Eikonal method for Borromean nuclei

E. C. Pinilla, P. Descouvemont and D. Baye

Université Libre de Bruxelles, Brussels, Belgium

ULB UNIVERSITÉ LIBRE DE BRUXELLES, UNIVERSITÉ D'EUROPE

Outline

- 1. Motivation
- 2. Introduction
- 3. Four-body eikonal method
- 4. Three-body projectile
 - Bound states
 - Scattering states
- 5. Applications
 > ⁶He
 > ¹¹Li
- 6. Conclusions

Motivation

To study elastic scattering and breakup cross sections of ¹¹Li in a four-body eikonal model.

- Bound states
- Continuum states
- Dipole strengths
- Four-body elastic scattering cross sections

Motivation

To study elastic scattering and breakup cross sections of ¹¹Li in a four-body eikonal model.

Introduction

- High-energy reactions are widely used to investigate Halo nuclei.
- High incident energies permits to handle the Schrödinger equation in a simplified way: Eikonal method.
- Non-microscopic 2-Body and 3-Body descriptions of the projectile has been introduced in the eikonal method.

Elastic scattering, breakup Ex: ¹¹Be+²⁰⁸Pb =(¹⁰Be+n)+²⁰⁸Pb G. Goldstein, et. al; Phys. Rev. C 73, 024602 (2006). Three-body projectile

Elastic scattering, breakup Ex: ${}^{6}\text{He}+{}^{208}\text{Pb} = (\alpha + n + n) + {}^{208}\text{Pb}$ D. Baye, et. al; Phys. Rev. C 79, 024607 (2009).

Eikonal approximation for one-body projectile

We have to solve the Schrödinger equation

$$\left[-\frac{\hbar^2}{2\mu_{PT}}\Delta+V_{PT}(r)\right]\Phi(\boldsymbol{r})=E\Phi(\boldsymbol{r}).$$

At high-energies the wave function: Smooth deviation from a plane wave

$$\Phi(\mathbf{r}) = \frac{1}{(2\pi)^{3/2}} e^{iKZ} \widehat{\Phi}(\mathbf{r}),$$
Smoothly varying function

we have

$$-\frac{\hbar^2}{2\mu_{PT}}\left[\Delta + 2iK\frac{\partial}{\partial Z} + V_{PT}(r)\right]\widehat{\Phi}(\boldsymbol{r}) = 0.$$

At high-energies $\left|\Delta\widehat{\Phi}\right| \ll K \left|\frac{\partial\widehat{\Phi}}{\partial Z}\right|$, then

$$\Phi^{\operatorname{eik}} = \frac{1}{(2\pi)^{3/2}} \exp[iKZ - \frac{i}{\hbar v} \int_{-\infty}^{Z} V_{PT}(\boldsymbol{b}, Z') dZ'].$$

Eikonal approximation for one body projectile

Ex: Elastic scattering of an incident uncharged particle

The elastic amplitude

$$f(\theta) = iK \int_{0}^{\infty} J_{0}(qb) \left[1 - e^{i\chi(b)}\right] bdb; \quad q = 2K \sin\frac{\theta}{2}$$

The eikonal phase

$$\chi(b) = -\frac{1}{\hbar v} \int_{-\infty}^{\infty} V_{PT}(b, Z) dZ; \quad v = \frac{\hbar K}{\mu_{PT}}$$

Extension to charge particles

 $\chi(b) = \chi_N(b) + \chi_C(b)$ Nuclear Coulomb

Corrected to overcome divergences due to the Coulomb potential.

Elastic cross sections for n+⁴⁰Ca at different incident energies

Fig 1. The energies are shown in MeV. The n+⁴⁰Ca potential is taken from *A. J. Kooning and J. P. Delaroche,* Nucl. Phys. A 713, 231 (2003).

Excellent agreement between both methods when the energy increases.

Elastic cross sections for p+⁴⁰Ca at different incident energies

Fig 2. The energies are shown in MeV. The p+⁴⁰Ca potential is taken from *A. J. Kooning and J. P. Delaroche,* Nucl. Phys. A 713, 231 (2003).

