
Extended BOSS e-BOSS

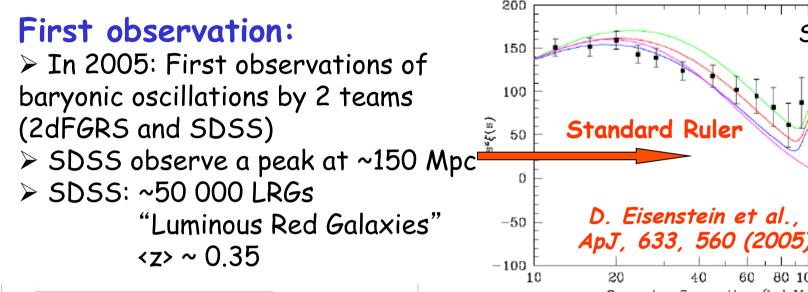
Outline:

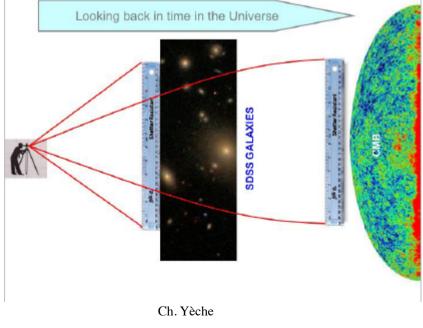
- Scientific Context
- eBOSS project
- Instrument upgrade

CSTS/SPP - Saclay - June 1, 2012

Saclay Group for e-BOSS

Scientists:


- > BOSS: J.-M. Le Goff, N. Palanque-Delabrouille,
- J. Rich and Ch. Yèche.
- > New members (already in BigBOSS team):
- E. Armengaud, Ch. Magneville and V. Ruhlmann-Kleider


Technical support (BigBOSS prototype)

- > Sédi: P.-H. Carton (project leader), P. Starzynski
- > SIS: S. Cazaux, D. Eppelle...

Scientific Context

Observation of baryonic acoustic peak

Comoving Separation (h⁻¹ Mpc) A 3D measurements:

 \succ Position of acoustic peak \Rightarrow Size of the sound horizon s

SDSS

80 100

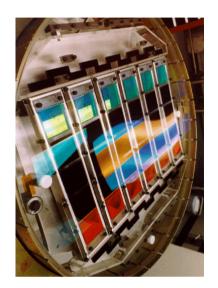
200

> Transverse direction:

$$\Delta \theta = s/(1+z)/D_A(z)$$

 \Rightarrow Sensitive to angular distance $D_A(z)$

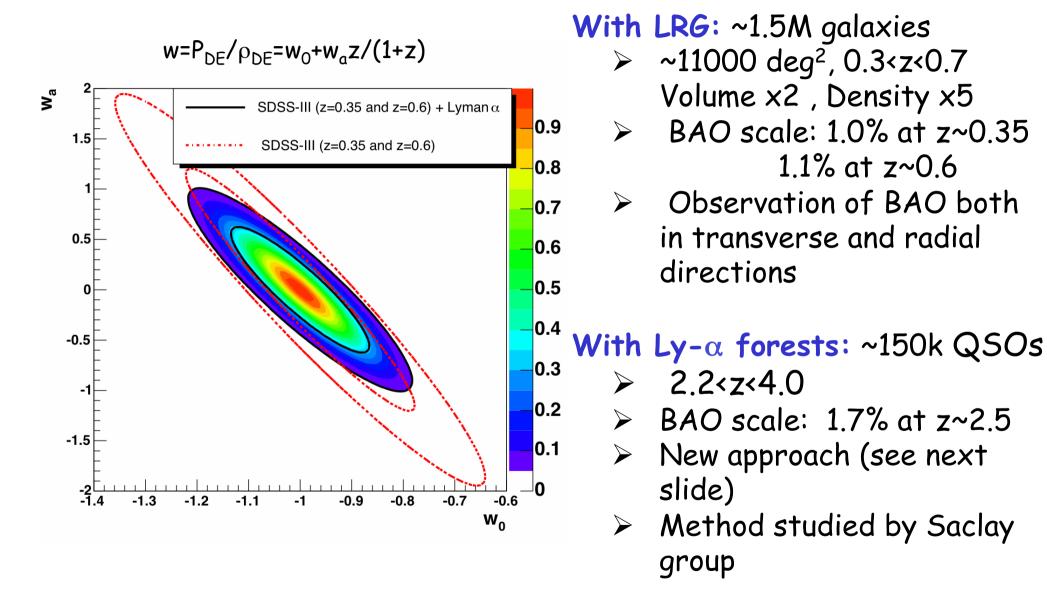
> Radial direction (along the line of sight): $\Delta z = s \cdot H(z)/c$


