A Fixed-Target ExpeRiment (AFTER) using the LHC beams

Cynthia Hadjidakis

Saclay, June 22 ${ }^{\text {nd }} 2012$

Overview

-Why extracting the LHC beams?

- The physics case of AFTER
- How to extract the LHC beams?
- Beam extraction with crystal
- Luminosities and yields
- Expected luminosities in pH, pA and PbA
- Yields in quarkonium production
- Tentative design for AFTER
- A forward experiment

Physics opportunities of A Fixed-Target ExpeRiment (AFTER) @LHC

Physics Opportunities of a Fixed-Target Experiment using the LHC Beams

- Idea: use LHC beams on fixed target
-7 TeV proton beam ($\sqrt{\mathrm{s}}^{\sim} \sim 115 \mathrm{GeV}$)
- $\mathrm{p}+\mathrm{H}, \mathrm{p}+\mathrm{A}$
- 2.76 TeV Pb beam $(\sqrt{\mathrm{s}} \sim 72 \mathrm{GeV})$
- $\mathrm{Pb}+\mathrm{A}, \mathrm{Pb}+\mathrm{H}$
- High boost and luminosity giving access to
- QCD at large x
- nPDF and nuclear shadowing
- Spin physics using polarized target
- W/Z production near threshold
- Quark Gluon Plasma
- Other?
- Multi-purpose experiment

[^0]
Partonic structure of nucleon and nuclei

Nucleon constituents: quarks (u, d, s, ...)
and gluons

Deep inelastic scattering experiments
$1 \mathrm{p} \rightarrow 1 \mathrm{X}$
scale $=Q$: virtual photon energy
Drell-Yan
$\mathrm{p} p \rightarrow \mathrm{l}^{+} \mathrm{l}^{-} \mathrm{X}$
scale $=Q: 1^{+} 1^{-}$invariant mass

Deep Inelastic Scattering (DIS)

$$
\begin{aligned}
& \mathrm{pp} \rightarrow \mathrm{jet} \\
& \mathrm{p} \mathrm{p} \rightarrow \mathrm{~W}, \mathrm{Z} \\
& \mathrm{p} \mathrm{p} \rightarrow \text { Isolated photons }
\end{aligned}
$$

With nuclei
$1 \mathrm{~A} \rightarrow 1 \mathrm{X}$
$\mathrm{pA} \rightarrow 1^{+} 1^{-}$

pdfs for each partons $\mathrm{u}(x), \mathrm{d}(x), \ldots$ in proton,
neutron and for different nuclei extracted from the
$\mathrm{q}\left(x, Q^{2}\right)$: parton distribution functions $(\mathrm{pdfs})=$ probability to find a parton in the nucleon with a longitudinal momentum fraction x at momentum transfer Q^{2}
$x=\mathrm{p}_{\text {quark }} / \mathrm{p}_{\text {nucleon }}$
pdfs for each partons $\mathrm{u}(x), \mathrm{d}(x), \ldots$ in proton, data

Proton structure: our current knowledge

Deep inelastic scattering (ep), hadronic collisions (pp): fixedtarget or collider

High- x pdfs: few data available (DIS) and mostly sensitive to valence-quarks

Sea and gluon pdfs at large x extracted from DGLAP evolution equation \rightarrow large uncertainty also for large scale

NNPDF2.1 NNLO dataset

Proton structure: our current knowledge

Deep inelastic scattering (ep), hadronic collisions (pp): fixedtarget or collider

High-x pdfs: few data available (DIS) and mostly sensitive to valence-quarks

Sea and gluon pdfs at large x extracted from DGLAP evolution equation \rightarrow large uncertainty also for large scale

What about $x=0.3-1$ in proton, neutron and nuclear matter (and
 $\mathrm{x}>1$ for nuclear matter)?

Gluon distribution at large x

Gluon distribution function in the proton: very large uncertainty at large x also at large Q

Unknown for the neutron
Large uncertainty in nuclei at large x

Gluon distribution at large x

Gluon distribution function in the proton: very large uncertainty at large x also at large Q

Unknown for the neutron
Large uncertainty in nuclei at large x

Gluon distribution at large x

Gluon distribution function in the proton: very large uncertainty at large x also at large Q

Unknown for the neutron
Large uncertainty in nuclei at large x

- Experimental probes @ AFTER
- Quarkonia
- Isolated photons
- High p_{T} jets ($\mathrm{p}_{\mathrm{T}}>20 \mathrm{GeV} / \mathrm{c}$)
\rightarrow to access target $x_{g}=0.3-1(>1$
Fermi motion in nucleus)
- Target versatility
- Hydrogen
- Deuteron (neutron)
- Nuclei