Excellent agreement between both methods when the energy increases.

Four-body eikonal

$$H_{4B}\Phi = E_{T}\Phi, \qquad E_{T} = E_{0} + \frac{\hbar^{2}K^{2}}{2\mu_{PT}}$$
$$H_{4B} = -\frac{\hbar^{2}}{2\mu_{PT}}\nabla_{R}^{2} + V_{PT} + H_{3B},$$
$$E_{0} \rightarrow \qquad \text{G. S. energy of the projectile}$$
$$\frac{\hbar^{2}K^{2}}{2\mu_{PT}} \rightarrow \qquad \text{Initial relative P.T. energy}$$

Nuclear optical potentials + Coulomb $V_{PT} = V_{cT} + V_{Tn} + V_{Tn}$

Factorizing:
$$\Phi(\mathbf{R}, \mathbf{x}, \mathbf{y}) = e^{iKZ} \hat{\phi}(\mathbf{R}, \mathbf{x}, \mathbf{y})$$

$$\rightarrow \left(-\frac{\hbar^2}{2\mu_{PT}}\nabla_{\rm R}^2 - i\hbar\partial_Z + V_{PT}\right)\widehat{\boldsymbol{\phi}} = \mathbf{0}$$

The eikonal approx. (High-energies)

 $|\nabla^2 \hat{\phi}| \ll K |\partial_Z \hat{\phi}|$

Four-body eikonal

Eikonal w. f.
$$\longrightarrow \Phi^{\text{eik}}(R, x, y) \approx \Psi_0(x, y) \exp\left[-\frac{i}{\hbar v} \int_{-\infty}^{z} V_{PT}(b, Z', x, y) dZ'\right]$$

Eikonal elastic amplitude $\longrightarrow S(b) = \left\langle \Psi^{J_0 M_0' \pi_0} \middle| e^{i\chi(b)} \middle| \Psi^{J_0 M_0 \pi_0} \right\rangle \longrightarrow f(\theta)$
3B bound state 3B bound state
Eikonal breakup amplitude $\longrightarrow S(b) \propto \left\langle \Psi_{k_X K_Y}(E) \middle| e^{i\chi(b)} \middle| \Psi^{J_0 M_0 \pi_0} \right\rangle \longrightarrow$ Bup obs.
3B scattering 3B bound state
State R-matrix
Eikonal phase $\longrightarrow \chi(b) = -\frac{i}{hv} \int_{-\infty}^{\infty} [V_{CT}(b) + V_{nT}(b) + V_{nT}(b)] dZ$

Three-body projectile

Three-body model of the projectile

Three-body model of the projectile

$$H_{3B} = -\frac{\hbar^2}{2m_n} \nabla_x^2 - \frac{\hbar^2}{2m_n} \nabla_y^2 + T_{c.m.} + \sum_{i < j} V_{ij}$$

2B potentials, Vcn Gaussian, W. Saxon

Kmax

$$\Psi^{J\pi} = \rho^{-5/2} \sum_{K=0}^{\infty} \sum_{\gamma} \chi^{J\pi}_{\gamma K}(\rho) \mathcal{Y}^{JM}_{\gamma K}(\Omega_5)$$

Hyperradial Function (Unknown) Eigenfunction of angular momentum *K* (Known)

 n_1 X y n_7 $\gamma = (l_x, l_y, L, S)$ $\hat{L} = \hat{l}_x + \hat{l}_y$ $\hat{S} = \hat{S}_1 + \hat{S}_2$ $\hat{I} = \hat{L} + \hat{S}$

 $\pi = (-1)^K \rightarrow$ Parity of the relative motion of the 3B

Three-body bound states

 $H_{3B}\Psi^{J\pi} = E\Psi^{J\pi}$

Three-body continuum states

We employ three different methods to calculate continuum states:

R-matrix

Precise treatment.

