

Development of the LIPAc Ionization Profile Monitor (IPM)

Jan Egberts^{1,2,3}, Ph. Abbon¹, H. Deschamps¹, F. Jeanneau¹, J. Marroncle¹, J-Ph. Mols, Th. Papaevangelou¹

¹⁾ CEA Saclay ²⁾ École Doctorale MIPEGE, Université Paris Sud XI ³⁾ Ditanet, FP7, Marie Curie

Outline

- LIPAc Accelerator (IFMIF EVEDA)
- IPM Characteristics
- IPM Development
 - Prototype Test
 - Final Design
 - Final IPM Test
- Conclusion

jan.egberts@cea.fr

LIPAc Accelerator

IFMIF: International Fusion Material Irradiation Facility

- Beam current: 2 x 125 mA cw deuterium
- Energy: 40 MeV
- Beam power: 2 x 5 MW

neutron source: 10¹⁷ n/s

LIPAc: <u>L</u>inear <u>I</u>FMIF <u>P</u>rototype <u>Ac</u>celerator

Prototype limited to 1 x 125 mA cw @ 9 MeV, 1.125 MW

jan.egberts@cea.fr

IPM – Characteristics

 $\wedge \wedge \wedge \wedge \wedge \wedge$

F

read-out strips

HV-plate

Principle of Operation:

- Beam ionizes residual gas
- Electrons / ions are extracted by E-field
- Beam profile derived from ionization current
 degrader

LIPAc Challenges:

- Limited space
 - \Rightarrow Compact design (wrt. large aperture)
- High background radiation (~7 kSv/h close to the beam dump)
- Very high space charge effect

lrfu

saclay

jan.egberts@cea.fr

Prototype Design

lrfu

saclay

IPM Prototype Design 2009

- Charge collected on 32 strips with 1.25 mm pitch
- Uniform electric field required to conserve beam profile
- Prototype designed based on FEM E-field simulations*
- Internal dimensions: 61 mm x 59 mm x 40 mm
- Voltage applied: 5000 V (E = 833 V/cm)

read-out strips

Prototype Test at GSI

IPM test at the UNILAC at GSI 2010

X2 branch at GSI

Irfu CEO saclay

IFMIF

Linear rototype

EVEDA

Ifmif Accele

jan.egberts@cea.fr

Prototype Test at GSI

Position Resolution

- Move IPM in 100 µm steps
 perpendicular to the beam
- Averaged over 60 ms (16.7 Hz)
- Plot profile center versus IPM position

IPM resolves well 100 μ m profile shifts

- Fluctuation of beam center versus data acquisition time
- 120 μA Xe²¹⁺, 10⁻⁵ mbar N₂
- ✤ Plateau of < 100 µm at ~1kHz</p>

saclay

lrfu

jan.egberts@cea.fr

28.03.2012

Beam: 1 mA Xe²¹⁺

Prototype Test at GSI

IFMIF

EVEDA

Ifmif

 10^{-5} mbar N₂

BIF: <u>B</u>eam <u>Induced</u> <u>F</u>luorescence

BIF Monitor based on light emitted by atoms excited by the beam

BIF profiles acquired by *Frank Becker, GSI*

CE) saclay

lrfu

jan.egberts@cea.fr

Design results:

- Depth of 100 mm with an aperture of 150 mm
- Active depth: 10 mm
- ✤ E-field uniform within ~ 3%

Final Design Challenges:

- \checkmark Lack of space \Rightarrow very compact design required
- ✤ High radiation level ⇒ radiation hard components exclusively
- Space charge effect

Final Design

lrfu

(e)

saclay

jan.egberts@cea.fr

Particle Tracking – Ion Displacement

Neglecting Space Charge Effect!

Simulation of the Transverse Ion Drift in the el. Field

Particle Tracking: Transverse displacement during ion drift versus starting position

In beam region:

Displacement < 500 μm

lrfu

saclay

jan.egberts@cea.fr

Particle Tracking – Ion Displacement

Transverse Ion Drift with a Beam of 125 mA

Space Charge for 125 mA Beam

Particle Tracking: Transverse displacement during ion drift versus starting position

With space charge of 125 mA: Displacement > 5 mm

saclay

jan.egberts@cea.fr

Particle Tracking: Transverse displacement during ion drift versus starting position

Tracking w/o space charge in same scale!!!

Neglecting Space Charge Effect!