Heavy-quark distribution at large x

Intrinsic charm motivated by non perturbative models of hadron structure

All different charm pdfs extraction in agreement with DIS data

Pumplin et al. Phvs.Rev. D75 (2007)

Heavy-quark distribution at large x

Intrinsic charm motivated by non perturbative models of hadron structure All different charm pdfs extraction in agreement with DIS data

- Experimental probes @ AFTER
- Open charm (D meson or displacedvertex lepton)
- Open beauty

Pumplin et al. Phvs.Rev. D75 (2007)

Sivers effect

Polarizing the target: measuring asymmetry to access the 3D or Transverse Momentum Dependent (TMD) pdfs.

Sivers effect in a transversaly polarized nucleon: correlation between the parton k_{T} and the proton spin

Sivers effect

Polarizing the target: measuring asymmetry to access the 3 D or Transverse Momentum Dependent (TMD) pdfs.

Sivers effect in a transversaly polarized nucleon: correlation between the parton k_{T} and the proton spin

- Experimental probes @ AFTER
- Drell-Yan \rightarrow quark Sivers effect
- Quarkonia, Open Charm, Isolated photons, photon-jet \rightarrow gluon Sivers effect
- Large asymmetries ($\mathbf{2 0 \%}$) predicted in Drell-Yan for the backward region ($x_{F}=x_{\text {beam }}$
$-x_{\text {target }}<0$)

T. Liu and B.Q. Ma arXiv:1203.5579

Fig. 29 The $\sin \left(2 \phi-\phi_{S}\right)$ azimuthal asymmetry $A_{T U}^{\sin \left(2 \phi-\phi_{s}\right)}$ depending on x_{F} of target proton polarized $p p$ Drell-Yan process at $Q=5 \mathrm{GeV}$.

W, Z production in the threshold region

With high luminosity fixed-target experiment, W and Z production accessible

Unique opportunity to study the W and Z production near threshold @ AFTER

Very large x partons in the nucleon/nucleus target probed
Large NLO and NNLO corrections: QCD laboratory near threshold at large scale

If W'/Z' exists, similar threshold corrections than W and Z

Quark Gluon Plasma

In nucleus-nucleus collisions at high ultrarelativistic energy \rightarrow Quark Gluon Plasma (QGP) formation

RHIC energy scan shows suppression of particles at ${\sqrt{\mathrm{S}_{\mathrm{NN}}}}=32,64,200 \mathrm{GeV}\left(\pi^{0}, \mathrm{~J} /\right.$ Ψ, \ldots) but low statistics for ${\sqrt{\mathrm{s}_{\mathrm{NN}}}} \neq 200 \mathrm{GeV}$

Cold Nuclear Matter (i.e not Hot from QGP) measured in dAu

Quark Gluon Plasma

In nucleus-nucleus collisions at high ultrarelativistic energy \rightarrow Quark Gluon Plasma (QGP) formation

RHIC energy scan shows suppression of particles at ${\sqrt{\mathrm{s}_{\mathrm{NN}}}}=32,64,200 \mathrm{GeV}\left(\pi^{0}, \mathrm{~J} /\right.$ Ψ, \ldots) but low statistics for \sqrt{s}

Cold Nuclear Matter (i.e not Hot from QGP) measured in dAu

- Experimental probes @ AFTER $\sqrt{ } \mathbf{s}=72 \mathbf{G e V}$
- Quarkonia
- Jets
- Low mass lepton pairs
- ...
- Target versatility
- In PbA, different nuclei: A-dependent studies
- In pA, precise estimate of Cold Nuclear effect with pA collisions

LHC proton and ion beam extraction

Strong crystalline fields in bent crystals

Strong electric fields in the lattice nuclei of a crystal in the rest frame of the crossing particles

In a bent crystal, guidance of particles \Leftrightarrow bending strength as for a magnetic dipole

Many experiments for proton beam extraction and collimation using crystals:

- RD22 @ CERN-SPS (1990-95)
- E853 @ FNAL-Tevatron (1993-97)
- INTAS @ U70 IHEP (2001-03)
- RHIC (2001-05)
- Tevatron (2005-11)
- UA9 @ SPS (2008-...)
- ...