$$\Rightarrow$$
 Sensitive to Hubble parameter H(z).
Saclay, June 1, 2012

From SDSS to SDSS-III

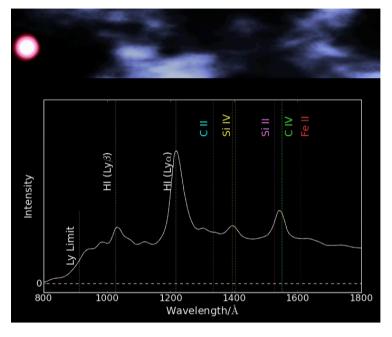
SDSS Consortium

- > 2.5m Sloan Telescope
- > Apache Point, NM
- > Wide field telescope ~ 7 deg²
- Camera equipped with 5 filters
- (~120 millions pixels)
- > Extension of imaging survey in SGC



Upgrade for SDSS-III

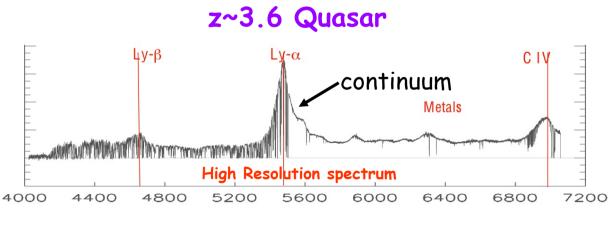
New fiber system ⇒ 1000 fibers
 Replacement of red CCDs by LBNL
 CCDs ⇒ LRG with higher z
 Replacement of blue CCDs with e2v
 CCDs with better throughput in UV
 ⇒ Lyman-α forest program


BAO with BOSS

Ch. Yèche

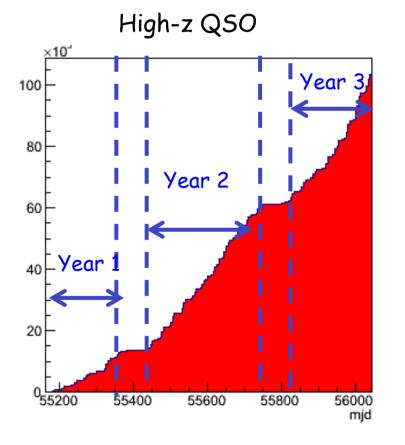
CSTS/SPP

Additional method: Ly- α forests

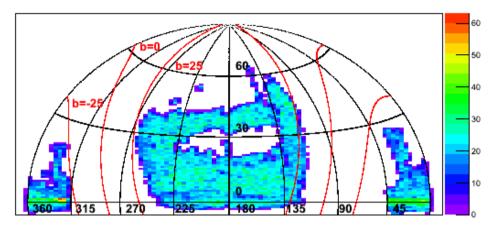

Principles

Use Ly-α forests of quasars (2.2<z<4)
 HI absorption in IGM along the line of sight of QSOs

We expect low density gas (IGM) to follow the dark matter density (validations : measured 1D power spectrum, N-body simulations and 3D power spectrum...)

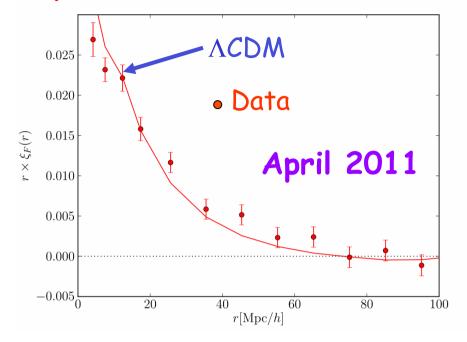

BAO specifications:

3D BAO: Correlation between the different lines of sight
BAO measurement for z~2.5
Better precision in radial direction (H(z) measurement).



