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To study elastic scattering and breakup cross sections  of 11Li in a four-body eikonal 

model. 



To study elastic scattering and breakup cross sections  of 11Li in a four-body eikonal 

model. 
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  High-energy reactions are widely used to investigate Halo nuclei. 

 

  High incident energies permits to handle the Schrödinger equation in a 

simplified way: Eikonal method. 

 

  Non-microscopic 2-Body and 3-Body descriptions of the projectile has been 

introduced in the eikonal method. 

Two-body projectile Three-body projectile 

Elastic scattering, breakup 

Ex: 11Be+208Pb =(10Be+n)+208Pb 

G. Goldstein, et. al; Phys. Rev. C 73, 

024602 (2006). 

Elastic scattering, breakup 

Ex: 6He+208Pb =(𝛼+n+n)+208Pb 

D. Baye, et. al; Phys. Rev. C 79, 

024607 (2009). 
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We have to solve the Schrödinger equation 

 

−
ℏ2

2𝜇𝑃𝑇
∆ + 𝑉𝑃𝑇 𝑟 Φ 𝒓 = 𝐸Φ 𝒓 . 

 

At high-energies the wave function: Smooth deviation 

from a plane wave 

 

Φ 𝒓 =
1

2𝜋 3/2
𝑒𝑖𝐾𝑍 Φ 𝒓 , 

 

we have  

   

−
ℏ2

2𝜇𝑃𝑇
∆ + 2𝑖𝐾

𝜕

𝜕𝑍
+ 𝑉𝑃𝑇 𝑟 Φ 𝒓 = 0. 

 

At high-energies ∆Φ ≪ 𝐾
𝜕Φ 

𝜕𝑍
, then 

 

 Φeik =
1

2𝜋 3/2 exp [𝑖𝐾𝑍 −
𝑖

ℏ𝑣
 𝑉𝑃𝑇(𝒃, 𝑍′)𝑑𝑍′]. 

𝑍

−∞
 

Structureless  

projectile 

P 

𝑍 

𝒃 

Structureless  

Target 

𝒓 

T 

Smoothly varying function 



Ex: Elastic scattering of an incident uncharged particle 

𝑓 𝜃 = 𝑖𝐾  𝐽0 𝑞𝑏 1 − 𝑒𝑖𝜒(𝑏) 𝑏𝑑𝑏;    𝑞 = 2𝐾 sin
𝜃

2

∞

0

 

The elastic amplitude 

The eikonal phase 

𝜒 𝑏 = −
1

 ℏ 𝑣
 𝑉𝑃𝑇 𝑏, 𝑍 𝑑𝑍;   𝑣 =

ℏ𝐾

𝜇𝑃𝑇

∞

−∞

 

Extension to charge particles 

𝜒 𝑏 = 𝜒𝑁 𝑏 + 𝜒𝐶(𝑏) 

Nuclear  Coulomb Corrected to overcome  

divergences due to the 

Coulomb potential. 



Fig 1. The energies are shown in MeV. The n+40Ca potential is taken from  A. J. 

Kooning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003). 

 Excellent agreement between both methods when the energy increases. 



Fig 2. The energies are shown in MeV. The p+40Ca potential is taken from  A. J. 

Kooning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003). 

 Excellent agreement between both methods when the energy increases. 
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Nuclear optical potentials + Coulomb 

The eikonal approx. 

(High-energies) 

G. S. energy of the projectile 

Initial relative P.T. energy  

𝒃 

𝑍 

𝒙 

𝒚 

𝑹 

𝐻4𝐵 = −
ℏ2

2𝜇𝑃𝑇
𝛻𝑅

2 + 𝑉𝑃𝑇 + 𝐻3𝐵 , 

𝐻4𝐵Φ = ETΦ,        𝐸𝑇 = 𝐸0 +
ℏ2𝐾2

2𝜇𝑃𝑇
 

𝐸0 → 

ℏ2𝐾2

2𝜇𝑃𝑇
→ 

𝑉𝑃𝑇 = 𝑉𝑐𝑇 + 𝑉𝑇𝑛 + 𝑉𝑇𝑛 

Factorizing: Φ 𝑹, 𝒙, 𝒚 = 𝑒𝑖𝐾𝑍𝜙 𝑹, 𝒙, 𝒚  

→ −
ℏ𝟐

𝟐𝝁𝑷𝑻
𝛁𝐑

𝟐 − 𝒊ℏ𝝏𝒁 + 𝑽𝑷𝑻 𝝓 = 𝟎 

|𝛻2𝜙 | ≪ 𝐾|𝜕𝑍𝜙 | 



Eikonal w. f. Φ eik 𝑹, 𝒙, 𝒚 ≈ Ψ0 𝒙, 𝒚 exp  −
𝑖

ℏ𝑣
 𝑉𝑃𝑇 𝒃, 𝒁′, 𝒙, 𝒚 𝑑𝑍′

𝑍

−∞

 

