GBAR (Gravitational Behaviour of Antihydrogen at Rest)

CEC

GBAR dans l'IRFU

- DIR: P. Debu
- SPP: *B. Mansoulié*, P. Pérez, Y. Sacquin, B. Vallage
- SEDI: L. Liszkay
- SACM: J-M. Rey, P. Lévêque, , A. Chancé, D. Loucano et l'atelier du SACM
- SIS: P. Bargueden, G. Dispau, Y. Lecout, P. Lotrus, J. Noury, J-Y. Roussé, Y. LeNoa
- SIS(BE): P. Hardy, G. Coulloux
- SPhN: contacts avec J. Carbonell, V. Blideanu

Etudiants: P. Grandemange, P.Comini Postdocs: D. Brooke-Roberge, C. Roux (?) (ANR POSITRAP, Sept 2012) Stagiaire: M. Haroche 1 an (centrale Paris) ?

Aides ponctuelles:

- SACM: F. Peauger, A. France, G. Bourdelle, S. Langlois, R. Duperrier
- SEDI: P. Legou, Y. Combet
- SPP: R. Aleksan

<u>Audit</u>:

S. Joly, L. Rinolfi, H. Dzitko

Motivation

<u>A direct test</u> of the Equivalence Principle with antimatter

The acceleration imparted to a body by a gravitational field is independent of the nature of the body :

Inertial mass = *gravitational mass*

Tested to a very high precision with many materials

Weak Equivalence Principle (torsion pendulum)

$$(\Delta a / a)_{Be/Ti} = (0.3 \pm 1.8) x 10^{-13}$$

S.Schlamminger et al, Phys Rev Lett 100 (2008) 041101

Strong Equivalence Principle (Lunar Laser Ranging)

$$(\Delta a / a)_{Earth/Moon} = (-1.0 \pm 1.4) \times 10^{-13}$$

J.G.Williams et al, Phys Rev Lett 93 (2004) 261101

CPT symmetry assumed (see talk by E. Adelberger at gbar2011 workshop http://indico.in2p3.fr//event/gbar2011.fr)

Theory

$$\mathbf{V} = -\mathbf{G} \ \frac{\mathbf{mm'}}{\mathbf{r}} (\mathbf{1} \ \mp \ \mathbf{a} \ \mathbf{e}^{-\frac{\mathbf{r}}{\mathbf{v}}} + \mathbf{b} \ \mathbf{e}^{-\frac{\mathbf{r}}{\mathbf{s}}})$$

$$\underbrace{\mathbf{A}}_{\text{Newton}} \ \mathbf{A}_{\text{Supergravity : one component of repulsive gravity}}$$

J. Scherk, Phys. Lett. B, 265 (1979).

Discussion and experimental constraints : M. Nieto and T. Goldman, Phys. Rep. 205, 221 (1991).
Motivation for antigravity in General Relativity: G. Chardin, Hyperfine Interactions 109, 83 (1997).
Lorentz and CPT violation in SME: V. A. Kostelecky and J. D. Tasson, Phys. Rev. D 83, 016013 (2011).
→ Toy model evades constraints

$$L = \frac{1}{2} \underbrace{(m + \frac{5}{3}N^w m^w \overline{c}_{TT}^w)v^2 - gz(m + N^w m^w \overline{c}_{TT}^w + 2\alpha N^w (\overline{a}_{eff})_T^w)}_{m_{i,eff}}$$

$$m_{i,eff} = m_{g,eff}$$

$$m_{i,eff} = m_{g,eff}$$

$$a = g$$

$$m_{i,eff} \neq m_{g,eff}$$

$$\overline{a} = g(1 - \frac{4m^w N^w}{3m} \overline{c}_{TT}^w)$$
antimatter

P. Pérez – CSTS – SPP– 1/06/2012

Considérations théoriques

- Antigravité en Relativité Générale
 → violation de la conservation de l'énergie
- $m_G \neq \overline{m}_G$ possible si on ajoute des interactions (supergravité...)
- Pas d'antimatière dans l'univers visible
 → répulsion matière antimatière ?
- énergie noire + matière noire + inflation
 → théorie de la gravitation OK ?