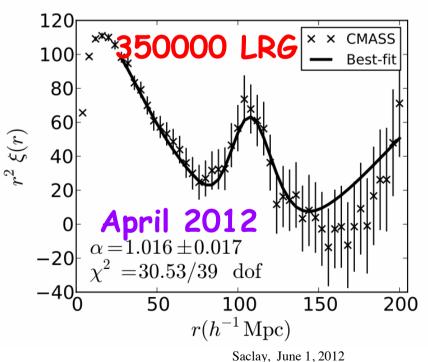
CSTS/SPP

Status of the survey


QSO density

So far, ~110 000 QSOs and
 ~700 000 galaxies over ~6700 deg²
 On average ~5000 high-z QSOs per month
 End of the survey (10700 deg²):

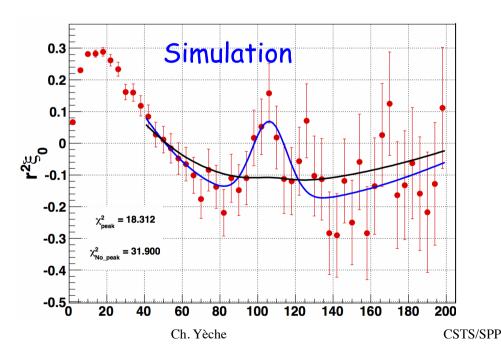
- ➤ 1.2-1.5M galaxies !!!
- > 150k 200k high-z QSOs !!!

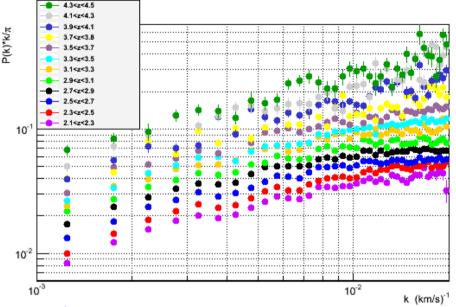

Ly-a forest - 14000 QSOs

BAO with LRG:
BOSS-only 5-σ observation
BOSS + SDSS-II: 7-σ
BAO will be the best probe of DE for this decade

First Results

Ly-α forest approach:
≻ First observation in 3D of matter in IGM
≻ Proof that Ly-α absorption is a reliable techniques for cosmology




CSTS/SPP

Saclay group contribution in BOSS

Overview:

- > Duration: 2009-2014
- 4 senior scientists + 1 post-doc+
- 2 PhD students + 2 EC
- ➤ Running cost: ~10k€/year/scientist
- No construction of instrument
- Target selection of the quasars: Responsibility (convener)

Analyses:

Luminosity function of quasars
 Power spectrum along the line of sight (constraint on neutrinos mass) - ANR funding (project NUMASS)
 BAO with Ly-α (convener) :
 Blind analysis - if lucky 3σ observation expected for summer 2012

project

CSTS/SPP

eBOSS : Extending BOSS on the Sloan Telescope

e-BOSS: Extending BOSS on the Sloan Telescope

Jean-Paul Kneib (CNRS/LAM), Christophe Yeche (CEA DSM/Irfu), Robert Cahn (LBL), Johan Comparat (LAM), Sudeep Das (UC Berkeley), Alexie Leauthaud (LBNL), Pat McDonald (LBNL), Adam Myers (Illinois), Nick Mostek (LBNL), Nathalie Palanque-Delabrouille (CEA DSM/Irfu), David Schlegel (LBNL), Uros Seljak (UC Berkeley), and Martin White (UC Berkeley).