𝑆 𝒃 = Ψ𝐽0𝑀0
′𝜋0 𝑒𝑖𝜒(𝒃) Ψ𝐽0𝑀0𝜋0  

3B bound state 3B bound state 

𝜒 𝒃 = −
𝒊

ℏ𝒗
 𝑉𝐶𝑇 𝒃 + 𝑉𝑛𝑇 𝒃 + 𝑉𝑛𝑇(𝒃)

∞

−∞
dZ 

𝑆 𝒃 ∝ Ψ𝑘𝑥𝐾𝑦
(𝐸) 𝑒𝑖𝜒(𝒃) Ψ𝐽0𝑀0𝜋0  

3B bound state 3B scattering 

State R-matrix 

Eikonal elastic amplitude 

Eikonal breakup amplitude 

Eikonal phase 

(Dynamics information) 

𝑓(𝜃) 

Bup obs. 
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Core 

𝒙 
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𝐻3𝐵Ψ𝐽𝜋 = 𝐸Ψ𝐽𝜋 

𝐸 < 0 → Bound state 

𝐸0 = −𝑆2n 

0 MeV, core + n + n 

0 MeV, core + n + n 

𝐸 > 0 → Scattering states 
𝑥 , 𝑦 :  Jacobi coordinates 

 

ρ,α:  Hyperspherical coordinates 

 

ρ2 = 𝑥2 + 𝑦2:  Hyperradius 

 

𝛼 = arctan
𝑦

𝑥
:  Hyperangle 

 

Ω5 = (𝛼, Ω𝑥, Ω𝑦 ) 

𝐸 



2B potentials, Vcn Gaussian, W. Saxon 

Kmax 

Hyperradial Function 

(Unknown) 

Eigenfunction of angular  

momentum K  (Known) 

 

𝐻3𝐵Ψ𝐽𝜋 = 𝐸Ψ𝐽𝜋 

𝐻3𝐵 = −
ℏ2

2𝑚𝑛
𝛻𝑥

2 −
ℏ2

2𝑚𝑛
𝛻𝑦

2 + 𝑇𝑐.𝑚. +  𝑉𝑖𝑗

𝑖<𝑗

 

Ψ𝐽𝜋 = 𝜌−5/2   𝜒𝛾𝐾
𝐽𝜋(𝜌)𝒴𝛾𝐾

𝐽𝑀(Ω5)

𝛾

∞

𝐾=0

 

𝜋 = −1 𝐾 → Parity of the relative motion of the 3B 

𝛾 = (𝑙𝑥, 𝑙𝑦 , 𝐿, 𝑆) 

𝒙 
𝒚 

𝑛2 

𝑛1  

𝐿 = 𝑙 𝑥 + 𝑙 𝑦 

𝑆 = 𝑆 1 + 𝑆 2 

𝐽 = 𝐿 + 𝑆  



Lagrange basis Eigenvalue problem 

It facilitates the calculations 

𝐻3𝐵Ψ𝐽𝜋 = 𝐸Ψ𝐽𝜋 

Ψ𝐽𝜋 = 𝜌−5/2   𝜒𝛾𝐾
𝐽𝜋(𝜌)𝒴𝛾𝐾

𝐽𝑀(Ω5)

𝛾

∞

𝐾=0

 

𝜒𝛾𝐾
𝐽𝜋 𝜌 =  𝐶𝛾𝐾𝑖

𝐽𝜋

𝑁

𝑖=1

𝑢𝑖 𝜌 , 



We employ three different methods to calculate continuum states: 

R-matrix Pseudostates and Complex scaling 

 Approximate methods. 

  

 

 Discretized the continuum. 

 

 

 Easy to implement. 

  Precise treatment. 

 

 It calculates three-body continuum 

states with the correct asymptotic 

behavior. 

 

 Time consuming calculations. 