Limites indirectes :

- Contenu en antimatière de la matière ordinaire : ~ 10^{-9}
- Mesures η^{\pm} et Φ^{\pm} en fonction du temps par CPLEAR : qqs 10-9
- Mesure fréquences cyclotron p (H⁻) et \bar{p} dans un même champ B : ~ 10⁻⁶

Limite directe ?

-Temps d'arrivée d'1 neutrino (?) & 18 antineutrinos de SN1987a : ~ 10⁻⁶

Pourquoi l'antihydrogène ?

-positrons : F. Witteborn and W. Fairbank, Phys Rev Lett 19 (1967) 1049)
-antiprotons : PS200 Proposal Los Alamos Report LA-UR 86-260
-Systématiques trop grandes :

 $m_e g / e = 5.6 \times 10^{-11} V / m$ (une charge élémentaire à 5 m)

-antineutrons : difficile de les ralentir suffisamment T. Brando et al, NucI. Instrum. Methods 180 (1981) 461

-positronium : temps de vie très court (142 ns) si n = 1
possibilité discutée s'il est excité n>>1
Pbs : refroidissement, polarisabilité, ionisation par rayonnement...
A.P. Mills, M. Leventhal, Nucl. Instrum. Meth. in Phys. Research. B192 (2002) 102

Low velocity for free fall measurement

Using \overline{H}^+ to get \overline{H} atoms

- Produce ion \overline{H}^+
- \bullet Sympathetic cooling 10 μK
- Photodetachment of e⁺
- Time of flight

Error dominated by temperature of $\overline{H}^{\!+}$

Relative Precision on \bar{g} :

H detected free falls	∆g/g
1.5 10 ⁵	0.001
1500	0.01

 $h = 20 \text{ cm} \rightarrow \Delta t = 202 \text{ ms}$ $h = 15 \text{ cm} \rightarrow \Delta t = 175 \text{ ms}$

Production des $\overline{\mathbf{H}}^{\scriptscriptstyle +}$

GBAR à Saclay

Recommandations CSTS SPP 5 mai 2010

1- Comprendre le déficit de e ⁺ rapides		mesures AIRIX (E = f(I))	04/2011
2- Réaliser ligne de transport e ⁺ lents		Financement P2I	06/2011
3- Recherche de collaborateurs et proposal CERN	_	GBAR proposal (14 instituts 40 physiciens)	09/2011

Actions supplementaires

ANR POSITRAP (600 k€),DIM IFRAF RESIMA (580 k€),P2IO (96 k€)Equipex PAM,ANR PARMES (x2),demande postdoc P2IO (100 k€)ERC Synergy (12.5 M€),ANR SCOPE (x2)

Transport piège de Penning de RIKEN et installation
 Contact NCBJ Swierk pour futur linac → nouveau collaborateur
 Contact J. Walz (Mainz) → nouveau collaborateur

Thèses de P. Dupré et N. Ruiz Workshop GBAR2011 60 participants/ 2 jours a l'IHP

Mesure E_{LINAC} avec spectro AIRIX

Figure 1 – measured e beam energy spectrum

Figure 2 – measured e beam energy vs current

Intervention NCBJ sur regulation Linac

Conseil de L. Rinolfi (Cern) et aide de R. Aleksan

MoU entre NCBJ (Swierk, Pologne) et CEA/DSM -> régulation linac (10 k€)

Effectué avril 2012 avec succès -> stable a 200 Hz

Situation 5/04/2012

N. Ruiz, Thesis, U. of Paris 6, (2011)

moderation

Figure 5 – tungsten mesh moderator

Figure 6 – principle of slow e^+ detection

Slow positrons from Linac

Slow positron yield and heating power vs. energy

P. Pérez – CSTS – SPP– 1/06/2012

Electron energy (MeV)

e⁺ accumulation

RIKEN Penning trap adapted to pulses from Linac

P. Pérez – CSTS – SPP– 1/06/2012

e⁺ accumulation(2)