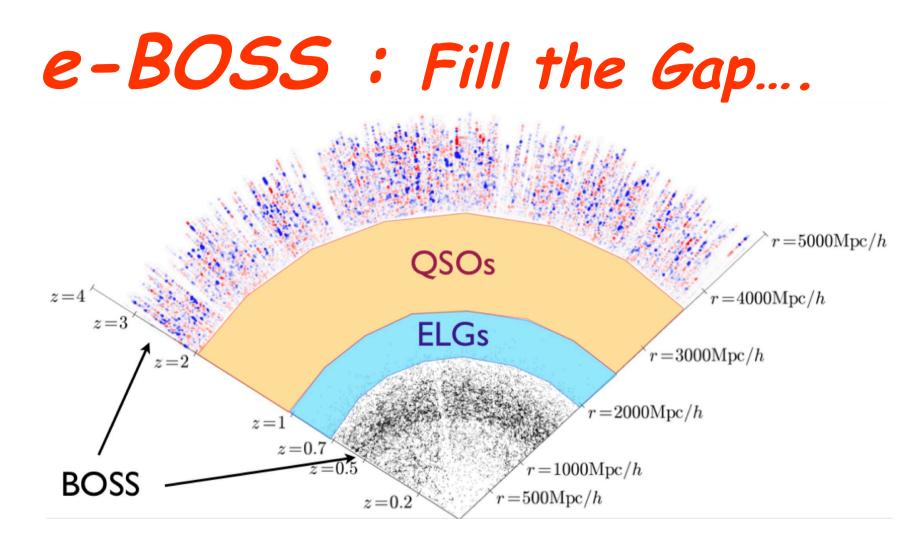
Abstract

Building upon SDSS-I, SDSS-II, and SDSS-III/BOSS, this proposal e-BOSS (extending BOSS) presents a four-year cosmology project that pushes the reach of the Sloan Telescope to higher redshift for galaxies, and fainter fluxes at lower redshift for QSOs, and extracts the full potential of next-generation imaging surveys. The SDSS redshift maps will be extended to 0.6 < z < 1 using emission line galaxies (ELGs) and to 1 < z < 2 using QSOs. These will yield dark energy constraints from baryon acoustic oscillations (BAO) at these redshifts.

Furthermore the signal in the Ly-alpha forest for z > 2.2 will be tripled compared to BOSS, resulting in significant improvements in dark energy and curvature constraints at high redshift.

Overlaps with imaging surveys on the same timescale (Dark Energy Survey, Pan-STARRS and HyperSuprimeCam) and CMB maps (ACT, ACTPol) will maximize the cosmology reach of those programs. The BOSS spectrographs allow one to probe the full redshift range 0 < z < 3 using galaxies, QSOs and Ly-alpha forest. Even by 2014, no other spectrograph will have this capability over thousands square degree survey areas.

LOI in early 2011

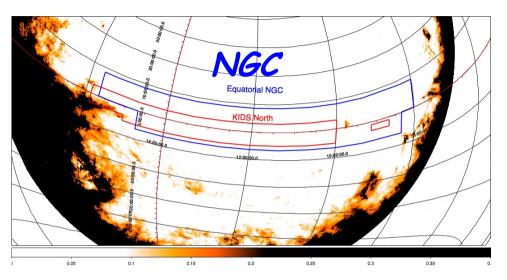

AS3 (After Sloan 3) call:

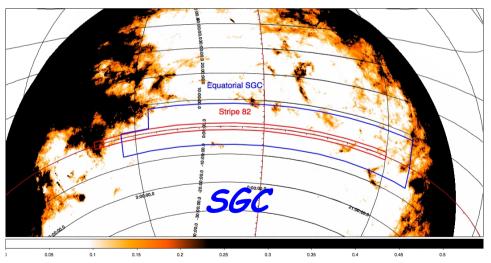
Response with a LOI (LAM, LBL and Saclay) in early 2011
 Saclay group proposed to use the QSOs as tracers in e-BOSS

Approval:

Proposal in September 2011
 (~70 Co-Is, 30 institutes)
 Approved in November 2011 (3 years instead of 4 years)

Hardware contribution: ➤ Construction of a 3rd spectro.