Internal region External region 

Nuclear + Coulomb + Centrifugal 

potentials 

Coulomb + Centrifugal potentials 

Large matrix for typical 𝛾K values  

𝜒𝛾𝐾
𝐽𝜋 𝜌 =  𝐶𝛾𝐾𝑖

𝐽𝜋

𝑁

𝑖=1

𝑢𝑖 𝜌  𝜒𝛾𝐾
𝐽𝜋 𝜌 → ∞  

𝜒𝛾𝐾
𝐽𝜋 𝜌 → ∞ = 𝐴𝛾𝐾

𝐽𝜋 𝐻𝛾𝐾
− 𝑘𝜌 𝛿𝛾𝛾´𝛿𝐾𝐾´ − 𝑈𝛾𝐾,𝛾´𝐾´

𝐽𝜋 𝐻𝛾𝐾
+ 𝑘𝜌  

Hankel functions 

𝑈𝛾𝐾,𝛾´𝐾´
𝐽𝜋 → Collision matrix → 𝑒2𝑖𝛿 → Eigenphases 



 J=0+ J=1- J=2+ 

Kmax gK Kmax gK Kmax gK 

12 28 9 40 12 99 

16 45 13 77 16 172 

20 66 17 126 20 265 

𝑁 → Number of Lagrange basis,  typical 𝑁 = 40 

𝛾𝐾 → Channels number 

Matrices of → 𝛾𝐾𝑁 × 𝛾𝐾𝑁 

Example: 𝐽 = 2+ and 𝐾max = 20 

Matrices of → 𝛾𝐾𝑁 × 𝛾𝐾𝑁 = 265 ⋅ 40 × 265 ⋅ 40 = 10600 × 10600 

𝛾 = (𝑙𝑥, 𝑙𝑦 , 𝐿, 𝑆) 



 

 

 Bound state variational calculations extended to positive energies:  

  

 

 It depends on the choice of the basis. 

 

Expanded in a completed  

basis 

Eigenvalue problem 

0 

Discrete states 

3
B

 e
x
c
it
a
ti
o
n
 e

n
e
rg

y
  

(M
e
V

) 

Continuum 

3B threshold 

3B Ground state 

𝜒𝛾𝐾
𝐽𝜋 𝜌 =  𝐶𝛾𝐾𝑖

𝐽𝜋 𝑢𝑖(𝜌)

𝑁

𝑖=1

 



𝜒𝛾𝐾
𝐽𝜋 𝜌 =  𝐶𝛾𝐾𝑖

𝐽𝜋 (𝜃)𝑢𝑖(𝜌)

𝑁

𝑖=1

 

𝜌 → 𝜌𝑒𝑖θ,    𝑘 → 𝑘𝑒−𝑖𝜃 

In complex scaling: 

We change  

And solve   𝐻3𝐵(𝜃)Ψ𝐽𝜋 = 𝐸Ψ𝐽𝜋 

Ψ𝐽𝜋 = 𝜌−5/2   𝜒𝛾𝐾
𝐽𝜋

(𝜌)𝒴𝛾𝐾
𝐽𝑀

(Ω5)

𝛾

∞

𝐾=0

 with   

By the expansion in a L2 basis   





 

  𝑅𝐽𝜋        𝑈𝐽𝜋        (𝑆−1𝑈𝑆 = 𝑒2𝑖𝛿) 

 

  Information about three-body resonances is contained in the eigenphases δ. 
 

 

 

 

 

 

 

 

 

 

   

 

 

 
Fig. 3. Eigenphases for 6He for different J values 

 (From P. Descouvemont et al, Nucl. Phys. A 765 (2006) 370). 

Exp. resonances 



1- 3B cont. R-matrix 0+ 3B bound state 

𝑑𝐵(𝐸1)

𝑑𝐸
∝ Ψ𝑘𝑥𝑘𝑦

𝐸 ℳ𝐸1 Ψ𝐽0𝑀0𝜋0

2

 

Fig. 4. Electric dipole distribution for different Kmax values. From D. 

Baye et al, Phys. ReV. C 79, 024607 (2009). 





Electic dipole 

transition probability 

3B-PS  3B bound state 

Fig 5. The solid (Lagrange-Laguerre basis) and open bars (Lagrange-Legendre basis) 

respectively. From E. C. Pinilla et. al, Nucl. Phys. A  865 (2011) 43. 