Electron spot coming from the electron gun on a phosphor screen

P. Grandemange, These, (2013)

Efficient $e^+ \rightarrow o$ -Ps conversion

P. Comini Sections efficaces production $\overline{H} \& \overline{H}^+$

- 2 questions : énergie optimale des \bar{p} & état d'excitation optimal de Ps ?
- 2 réactions :
 - $\bar{p} + Ps(n_{Ps}, l_{Ps}) \longrightarrow \bar{H}(n_H, l_H) + e^-$ (3-corps)
 - $\overline{H}(n_H, l_H) + Ps(n_{Ps}, l_{Ps}) \longrightarrow \overline{H}^+ + e^-$ (4-corps)
- 1 même modèle théorique : Continuum Distorted Wave Final State (CDW-FS)
- Même niveau d'approximation pour les deux réactions
- CDW-FS en quelques mots :
 - Méthode perturbative avec description exacte des états asymptotiques : état initial perturbé par un potentiel coulombien à courte portée ; les particules du continuum sont décrites par des fonctions d'onde de Coulomb, l'influence du potentiel coulombien réel à longue distance passant dans un terme de phase (d'où « distorted »).
- Calculs pour les réactions inverses en matière ($\overline{H} \leftrightarrow H$; $\overline{H}^+ \leftrightarrow H^-$; etc)
- Outils principaux : développements en ondes partielles
- Étude de la réaction à 4 corps inspirée de :

J. Hanssen, P.-A. Hervieux, O.A. Fojón and R.D. Rivarola, *Phys. Rev. A* **63**, 012705 (2001), *Positronium formation in positron-metastable-helium collisions*

P. Comini Sections efficaces production \overline{H} & \overline{H}^+

Ps excitation

Echéances

12/2012	piégeage e ⁺ (collab. CSNSM, RIKEN, Swansea)									
12/2013	formation d'une cible de Ps (collab. ETHZ)									
	ralentissement des (anti)protons (collab. CSNSM-P2IO)									
12/2014	excitation Ps (collab. LKB)									
	possibilité de mesurer les sections efficaces "matière"									

Collaboration GBAR

G. Chardin, P. Dupré, P. Grandemange, D. Lunney, V. Manea	CSNSM, CNRS – Orsay , France
A. Badertscher, P. Crivelli, A. Curioni, A. Marchionni, B. Rossi, A. Rubbia	ETHZ, Zürich, Switzerland
V. Nesvizhevsky	ILL, Grenoble, France
P-A. Hervieux, G. Manfredi	IPCMS, Strasbourg, France
P. Comini, P. Debu, L. Liszkay, , B. Vallage B. Mansoulié, P. Pérez, J-M. Rey, Y. Sacquin	IRFU, CEA, Saclay, France
J. Walz, F. Schmidt-Kaler	Johannes Gutenberg Universität, Mainz, Germany
A. Voronin	Lebedev Phys. Institute, Moscow, Russia
F. Biraben, P. Cladé, A. Douillet, A. Gérardin, S. Guellati, L. Hilico, P. Indelicato, A. Lambrecht, R. Guérout, J-P. Karr, F. Nez, S. Reynaud, V-Q. Tran	Laboratoire Kastler-Brossel, CNRS – Paris, France
S. Wronka, M. Staszczak	Narodowe Centrum Badań Jądrowych (NCBJ), Otwock-Świerk , Poland
A. Mohri, Y. Yamazaki	Atomic Physics Laboratory, RIKEN, Japan
M. Charlton, S. Eriksson, N. Madsen, D.P. van der Werf	Swansea University, UK
N. Kuroda, H. Torii	University of Tokyo, Japan
Y. Nagashima	Tokyo University of Science, Japan
P. Froelich	Uppsala Universitaet, Sweden

GBAR au CERN

- Proposal CERN-SPSC-P-342, 30/09/2011
- SPSC \rightarrow MoU \rightarrow réunion de collaboration 28/06
- RB \rightarrow 30/05 \rightarrow GBAR accepté,

mais ELENA retardé 1 an (2017)

- Premières interactions avec équipe AD/ELENA
 - Estimation des besoins en services
 - Plan d'implantation \leftarrow SIS-BE

Organisation de la collaboration

 6 réunions plénières au LKB et au CERN

MoU en préparation
 →Structure décisionnelle
 →Engagements financiers pour la construction