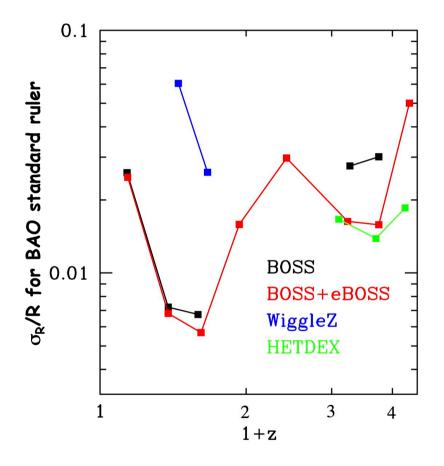

0.6<z<1.5 ELG: > Emission line galaxies (stars forming)


1<z<2.2 QSOs:

Tracers of cosmic structures
LF peaks at z ~1.5-2

Ly- α QSOs, 2.2<z<5: > g<22 \Rightarrow g<22.5 > Improvement of selection > ~15 deg⁻² \Rightarrow ~35 deg⁻²

e-BOSS overview



- e-BOSS status:
 - > 2.5m Sloan Telescope
 - > ~70 Co-Is, 30 institutes
 - > Approved by ARC
 - > Funding plan in definition
 - > 2014-2020: shared time with MaNGA and APOGEE

e-BOSS strategy:

- > ~3000 deg² in NGC and SGC
- > Target selection with SDSS
- > Deeper photometry : DES and
- (CFHT and NOAO) calls
- ~100k LRGs (0.3<z<0.8)</p>
- > ~1 million ELGs (0.6 < z < 1.5)
- > ~400k QSOs (~1/3 with z>2.2)

e-BOSS performances

BAO

- Continuous measurement for 0.3<z<4.0</p>
- > Improvement in Ly- α
- > Improvement by a factor 2 of FoM (precision on the measurement of $\sigma(w_0) \times \sigma(w_a)$)

$$w=P_{DE}/\rho_{DE}=w_0+w_az/(1+z)$$

Saclay contribution to e-BOSS

Observation preparations

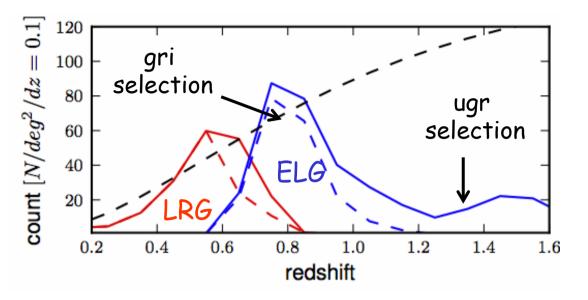
- > Target selection of QSOs
- > New strategy using the QSO intrinsic variability
- Responsibility of TS for e-BOSS

Data analysis

- > 1D and 3D power spectrum with Ly- α forest
- (v masses and BAO at $z\sim2.5$)
- > Clustering with QSO (BAO 1.0<z<2.0)

Upgrade of instruments

- > Construction of a 3rd spectrograph
- > Use Cryostat developed for BigBOSS (see next slides)
- > Instrument scientist of the 3^{rd} spectrograph


Instrument Upgrade

3rd Spectrograph

Why a 3rd spectrograph?

Motivations:

Increase the survey speed (40%)
Improvement of the resolution for high-z ELGs

Overview:

- > No room available at the bottom of the telescope
 - \Rightarrow 20m fibers to a conditioned room (like BigBOSS)
- > Additional spectrograph (only one arm)

 \Rightarrow wavelength range [650nm;950nm]

- Dedicated for ELGs (and LRGs)
- > 400 additional fibers, i.e. 350 new objects

```
\Rightarrow ~40% gain in survey efficiency
```

> For ELGs with z>1.0, OII doublet has to be resolved

 $\Rightarrow \texttt{R=}\lambda/\Delta\lambda \text{~}3500\text{-}4000$

 \Rightarrow ~25% gain in redshift determination for ELGs

	Without third arm	With third arm	Gain on BAO
Duration	3 years	3 years	
Coverage	$2200 \ \mathrm{deg}^2$	$3000 \ \mathrm{deg}^2$	
LRG redshift	105,000	145,000	18%
gri ELG redshift	365,000	495,000	18%
$ugr \ ELG \ redshift$	300,000	510,000	48%
QSO redshift	280,00	380,000	18%

Increase in survey efficiency and in density

- > Recover the descope after AS3 decision
- > With 3rd arm, a 3-year survey equivalent to a 4-year survey
- > One year operation \$2.5M to compare to 3rd arm cost ~\$1M