It calculates three-body continuum states with the correct asymptotic behavior.

Time consuming calculations.

Pseudostates and Complex scaling

- > Approximate methods.
- > Discretized the continuum.
- Easy to implement.

Three-body continuum states: R-matrix

Dimension of the R-matrix calculations

J=0+		J=1⁻		J=2+	
<i>K</i> max	γ K	Kmax	γ K	<i>K</i> max	γ K
12	28	9	40	12	99
16	45	13	77	16	172
20	66	17	126	20	265

 $\gamma = (l_x, l_y, L, S)$

 $N \rightarrow$ Number of Lagrange basis, typical N = 40 $\gamma K \rightarrow$ Channels number Matrices of $\rightarrow \gamma KN \times \gamma KN$

Example: $J = 2^+$ and $K \max = 20$ Matrices of $\rightarrow \gamma KN \times \gamma KN = 265 \cdot 40 \times 265 \cdot 40 = 10600 \times 10600$

Three-body Continuum states: Pseudostates

Bound state variational calculations extended to positive energies:

It depends on the choice of the basis.

Three-body continuum states: Complex scaling

In complex scaling:

We change

$$ho
ightarrow
ho e^{i heta}, \quad k
ightarrow k e^{-i heta}$$

And solve

$$H_{3B}(\theta)\Psi^{J\pi} = E\Psi^{J\pi}$$

with
$$\Psi^{J\pi} = \rho^{-5/2} \sum_{K=0}^{\infty} \sum_{\gamma} \chi^{J\pi}_{\gamma K}(\rho) \mathcal{Y}^{JM}_{\gamma K}(\Omega_5)$$

By the expansion in a L² basis

$$\chi^{J\pi}_{\gamma K}(\rho) = \sum_{i=1}^{N} C^{J\pi}_{\gamma Ki}(\theta) u_i(\rho)$$

Applications of the R-matrix method to ⁶He

Applications for ⁶He: Three-body resonances

$$R^{J\pi} \longrightarrow U^{J\pi} \longrightarrow (S^{-1}US = e^{2i\delta})$$

• Information about three-body resonances is contained in the eigenphases δ .

Exp. resonances

Fig. 3. Eigenphases for ⁶He for different J values (From *P. Descouvemont et al, Nucl. Phys. A 765 (2006) 370*).

Applications for ⁶He: E1 strength distribution

1⁻ 3B cont. R-matrix 0⁺ 3B bound state

Fig. 4. Electric dipole distribution for different Kmax values. From *D.* Baye et al, Phys. ReV. C 79, 024607 (2009).

Applications of the pseudostates method to ⁶He

Dipole strength of ⁶He: Continuum pseudostates

Electic dipole transition probability

Fig 5. The solid (Lagrange-Laguerre basis) and open bars (Lagrange-Legendre basis) respectively. From *E. C. Pinilla et. al, Nucl. Phys. A* 865 (2011) 43.

Dipole strength distribution of ⁶He: Pseudostates

dB(E1)

Fig. 6. The solid (dotted) curves are N=50 (N=70) elements of the basis. From *E. C. Pinilla et. al, Nucl. Phys. A* 865 (2011) 43.

Applications of the complex scaling method to ⁶He

E1 strength distribution of ⁶He: Complex scaling

$$\frac{dB^{\theta}(E1)}{dE} = -\frac{1}{\pi} \operatorname{Im} \sum_{\lambda} \left(\frac{\left| \langle \widetilde{\Psi}_{\lambda}^{J\pi}(\theta) \| \mathcal{M}_{\theta}^{E1} \| \Psi^{J_{0}\pi_{0}}(\theta) \rangle \right|^{2}}{E - E_{\lambda}^{J}(\theta)} \right)^{2}$$

Fig. 7. Complex scaling (dashed curves) and R-matrix (solid curve) dipole strength calculations.

E1 strength distribution of ⁶He: PS and CS vs. R-matrix

Complex scaling vs. R-matrix

Pseudostates vs. R-matrix

Fig. 8. From *P. Descouvemont, et. al. Proceedings YKIS (2011).* The σ are in MeV and the θ in rad.