Memorandum of Understanding

for the Construction of the GBAR/AD-XXX Experiment

between

The EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH, "CERN", an Intergovernmental Organization having its seat at Geneva, Switzerland, as Host Laboratory

on the one hand,

March 2012

and

the Collaborating Institutions/Funding Agencies of the GBAR Collaboration

on the other hand.

p deceleration

From 100 keV (ELENA) \rightarrow 1 keV

Scheme adapted from ISOLTRAP F. Herfurth et al., NIMA 469 (2001) 254.

drift tube

simulation underway for emittance optimization \bar{p} accumulation trap can be added

Reaction region

$\overline{\mathbf{H}}^+$ cooling challenge

sub-Doppler cooling

P. Pérez – CSTS – SPP– 1/06/2012

Photo detachment with minimal recoils

 \overline{H}^+ binding energy 0.76 eV $\implies p_{\gamma} \sim 0.76 \text{ eV/c}$ close to threshold Recoil due to absorption: $v_{recoil} = p_{\gamma} / m_H = 0.2 \text{ m/s} \Rightarrow 4 \text{ cm for } 0.2 \text{ s fall}$ Recoil due to e⁺ emission $E_{c} = E_{\gamma} - 0.76 \Longrightarrow v_{recoil} = \sqrt{\frac{2m_{e}E_{c}}{m_{rec}}} \sim 0.3 \text{ m/s for } E_{c} = 1 \text{ } \mu\text{eV}$ v recall (m/s) σ (m^2) 3.0 $3.5\times\!10^{-\!22}$ 2.5 $3. \times 10^{-22}$ $2.5\times\!10^{-22}$ 2.0 2.×10⁻²² 1.5 1.5×10^{-22} 1.01.×10⁻²² 0.5 $5.\times 10^{-23}$ AE (neV) AE (neV) 20 60 100 40 80 20 40 60 80 100

1 W laser, 150 µs shots, 99% efficiency

H free fall detection

Echéances

2012	MoU pour la construction de GBAR
12/2014	installation linac au CERN
2015	Commissioning
2016	Premiers faisceaux et démarrage de la mesure de $ar{ extrm{g}}$
2018	Spectroscopie gravitationnelle

Perspective: towards higher precision on \bar{g}

Improve precision on $\bar{\mathbf{g}}$ with spectroscopy of gravitational levels of $\bar{\mathbf{H}}$:

- similar method as for UltraCold neutrons (ILL)
- only few events needed to reach $\sim 10^{-3}$ precision !

A. Yu. Voronin, P. Froelich, and V. V. Nesvizhevsky,

P. Pérez – CSTS – SPP– 1/06/2012

GBAR et la concurrence

AEGIS a comme but une mesure de \bar{g} à 1%.

Approuvé par le CERN en 2008.

Commence installation en 2012 sur AD et bénéficiera d'ELENA en 2017.

Utilise \overline{H} neutre.

Avait prévu une température initiale de 100 mK et 10^5 évènements pour $\Delta \bar{g}/\bar{g} = 1\%$. Rencontre des problèmes sur la faisabilité avec collisions sur Os⁻.

Espoir d'atteindre 4K (méthode publiée par ATRAP en mars 2012)

Si très optimiste (tout le reste marche) $\rightarrow \Delta \bar{g}/\bar{g} = 40\%$ (si pas de bdf)

2012: commisioning e⁺ & \bar{p} traps

2013: Cern shutdown (essais avec matière: mesure production H, IPNL)

2015-2016: possibilité de première mesure ?

GBAR utilise \overline{H}^+ qui peut être refroidi à 9 µK, 1500 évènements $\rightarrow \Delta \overline{g}/\overline{g} = 1\%$ Possibilité d'amélioration par spectroscopie gravitationnelle. Pas de bruits de fond. Utilisera ELENA qui sera mis en service en 2017.