Strategy

Cost optimization

- Re-use existing instruments
- > MUSE spectrograph
- > Demonstrator of cryostat for BigBOSS
- > LBNL CCDs (BOSS and DES)
- > APOGEE fiber system

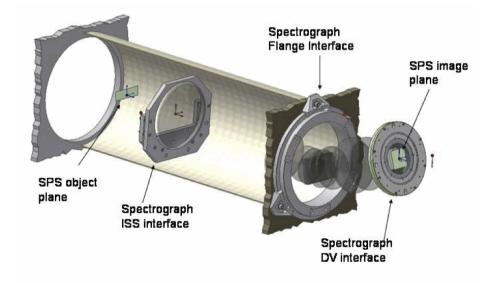
Minimal developments

- > Use the same dark-time system to fix fibers to plates
- Re-use current DAQ
- > Adaptation of the current data reduction pipeline for BOSS

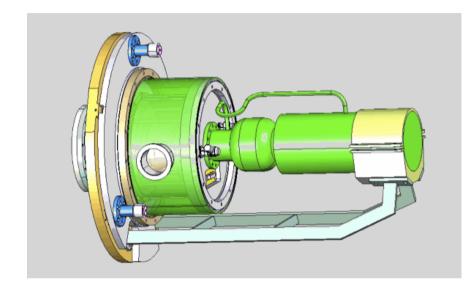
Cost estimate

- ➤ ~\$1.3M (including manpower)
- > French participation : \$0.7M (\$0.4M for manpower)

Spectrograph - CRAL


Modifications of spectrograph

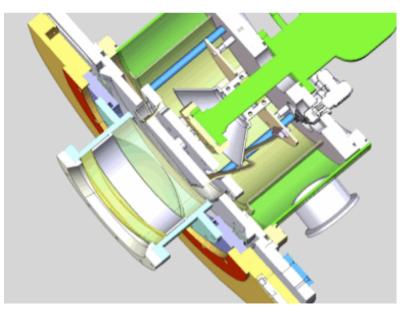
 Reduction of the wavelength range to get a better resolution: 650-950nm
 New VPHG: R~3500-4000
 New angle for spectrograph
 Re-optimization of the optics (0.3 FTE - optical engineer)


Re-use of MUSE spectrograph

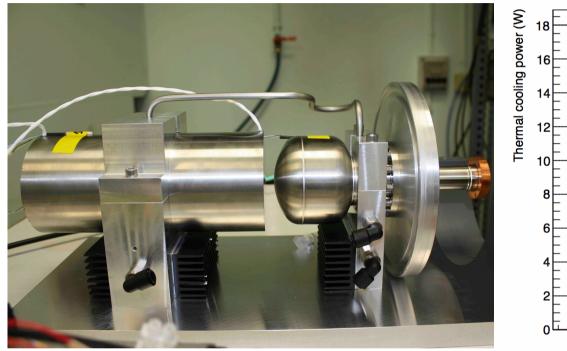
 MUSE: IFU : 2nd generation instrument for VLT
 24 units: 90,000 spectra in one exposure
 Commissioning at Lyon (CRAL) in

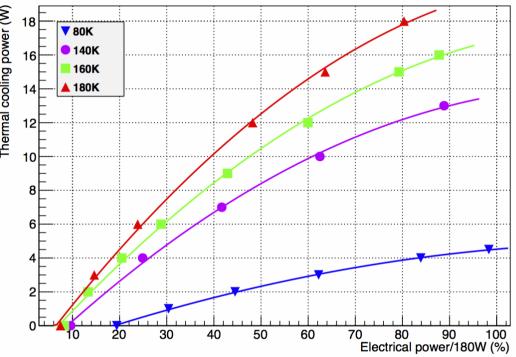
Commissioning at Lyon (CRAL) in
 October 2012⇒Shipping
 First light in early 2013

Cryostat and detectors - LBNL + CEA


Strategy:

 Re-use the demonstrator developed for BigBOSS
 LPT tested and validated with a temporary cryostat
 Cryostat under construction
 Fully assembled with a LBNL CCD in early 2013


Specifications:


Cryocooler: Linear Pulse Tube (LPT): 4W at 80K, 16W at 160K

- No Nitrogen refill
- > Low operational maintenance
- > Tip-tilt alignment ($15\mu m$ along optical axis $50\mu m$ in transverse plane)

First results with BigBOSS prototype

First tests of the LPT:

> Final mechanics will be delivered next week, test with a temporary cryostat

> Cool-down tests: 80K achieved without any problem and cooling power used consistent with nominal values

 \succ Vibration tests: ~4 μ m at cold plate within requirements.