Three-body projectile + Target: Four-body eikonal

Four-body eikonal

- Applied by D. Baye, P. Capel, P. Descouvement and Y. Suzuki, Phys. ReV. C 71, 024607 (2009). They described the elastic breakup cross section of ⁶He on ²⁰⁸Pb @ 70 A MeV.
- Qualities of the model:
- ✓ Contributions different from the dipole.
- ✓ It does not require ⁶He-²⁰⁸Pb potential: α -²⁰⁸Pb potential and n-²⁰⁸Pb potential are well known.
- It takes nuclear and Coulomb effects and their interference on the same footing.
- ✓ There is not adjustable parameter.

Applications in ¹¹Li:

E. Pinilla et. al. Phys. Rev. C 85, 054610 (2012)

To calculate bound and scattering states of ⁹Li+n+n

⁹Li+n interaction

- ✤ From H. Esbensen, et. al, Phys. ReV. C 56, 3054 (97).
- ✤ Non-existent elastic scattering experimental data.
- Fitted to reproduce a presumed p_{1/2} resonance at 540 keV and a s virtual state.

◆⁹Li-n interaction multiplied by 1.0056 to reproduce G.S. energy of ¹¹Li = -0.378 MeV.

n+n potential

Minnesota interaction

We those potentials we well reproduce **r.m.s. radius of ¹¹Li : 3.1 fm** (exp. r.m.s of 3.16 ±0.11 fm).

Eigenphases of ¹¹Li: R-matrix

Fig. 9. ⁹Li+n+n eigenphases

✤ Like-resonant behavior for 1⁻ and 2⁺ continuum

Rise of the 0⁺ phase shift with energy: "Like a superposition of resonances"

E1 strength distribution of ¹¹Li: PS vs. R-matrix

Pseudostates: Dashed curves

Fig. 10. The values shown are σ in MeV. Experimental Data from *T. Nakamura et. al, Phys. Rev. Lett.* 252502 (2006).

Very good agreement between both methods.

Our theoretical model overestimate the data.

Conditions of the calculations for ¹¹Li on ²⁰⁸Pb

To calculate the breakup cross sections of ¹¹Li on ²⁰⁸Pb @ 70 A MeV:

✤ ⁹Li-²⁰⁸Pb potential (lack of the potential):

Renormalized $(9^{1/3}+208^{1/3}) \alpha$ -²⁰⁸Pb interaction @ 70 A MeV of B. Bonin et. al. (Following the same idea of *P. Capel et. al, Phys. Rev. 68, 014612 (2003)* for ¹⁰Be on ²⁰⁸Pb).

Variation of the ⁹Li-²⁰⁸Pb potential was checked but it did not provide a significant change to the breakup and angular distributions.

✤ n-²⁰⁸Pb potential:
 Kooning and Delaroche, Nucl. Phys. A 713, 231 (2003).

Breakup cross sections of ¹¹Li on ²⁰⁸Pb @ 70 A MeV

Fig. 11. Partial and total eikonal breakup cross sections.

✤ Small correction of the 0⁺ and 2⁺ partial waves to the total cross section.

Influence of the core-target potentials on the Partial breakup cross sections

Fig. 12. The solid curves are the original ⁹Li-potential (renormalized α -²⁰⁸Pb) and the dashed curves are the potential modified by a factor of 2.

Small influence of the choice of the core-target potential.

Convoluted breakup eikonal cross section with the detector response

¹¹Li on ²⁰⁸Pb @ 70 A MeV

Theoretical data convoluted with a Gaussian of $\sigma = 0.17\sqrt{E}$ MeV

Fig. 13. Exp. Data from T. Nakamura et. al, phys. Rev. Lett. 252502 (2006).

Fair agreement with the experimental data.