ALPHA a tenté une mesure de la masse gravitationnelle de l'antihydrogène: |mg/mi < 100 (non publié). Prévoit une adaptation pour mesurer g mais pas encore de proposal. ATRAP commence à mentionner la gravitation dans ses buts de physique
 ASACUSA n'en parle pas

Expected efficiencies

	2	40	Electrons	· · · · · · · · · · · · · · · · · · ·		25
Linac frequency	Mean current	Pulse current	Pulse duration	Electrons per pulse	Electron rate (s^{-1})	
300 Hz	0.2 mA	0.33 A	2 µs	4.2×10^{12}	1.25×10^{15}	
- Municipality - 200	 Providencial constraints in the second s		Positrons	n a second property and the second		en en
Production efficiency (at 10 MeV)	Transport efficiency	Fast positrons per pulse	Fast positron rate (s^{-1})	Moderation efficiency	Slow positrons per pulse	Slow positron rate (s^{-1})
5.5×10^{-4}	80 %	1.8×10^{9}	5.5 × 10 ¹¹	5×10^{-4}	9.2 × 10 ⁵	2.8×10^{8}
for boost and the	a al a nancrar	21 36-23 16-5 16-16 16-16	Positron storage	194 - A4		
Trapping efficiency	Injection time	Stored positrons				×
70 %	110 s	2.1×10^{10}				
	14 4.4		Positronium		·	
Production efficiency	Tube section	Tube length	Positronium density	Loss fraction from Ps decay		
35 %	1 mm ²	1 cm	$7.4 \times 10^{11} \text{ cm}^{-3}$	0.5	j/	
1000 (A)		Anti	hydrogen positive	ions		
Antiprotons per pulse	Deceleration and bunching efficiency	$\begin{array}{c} Production \ cross\\ section \ of \ the \ \overline{H} \ atom \end{array}$	Production cross section of the \overline{H}^+ ion	H per pulse	$\overline{\mathrm{H}}^+$ per pulse	-
6 × 10 ⁶	80 %	$4.4 \ 10^{-16} \ \mathrm{cm}^2$	8.8 10 ⁻¹⁵ cm ²	3.9×10^{2}	0.32	
		A	Antihydrogen atom	S		
H ⁺ Trapping efficiency	Cooling efficiency	cold \overline{H}^+ per pulse	Photodetachment efficiency	Detector acceptance	$\overline{\mathbf{H}}$ events per pulse	\overline{H} event rate (s ⁻¹)
100 %	70 %	0.2	99 %	65 %	0.14	1.3×10^{-3}

Investissements à négocier

Work Package	Deliverables	Invest. Cost (k€)	Institutes
1- Management			IRFU, LKB, JGU
2 East a ⁺	Electron linac	500	NCDI IDELL
2- Fast e	Primary target	NCBJ, IRFU	
	Neon moderator	-	
3- Slow e^+	Tungsten moderator	20	IRFU, Swansea, TUS
	Transport line		
4 o ⁺ accumulation	Input/output bunchers	200	RIKEN, IRFU, CSNSM,
4- e accumulation	e ⁺ trap	-	Swansea
5 Degitronium	e ⁺ /Ps converter development	60	IND IDELLETUZ
5- Positronium	excitation laser	370	LKB, IKFU, ETHZ
6- Antiproton deceleration	\bar{p} decelerator and focus	87	CSNSM, IRFU, LKB, Tokyo
7- $\overline{H} \& \overline{H}^+$ production	e ⁺ and p̄ transport to interaction region, 开 & 开 ⁺ detection	374	Swansea, IRFU, LKB
	313 nm sources	437	
8- \overline{H}^+ cooling	Traps and chamber	86	Mainz, LKB, ILL
	Photodetachment	127	
9- Detector	Trigger and veto scintillators, tracker system	500	ETHZ, IRFU, Mainz
10- Theory	Ps-H interactions, plasma trapping	20	IPCMS, Lebedev, Uppsala
11- Slow control,	Centralized slow control	270	IRFU
DAQ	DAQ	100	all
12- Installation at CERN		200	
13- Dissemination		-	
14- Quantum states	Granite support plate with active compensation, magnetic shield, clean room	300	ILL, All
Total		3801	