Ch. Yèche

CSTS/SPP

Running costs (6 years-7 scientists) :

> ~10k€ /scientist/year ⇒ 70 k€ /year

Travels and meetings ⇒ 30 k€ /year
Total : ~100 k€ /year

In-kind contribution:

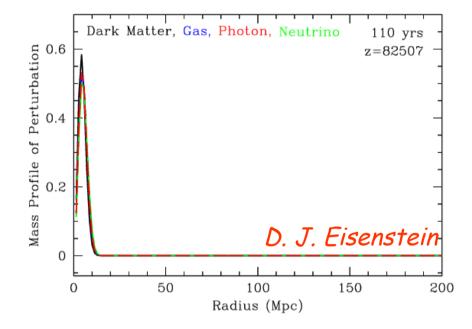
- Construction of cryostat
 ~230 k€
 Construction of cryostat
- Can be subtracted from running costs

LPT	22k€
Mechanics	25k€
Vacuum System	13k€
Slow control	15k€
Tools	5k€
manpower	150k€
Total	230k€

BAO will be the best probe of Dark Energy for this decade.

> e-BOSS offers an unique opportunity to participate in the effort of studying Dark Energy.

> We can have a significant hardware contribution to the upgrade of the instrument.

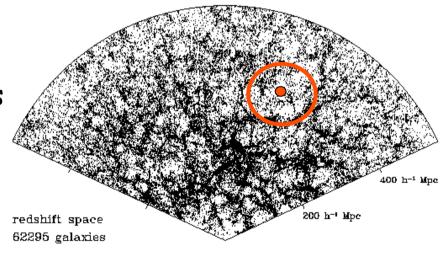

>e-BOSS is a precursor of BigBOSS

Additional Slides

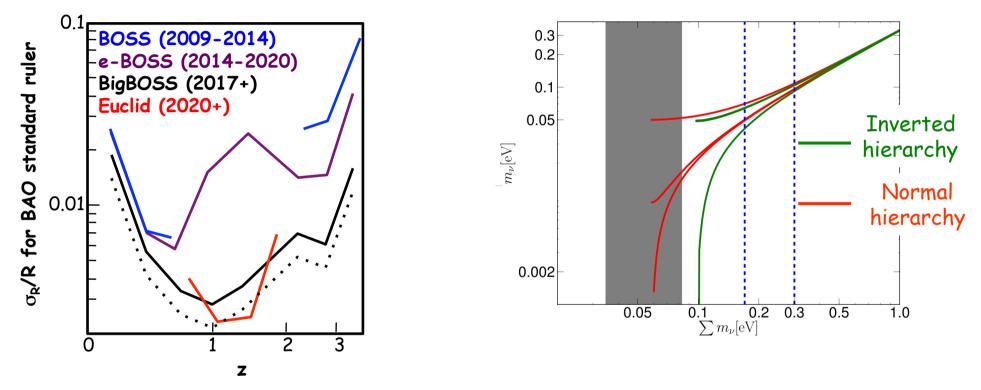
Ch. Yèche

A probe for Dark Energy: Baryonic Acoustic Oscillations

CSTS/SPP


A special distance:

 Galaxies form in the overdense shells about 150 Mpc in radius.
 For all z, small excess of galaxies 150 Mpc (in comobile coordinates) away from other galaxies.


⇒ Standard Ruler

Ch. Yèche

Acoustic propagation of an overdensity:
Sound wave through relativistic plasma (baryons, electrons, photons).
Baryon and photon perturbations travel together till recombination (z~1100).
Then, the radius of the baryonic overdensity is frozen at 150 Mpc.

Sensitivity to Dark Energy and neutrinos mass

> BAO: 1 order of magnitude over 0.6 < z < 4 range > Neutrinos mass: accuracy 25 meV on Σm_v