Strong crystalline fields in bent crystals

Strong electric fields in the lattice nuclei of a crystal in the rest frame of the crossing particles

In a bent crystal, guidance of particles \Leftrightarrow bending strength as for a magnetic dipole

Many experiments for proton beam extraction and collimation using crystals:
-RD22 @ CERN-SPS (1990-95)

- E853 @ FNAL-Tevatron (1993-97)
- INTAS @ U70 IHEP (2001-03)
- RHIC (2001-05)
- Tevatron (2005-11)
- UA9 @ SPS (2008-...)
- ...

A possibility for proton and lead beam extraction at the LHC

E. Uggerhoj and U.I Uggerhoj NIMB 234 (2005) 34

- Proposal for the insertion of a bent crystal in the LHC beam
- Bent, single crystal of Si or $\mathrm{Ge}-17 \mathrm{~cm}$ long crystal
- MKD kicker section at $\sim 200 \mathrm{~m}$ from IP6
- Deflection angle $=0.257 \mathrm{mrad}(\sim 7$ T.m equivalent magnet)
- Distance of 7σ to the beam to intercept and deflect the beam halo
- No loss in the LHC beam
- Bent crystal acts as a beam collimator
- Proton beam extraction
- Single- or multi pass extraction efficiency of 50%

$$
\text { - } \mathrm{N}_{\text {beam loss LHC }} \sim 10^{9} \mathrm{p} / \mathrm{s} \rightarrow \mathrm{~N}_{\text {extracted beam }}=510^{8} \mathrm{p} / \mathrm{s}
$$

- Extremely small emittance: beam size in the extraction direction) 950 m after the extraction $\sim 0.3 \mathrm{~mm}$
- Ion beam extraction
- Ions extraction tested at SPS, is expected to be also possible at LHC but needs more study
- May require bent diamonds (highly resistant to radiations)
P. Ballin et al, NIMB 267 (2009) 2952

Next: beam bending experiment @ LHC

W. Scandale et al., JINST 6 T10002 (2011)

- LHC Committee 14/10/2011 recommandation: beam bending experiments using crystals at the LHC by LUA9 Collaboration
- Beam collimation @ LHC: amorphous collimator: 0.2% inefficiency @ 3.5 TeV \rightarrow crystal (expected) inefficiency 0.02\%)
- Tests at SPS in 2012 on proton and ion beams for a LHC setup
- Long Shutdown 1 (2013): bent crystals in LHC

Luminosities in $\mathrm{pH}, \mathrm{pA}, \mathrm{PbH}$ and PbA

Luminosities in pH and $\mathrm{pA} @ 115 \mathrm{GeV}$

- Intensity: $\mathbf{N}_{\text {beam }}=\mathbf{5 . 1 0}{ }^{\mathbf{8}}$ protons. $\mathbf{s}^{\mathbf{1}}$
- Beam: 2808 bunches of $1.15 \times 10^{11} \mathrm{p}=3.2 \times 10^{14} \mathrm{p}$
- Bunch: Each bunch passes IP at the rate: $\sim 11 \mathrm{kHz}$
- Instantaneous extraction: IP sees $2808 \times 11000 \sim 3.10^{7}$ bunches passing every second \rightarrow extract ~ 16 protons in each bunch at each pass
- Integrated extraction: Over a 10 h run: extract $\sim 5.6 \%$ of the protons stored in the beam
- Instantaneous Luminosity
$\mathrm{L}=\mathbf{N}_{\text {beam }} \times \mathbf{N}_{\text {Target }}=\mathbf{N}_{\text {beam }} \times\left(\rho \times \operatorname{ex} \mathbf{N}_{\mathrm{A}}\right) / \mathbf{A}$
- $\mathbf{N}_{\text {beam }}=5 \times 10^{8} \mathrm{p}^{+} / \mathrm{s}$
- $\mathbf{e}($ target thickness $)=1 \mathrm{~cm}$
- Integrated luminosity
- 9 months running/year
-1 year $\sim 10^{7}$ s

Target $(1 \mathrm{~cm}$ thick $)$	ρ $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	A	\mathcal{L} $\left(\mu \mathrm{b}^{-1} \mathrm{~s}^{-1}\right)$	$\int_{\left(\mathrm{pb}^{-1} \mathrm{yr}^{-1}\right)}^{\mathcal{L}}$
solid H	0.088	1	26	260
liquid H	0.068	1	20	200
liquid D	0.16	2	24	240
Be	1.85	9	62	620
Cu	8.96	64	42	420
W	19.1	185	31	310
Pb	11.35	207	16	160