Ressources humaines

Work Package	A1 total	A2 total	A1 Irfu	A2 Irfu
1- Management	7		7	
2- Fast e^+	11.3	6.1	1.1	0.5
3- Slow e^+	13.8	1.6	3.7	0.7
4- e^+ accumulation	12.8	1.6	3.9	0.8
5- Positronium	19.1	4.5	3.4	0.4
6- Antiproton deceleration	12.1	5.5	0.25	0.5
7- \overline{H} & \overline{H}^+ production	9.9	1	1.25	
8- $\overline{\mathrm{H}}^+$ cooling	26.4	11	0.25	
9- Detector	11.25	6.75	1.4	1.4
10- Theory	20			
11- Slow control, DAQ	17.5	11.3	11.5	5.3
12- Installation at CERN	16	17.4	7	5
13- Dissemination				
14- Quantum states	6	1		
Total	183.15	67.75	40.75	14.6

Hommes.an

	T1	12	13	14		12	13	14		12	13	14		12	13	14	
VP 2 fast e+						CDR DW2P	4 trai	oninc	1		_						
VP 3 slow e+								5155	,		F		a	n	n	ir	1
													U				
NP 4 trapping						WP	5 e+/	Ps (*))								
1		20	012		1	20)13		1	20)14		I	20)15		I.
	T1	T2	T3	T4	T1	T2	T3	Τ4	T1	_T2	T3	T4	T1	T2	T3	T4	
NP 5 e+/Ps (*)						WP	6 pba	ar de	qelera	ation							-
WP 2 fast e+													0.4	T	1	T	4
VP 6 pbar deceleration							7 inte	racti			_	L	2.1	<u> </u>		<u> </u>	-
Target			L			WF	/ IIIte	act		9 24	2			L			-
VP 7 interaction region				1.3	3 1												1
transport line					/. 1	WP	8 Hb	ar+ c	oolin		2			<u> </u>	+		1
		L	-				_							L	L		
e+ Penning trap					D 4.1 8	L4.1						1					1
output buncher									L 4.2			1			<u> </u>		1
input buncher		<u> </u>	+						L 4.3	1 —		1		<u> </u>	<u> </u>	t	1
NP 5 e+/Ps (*)		L	-								-	-		-	1		1
VP 9 DetenserPs target								L 5	_1			1					1
Ps excitation				D 5.1	1							L 5.	2				1
WP 6 pbar deceleration																	
VP 11 Slovpicologitype & DAQ								L 6	.1								
final						WP	11 51		ontro	120	40	L 11	.1	L	6.2		1
NP 7 interaction region							11 31						L	11.2			
e+ & pbar transport														L 7.1			
detection						WP	12 CI	RN	Instal	latio				L 7.2			
WP 84Barrtoointgtes													-			11 4 4 4	
313 nm source										L 8.	1				12	L 14.1	
capture trap						VOUR	14 Q	anti	um st	 8.	2						
Conceptuar Desight Report, includ	ling sp	ecifica	utions f	fo <mark>r eac</mark>	h objec	D 8.1								L 8.3			
photodetachment														L 8.4			
vacuum chamber & cryopump										L 8.5]
NP 9 Detector										_							1.
+ pulsethliftator for the title accum	nulated	in Rlk	EN tr	ap		<u>1</u> 5'9,17	ceptu	ale⊫)e	signul	s e po/	Tthisis	and page	g Spec	2ificat	ons i	or ea	ch o
ncoTiPiOs withsf.Ecetetitrænicsnche	ed to 1	00 ns												L 9.2			
Trigger										L 9.	3						
WP 11 Slow control & DAQ	H- FI		ream											_	_		
Slow Control						e+ r	ulsec	bea	n fror	h line		L 11	.1 sted i	h Rik		ho	1
DAQ													Ĺ	11.2		[""	1
WP 12 CERN Installation			_			inco	ming	puls	e fron	lina	c bun	ched	to 10	0 ns			4
6891ing, issielding, lates butshme	ent of H	<u>lbar+</u> a	at thre	shold													
Safety																	
			_			anti	rotor	dec	<mark>elera</mark> t	<mark>or te</mark> s	ted w	ith H	ELE	NA b	am		J
VP 14 Quantum states																.	
NP 14 Quantum states granite, etc		<u> </u>	-													L 14.1	1