Simulation of the Transverse Ion Drift in the el. Field

saclay

jan.egberts@cea.fr

Simulation of a 9 MeV beam profile measurement @ 125mA:

Resulting Profile: Strong Distortions due to space charge

> original beam profile measured profile (simulation)

Irfu CCC saclay

jan.egberts@cea.fr

Idea:

- Calculate space charge force
- Determine ion displacement at each position
- Correct the profile

jan.egberts@cea.fr

Idea:

- Calculate space charge force
- Determine ion displacement at each position
- Correct the profile

Problem:

Beam particle distribution required to calculate space charge force

Approach:

Assume beam distribution....

Idea:

- Calculate space charge force
- Determine ion displacement at each position
- Correct the profile

Problem:

Beam particle distribution required to calculate space charge force

Approach:

Assume *beam distribution*....

Problem:

No bijective mapping between (x,y) and x'

Approach:

Apply statistics: $g(x') = \sum p_{x'}(x,y) \cdot (x,y)$

 $p_{x'}(x,y)$ is given by *beam distribution*....

Irfu

saclay

Idea:

- Calculate space charge force
- Determine ion displacement at each position
- Correct the profile

Problem:

Beam particle distribution required to calculate space charge force

Approach:

Assume *beam distribution*....

Problem:

No bijective mapping between (x,y) and x'

Approach:

Apply statistics: $g(x') = \sum p_{x'}(x,y) \cdot (x,y)$

 $p_{x'}(x,y)$ is given by *beam distribution*....

lrfu

œ

saclay

jan.egberts@cea.fr

\Rightarrow Use test distribution as input!

measured profile x'

SC Correction Algorithm

What could be a proper test distribution?

Candidate for test distribution: Generalized Gaussian

$$p_{\alpha,\beta,\mu}(x) = \frac{\beta}{2\alpha\Gamma(1/\beta)} e^{-(\frac{|x-\mu|}{\alpha})^{\beta}}$$

 $\boldsymbol{\mu}$ given by profile center

 \rightarrow two degrees of freedom!

Cover any shape ranging from peaked Gaussian to rectangular distributions!

Irfu

saclay

jan.egberts@cea.fr

measured profile x'

Simulation of a 9 MeV beam profile measurement @ 125mA:

Original beam profile:

RMS: 6.27 mm Kurtosis: -0.56

jan.egberts@cea.fr

EVEDA

Ifmif

IFMIF

Linear

Simulation of a 9 MeV beam profile measurement @ 125mA:

Original beam profile: RMS: 6.27 mm Kurtosis: -0.56

Parameters of test distribution:

RMS: 6.30 mm Kurtosis: -0.50

Consistent with:

RMS: 6.38 mm Kurtosis: -0.48

lrfu

œ

saclay

jan.egberts@cea.fr

IPM test at SILHI source at CEA Saclay 2012

jan.egberts@cea.fr

measured profile x'

SC Correction Algorithm

Test at SILHI source at CEA Saclay

• 6 mA beam @ 90 keV

- Profiles at different IPM voltages (blue)
- SC correction for each voltage
- Corrected profiles (red) should match!

lrfu

saclay

jan.egberts@cea.fr

SC Correction Algorithm - Conclusion

<u>Advantages</u>:

- Cheap no additional hardware components required
- Option to correct for other well-known distortions
- Generalized Gaussians grant wide range of possible profile shapes
- Good correction results according to simulations
- Experimental tests look promising (Analysis not yet terminated!)

<u>Disadvantages</u>:

- Still in a very preliminary phase!
- No correction possible for profiles that cannot be approximated by generalized Gaussians!

Conclusion

IPM prototype extensively tested at GSI

- Final IPMs designed
- Final IPM tested

lrfu

saclay

- Space Effect broadens profile
- SC correction algorithm
 - Works well in simulation
 - Experimental tests look promising

Acknowledgements

Acknowledgments

Sincere Thanks to all the people

that have contributed the work!

Particular Thanks to

the **SILHI group** and

the **Beam Diagnostics group at GSI**!

jan.egberts@cea.fr

Backups

lrfu œ saclay

jan.egberts@cea.fr

Example of a **not** self-consistent solution:

Parameters of test distribution: RMS: 8.72 mm Kurtosis: -0.81

Not consistent with:

RMS: 7.15 mm Kurtosis: -0.75

Original beam profile:

RMS: 6.27 mm Kurtosis: -0.56

lrfu

IFMIF

EVEDA

Ifmif Accel

ced

saclay

jan.egberts@cea.fr