𝐵𝐸1(𝐸𝜆) ∝ 〈𝜓 𝐸𝜆 ℳ𝐸1 Ψ𝐽0𝑀0𝜋0〉 2 



Gaussian  

distribution 

Fig. 6. The solid (dotted) curves are  N=50 (N=70) elements of the basis. 

 From E. C. Pinilla et. al, Nucl. Phys. A  865 (2011) 43. 

Related with the detector 

response 

Legendre Laguerre 

𝑑𝐵 𝐸1

𝑑𝐸
=  𝑓 𝐸, 𝐸𝜆 𝐵𝐸1 𝐸𝜆 ,

𝜆

 𝜎 → 





Fig. 7. Complex scaling  (dashed curves) and R-matrix (solid curve) dipole strength  

calculations. 

𝑑𝐵𝜃 𝐸1

𝑑𝐸
= −

1

𝜋
Im  

〈Ψ 𝜆
𝐽𝜋 𝜃 ℳ𝜃

𝐸1 Ψ𝐽0𝜋0 𝜃 〉
2

𝐸 − 𝐸𝜆
𝐽
(𝜃)

𝜆

 



Fig. 8. From  P. Descouvemont,  et. al. Proceedings YKIS  (2011). The s are in MeV and the 

q in rad.  

Pseudostates vs. R-matrix Complex scaling vs. R-matrix 





 Applied by D. Baye, P. Capel, P. Descouvemont and Y. Suzuki, Phys. 
ReV. C 71, 024607 (2009). They described the elastic breakup cross 
section of 6He on 208Pb @ 70 A MeV. 

 

 Qualities of the model: 

 

 Contributions different from the dipole. 

 

  It does not require 6He-208Pb potential: a-208Pb potential and n-208Pb 
potential are well known. 

 

  It takes nuclear and Coulomb effects and their interference on the same 
footing. 

 

  There is not adjustable parameter. 

 

 

 

 



9Li+n interaction 

 

 From H. Esbensen, et. al, Phys. ReV. C 56, 3054 (97). 

 Non-existent elastic scattering experimental  data. 

 Fitted to reproduce a presumed p1/2 resonance at 540 keV and a s virtual 

state. 


9Li-n interaction multiplied by 1.0056 to reproduce G.S. energy of 11Li =  

- 0.378 MeV. 

 

n+n potential 

 

  Minnesota interaction 

 

 

To calculate bound and scattering states of 9Li+n+n 

We those potentials we well reproduce r.m.s. radius of 11Li : 3.1 fm (exp. r.m.s 

of 3.16 ±0.11 fm). 



 Like-resonant behavior for 1- and 2+ continuum 

 Rise of the 0+ phase shift with energy: “Like a superposition of resonances” 

Fig. 9. 9Li+n+n eigenphases  



Pseudostates: Dashed curves R-matrix: Solid curves 

Fig.  10. The values shown are s in MeV. Experimental Data from T. Nakamura et. al, Phys. 

Rev. Lett. 252502 (2006). 

 Very good agreement between both methods. 

  Our theoretical model overestimate the data. 




 9Li-208Pb potential (lack of the potential):  

Renormalized (91/3+2081/3) a-208Pb interaction @ 70 A MeV of B. Bonin et. al. 

(Following the same idea of P. Capel et. al, Phys. Rev. 68, 014612 (2003) for 10Be 

on 208Pb). 

 

  Variation of the 9Li-208Pb potential was checked but it did not provide a 

significant change to the breakup and angular distributions. 

 

 n-208Pb potential:  

Kooning and Delaroche, Nucl. Phys. A 713, 231 (2003). 

  

To calculate the breakup cross sections of 11Li on 208Pb @ 70 A MeV:  



 Small correction of the 0+ and 2+ partial waves to the total cross section. 

Fig. 11. Partial and total eikonal breakup cross sections. 



Fig. 12.  The solid curves are the original 9Li-potential (renormalized a-208Pb) and the 

dashed curves are the potential modified by a factor of 2. 

 Small influence of the choice of the core-target potential. 



11Li on 208Pb @ 70 A MeV 

 Theoretical data convoluted with a Gaussian of 𝜎 = 0.17 𝐸 MeV           

Fig. 13. Exp. Data from T. Nakamura et. al, phys. Rev. Lett. 252502 (2006). 

  Fair agreement with the experimental data. 



