio at the source $v_e : v_u : v_\tau \approx 1 : 2 : 0$

Flavor ratio at the Earth: $v_e : v_u : v_\tau \approx 1 : 1 : 1$

Open water/ice Neutrino Telescopes

IceCube: A cubic kilometer neutrino detector

The IceCube Detector

Design Specification

- Digital Optical Modul: DOM
- Number of DOMs 5360
- Number of strings 86
- Number of surface tanks 160
- Instrumented volume 1 km³
- Angular resolution < 1.0°

AMANDA construction: 1997 - 2000 IceCube construction: 2005 - 2011

The IceCube Detector

Digital Optical Module

Optical properties of the detection medium

The IceCube Detector IceCube with 86 strings

Neutrino signatures

Neutrino signatures

Particle shower (cascade)

Observation of moon shadow

59 strings (2009-2010)

• $\vec{x}_s^{\text{obs}} = (-0.1^{\circ} \pm 0.1^{\circ}, 0.0^{\circ} \pm 0.1^{\circ})$

Cosmic rays blocked by the moon lead to a point-like deficit in down-going muons

Point Source Search: IceCube 40 & 59

Northern sky & Southern sky

43339 up-going + 64230 down-going from 723 days

No evidence for neutrino sources, yet

GRBs as neutrino sources

Search results

211 northern sky GRBs studied with IC40 & IC59

⇒no coincident neutrino detected! Upper limit from IceCube starts to severely constraints models

GRBs as neutrino sources

Conventional models appear inconsistent with GRBs as the source of cosmic rays

Submitted to Nature

Supernovae

Gravitative collaps of a very massive, rotating star (>25 M_{\odot}):

Simulation: MacFadyen (2000)

Source: Core-collapse Supernovae with mildly-relativistic Jets inside, that don't reach the surface.

Motivation: Gamma-Ray Bursts, Polarisation & Radio-Observations.

Neutrino prediction:

30 Neutrino-events with E>100 GeV in 10 s in IceCube at a distance of d=10 Mpc. Ando & Beacom, PRL (2005); Razzaque, Meszaros & Waxman, PRL (2005).

The ROTSE Network

3a, SSO, Australia

INAREK KOWAISKI / NEUTRINO ASTRONOMY with IceCube and Beyond Sacley 30.1.2012

The ROTSE Telescopes

1.85°

	multiplicity	observed	expected
SNe		0	0.074
IC 40	Doubletts	15	8.55
IC 40	Tripletts	0	0.003
IC 59	Doubletts	19	15.66
IC 59	Tripletts	0	0.004

"Neutrino physics is largely an art of learning a great deal by observing nothing", Haim Harari

Supernova constraints

Abbasi et al., A&A 2012

Less than 4.2% of all core-collapse SNe contain a jet with Γ = 10 und E_{iet} = 3×10⁵¹erg

PINGU - Precision IceCube Next Generation Upgrade

Utilizing existing infrastructure & experience for a large, low energy neutrino-detector First stage ("PINGU") • ~18 extra strings for E_{thresh}~1 GeV • WIMP search, v-oscillation,...

Second stage ("MICA")

- New photon detection technology, E_{thresh}~ 10 MeV
- proton decay, supernova neutrinos, PINGU-I topics
- Costs comparable to IceCube, KM3Net

MICA – Multi-megaton Ice Cherenkov Array

Goals for 2nd. phase: ~5 MTon scale with energy threshold of ~10 MeV

- IceCube provides active veto
- Physics extraction from Cherenkov ring imaging in the ice

Proton decay:

 $τ_p$ ~10³⁵ - 10³⁶yr for p→ $π^0$ +e⁺ channel. Probe various SU(5) GUT theories

Supernovae:

Unique sensitivity to nearby extra-galactic Supernovae with rate 1-2/yr

Marek Kowalski / Neutrino Astronomy with IceCube and

MICA – Multi-megaton Ice Cherenkov Array

- Current v-detectors sensitive to galactic SNe ⇒1-2 SNe per century
- Within 10 Mpc, ~2 SNe per year
 ⇒5-10 Mton neutrino detector
 required
- Novel science program enabled with routine SNe detection:
 observing collapse in BH
 normalizing star formation
 multi-messenger with grav. waves

Spectra from core collapse SNe: Neutrino star vs Black Hole

Conclusion

- IceCube is now complete and has started collecting data with unprecedented sensitivity.
- A search for point sources and GRBs with the IceCube 40+59 string detector has not brought a discovery yet, many other searches are ongoing.
- IceCube has been connected to a network of robotic optical telescopes, as well as to SWIFT that perform automated follow-up observations
- Extension of IceCube principle to lower energies planed, providing significant new scientific opportunities

Astrophysical neutrino search

Gamma-Ray Bursts

Satelite Detection of keV-MeV photon bursts

Astrophysical neutrino search

Gamma-Ray Bursts

10⁵¹ ergs (10⁴⁴ J) emitted within few seconds through gamma-rays. ⇒highly relativistic jets.

Possible sources of the highest energy cosmic- rays ⇒ Neutrinoemission.

Astrophysical neutrino search

Gamma-Ray Bursts

408 GRBs detected with Satelites (1997-2004):

⇒no coincident neutrino detected!

Upper limit is within a factor 2 relative to model predictions

Optical follow-up of neutrino bursts

Supernova/GRB detection with optical telescopes

Global network of robotic telescopes

ROTSE III 4 x 0.45 m FoV: 2° x 2° rapid v follow-up

Robonet-1.0

3 x 2.0 m FoV: 0.1° x 0.1° follow-up of ROTSE

Optical follow-up of neutrino bursts

Supernova sensitivity

Summary

So far:

- AMANDA has been running since 2000.
- More than 5000 atmospheric neutrinos above 100 GeV energies.
- No indication for an astrophysical neutrino flux.