WP 11 Slow control & DAQ

WP 12 CERN Installation

WP 14 Quantum states

		CDR
$\begin{array}{c} \text{CDR} \\ \text{PRR} \\ \text{L2.1} \\ \text{L3.2} \\ \text{L4.1} \\ \text{L4.3} \\ \text{L5.1} \\ \text{L6.2} \\ \text{L6.1} \\ \text{L6.2} \\ \text{L7.2} \\ \text{L8.1} \\ \text{L8.3} \\ \text{L8.4} \\ \text{L8.3} \\ \text{L8.4} \\ \text{L8.5} \\ \text{L9.1} \\ \text{L9.2} \\ \text{L9.1} \\ \text{L9.2} \\ \text{L9.1} \\ \text{L1.2} \\ \text{L1.4} \\ \text{L1.4} \\ \text{L1.4} \\ \end{array}$	Conceptual Design Report, including specifications for each object Product Readiness Review Linac commissioned at CERN Water cooled target, with W moderator holder and in situ annealing Tungsten moderator Slow positron transport line from moderator to trap input buncher e+ pulsed beam from linac accumulated in RIKEN trap buncher for fast positron plasma extraction from RIKEN trap incoming pulse from linac bunched to 100 ns e+/Ps converter in which Ps form a dense target of 10^12 at/cm3 Ps excitation laser beam focussed onto 1 mm diameter Ps target prototype for decelerator tested with protons or H- antiproton decelerator tested with H- ELENA beam e+ and pbar beams focused onto Ps target detectors for pbar, Hbar+ &Ps, created in reaction chamber laser for Be+ cooling electrostatic deceleration and capture trap for Hbar+ RF Paul trap for Be+ and Hbar+ cooling 1665 nm laser for photodetachment of Hbar+ at threshold cryopumped vacuum chamber for free fall measurement Scintillators equipped with PM and power, supplies TPC for reconstruction of Hbar annihilation vertex trigger system L 11.2 slow control of entire experiment DAQ for entire experiment hardware for quantum states detection clean room for quantum states hardware mounting	CDR
CDR	specification L 14. conception L 14. procurement L 14.2 realisation tests integration D 2.1 PRR for Linac	1
	D 4.1 e+ accumulation with single trap OK	

D 5.2 Choice of Ps excitation laser wavelength and antiproton energy

D 8.1 Paul trap geometry (planar/tubular)

D 8.4 Optimal photodetachment energy (impact D 9.1)

D 9.1 Choice of detector and vacuum chamber sizes

e+ pulsed beam from linac accumulated in RIKEN trap

D 4.1 e+ accumulation with single trap OK

incoming pulse from linac bunched to 100 ns

procurement

realisation tests integration

Planning (ms project, copyright R. Aleksan)

Requêtes

- Approbation de GBAR par le CERN \rightarrow projet IRFU avec "chef de projet" a plus de 50%
- support financier de l'IRFU pour les expériences a Saclay: "cabane expérimentale" dans Hall 126 (70 k€)
 ~50 k€ par an 2013-2015 et ~ 25 k€ par an de missions
- contribution de l'IRFU pour la construction de GBAR

Backups

Increase cross-section of $\overline{H} + Ps \rightarrow \overline{H}^+ + e^-$

\overline{H}^+ sympathetic cooling

Simulation of Be⁺ cooling in RF trap with micro-motion

 \rightarrow determine trap parameters

Free fall simulation

$\overline{\mathbf{H}}^+$ deceleration

Emission of o-Ps from single shot lifetime measurement

in magnetic field:

~ 12 % decays to singlet state (with short lifetime)

FIG. 9. Linewidth of the $1^{3}S-2^{3}P$ excitation of positronium

P. Pérez – CSTS – SPP– 1/06/2012

Energy of o-Ps : comparison CERN/UCR

Detection of slow positrons from Linac

P. Pérez – CSTS – SPP– 1/06/2012

Dense Ps target

Dump $2 \times 10^{10} e^+$ in Ps converter in $< \tau_{Ps} = 142$ ns

RIKEN test without buncher: 1.3 10¹⁰ e⁻ / 75 ns

tube geometry to keep density $(SiO_2 reflects Ps)$

Cross-sections on Ps