Fig. 14.  Partial, total (thin solid) and convoluted total (thick solid) angular distributions.  

Experimental Data from T. Nakamura et. al, Phys. Rev. Lett. 252502 (2006).  

  Very good agreement of the total convoluted curve for almost all angles. 



Fig. 15. The s value is in MeV. Experimental Data from T. Nakamura et. al, 

Phys. Rev. Lett. 252502 (2006).  

 Why we overestimate the E1 distribution? 



 

In the breakup reactions of 11Li+208Pb @ 70 A MeV 

  
𝑑𝜎

𝑑𝐸
  is  measured directly 

 

 

  
𝑑𝜎

𝑑𝜃
  is measured directly 

 

 

    
𝑑𝐵(𝐸1)

𝑑𝐸
  is measured indirectly 

 (It depends on model assumptions) 

We fit the data 

We fit the data 

We do not  fit the data 



It is extracted from the equivalent photon method 

as 

 

𝑑𝜎Exp

𝑑𝐸
=

16𝜋3

9ℏ𝑐

𝑑𝐵Exp 𝐸1

𝑑𝐸
 2𝜋𝑑𝑏𝑏

∞

𝑏𝑚𝑖𝑛

𝑁𝐸1 𝑏, 𝐸  

 

  𝑁𝐸1 𝑏, 𝐸 → Number of virtual photons incident  

on 11Li by unit area. 

 

  
𝑑𝐵Exp 𝐸1

𝑑𝐸
→  Structure information of 11Li. 

 

 It comes from semi-classical perturbation 

theory. 

 

 It is assumed to be one step and dominated by 

a single E1 multipolar transition. 

 

 From 𝑏𝑚𝑖𝑛 to exclude nuclear excitation. 

208Pb 

11Li 
Virtual g 

11Li is excited by absortion 

of a virtual photon from the 

Coulomb field of the target. 



𝑑𝐵Exp 𝐸1

𝑑𝐸
=

9

32𝜋

ℏ𝑣

𝑍𝑇𝑒

2
1

𝜉𝑚𝑖𝑛𝐾0 𝜉𝑚𝑖𝑛 𝐾1 𝜉𝑚𝑖𝑛

𝑑𝜎Exp

𝑑Ω
 

In non-relativistic regime  

𝐸0 → G. S. energy of 11Li  

𝜉𝑚𝑖𝑛 =
𝐸 − 𝐸0

ℏ𝑣
𝑏𝑚𝑖𝑛, 𝑣 → Projectile-target relative velocitiy, 

𝑏𝑚𝑖𝑛 =
𝑍𝑃𝑍𝑇𝑒2

2 EPTtan
𝜃𝑐
2

→ 

𝐸 → Excitation energy of 11Li, 

Min. Impact parameter for the semi-classical  

Coulomb trajectory 

𝜃𝑐 → maximum scattering angle (beyond 𝜃𝑐 nuclear interaction is important) 



Fig. 16. The 𝜃𝑐   values of 0.9, 1.46 and 2 deg correspond to 𝑏𝑚𝑖𝑛 of 31, 19 and  

14 fm respectively.   

  Small 𝜃𝑐 provides a larger dipole distribution at low excitation energies. 



  Reduction in the 11Li+208Pb elastic scattering due to flux going to breakup 

  0 ≲ 𝜃 ≲ 1 → Rutherford scattering. 

  Influence of the choice of the core-taget potential. 

9Li-target X 2 (Green curves ) Original 9Li-target (Red curves) 



Fig. 14.  Partial, total (thin solid) and convoluted total (thick solid) angular distributions.  

Experimental Data from T. Nakamura et. al, Phys. Rev. Lett. 252502 (2006).  

  Very good agreement of the total convoluted curve for almost all angles. 



 We confirmed the existence of a dipole resonance. 

 

 

 The breakup cross sections and angular distributions of 11Li on 208Pb are in good 

agreement with the experimental data. 

 

 

 We suggest that the simple Coulomb dipole approximation, traditionally used to 

extract experimental dipole strengths, should be replaced by more elaborate 

models. 

 

 

 A standard problem in few body cluster calculations is that we do not have 

optical potentials for core-target interactions. It will be great! If more experiments 

on elastic scattering were done. 

 

 

   Elastic scattering experiments at the same energy of 11Li on 208Pb will be very 

useful to evaluate the precision of the present eikonal model.  

Thank you for your attention 