Angular distributions of ¹¹Li on ²⁰⁸Pb @ 70 A MeV

Fig. 14. Partial, total (thin solid) and convoluted total (thick solid) angular distributions. Experimental Data from *T. Nakamura et. al, Phys. Rev. Lett.* 252502 (2006).

Very good agreement of the total convoluted curve for almost all angles.

Convoluted E1 strength distribution of ¹¹Li with the detector response

Fig. 15. The σ value is in MeV. Experimental Data from *T. Nakamura et. al, Phys. Rev. Lett.* 252502 (2006).

Why we overestimate the E1 distribution?

How is determined experimentally dB(E1)/dE?

It is extracted from the equivalent photon method as

$$\frac{d\sigma^{\text{Exp}}}{dE} = \frac{16\pi^3}{9\hbar c} \frac{dB^{\text{Exp}}(E1)}{dE} \int_{b_{min}}^{\infty} 2\pi dbb \, N_{E1}(b, E)$$

♦ $N_{E1}(b, E)$ → Number of virtual photons incident on ¹¹Li by unit area.

- It comes from semi-classical perturbation theory.
- It is assumed to be one step and dominated by a single E1 multipolar transition.
- From b_{min} to exclude nuclear excitation.

¹¹Li is excited by absortion of a virtual photon from the Coulomb field of the target.

Estimation of the b_{min} dependence in the dipole distribution of ¹¹Li

In non-relativistic regime

$$\frac{dB^{\text{Exp}}(E1)}{dE} = \frac{9}{32\pi} \left(\frac{\hbar v}{Z_T e}\right)^2 \frac{1}{\xi_{min} K_0(\xi_{min}) K_1(\xi_{min})} \frac{d\sigma^{\text{Exp}}}{d\Omega}$$

 $v \rightarrow$ Projectile-target relative velocitiy,

$$\xi_{min} = \frac{E - E_0}{\hbar v} b_{min},$$

 $E \rightarrow$ Excitation energy of ¹¹Li, $E_0 \rightarrow$ G. S. energy of ¹¹Li

 $b_{min} = \frac{Z_P Z_T e^2}{2 E_{PT} \tan\left(\frac{\theta_c}{2}\right)} \rightarrow Min.$ Impact parameter for the semi-classical Coulomb trajectory

 $\theta_c \rightarrow$ maximum scattering angle (beyond θ_c nuclear interaction is important)

Estimation of the θ_c dependence in the dipole distribution of ¹¹Li

Fig. 16. The θ_c values of 0.9, 1.46 and 2 deg correspond to b_{min} of 31, 19 and 14 fm respectively.

Small θ_c provides a larger dipole distribution at low excitation energies.

Elastic scattering of ¹¹Li on ²⁰⁸Pb @ 70 A MeV in the Eikonal method

Original ⁹Li-target (Red curves)

⁹Li-target X 2 (Green curves)

Reduction in the ¹¹Li+²⁰⁸Pb elastic scattering due to flux going to breakup

- \bullet 0 ≤ θ ≤ 1 → Rutherford scattering.
- Influence of the choice of the core-taget potential.

Angular distributions of ¹¹Li on ²⁰⁸Pb @ 70 A MeV

Fig. 14. Partial, total (thin solid) and convoluted total (thick solid) angular distributions. Experimental Data from *T. Nakamura et. al, Phys. Rev. Lett.* 252502 (2006).

Very good agreement of the total convoluted curve for almost all angles.

Conclusions

✤ We confirmed the existence of a dipole resonance.

The breakup cross sections and angular distributions of ¹¹Li on ²⁰⁸Pb are in good agreement with the experimental data.

✤ We suggest that the simple Coulomb dipole approximation, traditionally used to extract experimental dipole strengths, should be replaced by more elaborate models.

✤ A standard problem in few body cluster calculations is that we do not have optical potentials for core-target interactions. It will be great! If more experiments on elastic scattering were done.

Elastic scattering experiments at the same energy of ¹¹Li on ²⁰⁸Pb will be very useful to evaluate the precision of the present eikonal model.

Thank you for your attention