\Rightarrow Large luminosity in $\mathrm{pH}(\mathrm{A})$ ranging from 0.1 and $0.6 \mathrm{fb}^{-1}$ for a 1 cm thick target
\Rightarrow Larger luminosity with 50 cm or 1 m H 2 or D2 target

Luminosities in PbA@72 GeV

- Intensity: $\mathbf{N}_{\text {beam }}=2.10 \mathbf{P b}^{\mathbf{P b}} \mathbf{s}^{\mathbf{1}}$
- Beam: 592 bunches of 7×10^{7} ions $=4.1 \times 10^{10}$ ions
- Bunch: Each bunch passes IP at the rate $\sim 11 \mathrm{kHz}$
- Instantaneous extraction: IP sees $592 \times 11000 \sim 6.5 .10^{6}$ bunches passing every second \rightarrow extract ~ 0.03 ions in each bunch at each pass
- Integrated extraction: Over a 10 h run: extract $\sim 15 \%$ of the ions stored in the beam
- Instantaneous Luminosity
$\mathrm{L}=\mathbf{N}_{\text {beam }} \times \mathbf{N}_{\text {Target }}=\mathbf{N}_{\text {beam }} \times\left(\rho \times \mathbf{e} \times \mathbf{N}_{\mathrm{A}}\right) / \mathbf{A}$
- $\mathbf{N}_{\text {beam }}=2 \times 10^{5} \mathrm{~Pb} / \mathrm{s}$
- \mathbf{e} (target thickness) $=1 \mathrm{~cm}$
- Integrated luminosity
- 1 months running/year
-1 year $\sim 10^{6} \mathrm{~s}$

Target $(1 \mathrm{~cm}$ thick $)$	ρ $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	A	\mathcal{L} $\left(\mathrm{mb}^{-1} \mathrm{~s}^{-1}\right)$	$\int \mathcal{L}$ $\left(\mathrm{nb}^{-1} \mathrm{yr}^{-1}\right)$
solid H	0.088	1	11	11
liquid H	0.068	1	8	8
liquid D	0.16	2	10	10
Be	1.85	9	25	25
Cu	8.96	64	17	17
W	19.1	185	13	13
Pb	11.35	207	7	7

\Rightarrow AFTER provides a good luminosity to study QGP related measurements

Polarizing the hydrogen target

- Instantaneous Luminosity
$\quad \mathrm{L}=\mathbf{N}_{\text {beam }} \times \mathbf{N}_{\text {Target }}=\mathbf{N}_{\text {beam }} \times\left(\rho \times \mathbf{e} \times \mathbf{N}_{\mathrm{A}}\right) / \mathbf{A}$
$-\mathbf{N}_{\text {beam }}=5 \times 10^{8} \mathrm{p}^{+} / \mathrm{s}$
$-\quad \mathbf{e}$ (target thickness $)=50 \mathrm{~cm}$

| Experiment | particles | | energy
 (GeV) | \sqrt{s}
 (GeV) | x_{p}^{\top} |
| :--- | :--- | :--- | :--- | :--- | :--- | | \mathcal{L} |
| :--- |
| $\left(\mathrm{nb}^{-1} \mathrm{~s}^{-1}\right)$ |,

\Rightarrow AFTER provides a good luminosity to study target spin related measurements \Rightarrow Complementary x_{p} range with other spin physics experiments

Quarkonium case: annual yields

Quarkonium cross-sections

Inclusive pp cross-sections
$B_{\| I} d \sigma /\left.d y\right|_{y=0} @ 115 \mathrm{GeV}$

$$
\begin{aligned}
& \mathrm{J} / \psi=20 \mathrm{nb} \\
& \mathrm{Y}=40 \mathrm{pb}
\end{aligned}
$$

Inclusive pp cross-sections
$\mathrm{B}_{\mathrm{ll}} \mathrm{d} \sigma /\left.\mathrm{dy}\right|_{\mathrm{y}=0} @ 72 \mathrm{GeV}$

$$
\begin{aligned}
& \mathrm{J} / \psi=10 \mathrm{nb} \\
& \mathrm{Y}=15 \mathrm{pb}
\end{aligned}
$$

Quarkonium yields in pH and $\mathrm{pA} @ 115 \mathrm{GeV}$

In pp

\Rightarrow RHIC @ $200 \mathrm{GeV} \times 100$ with 10 cm thick H target
\Rightarrow Comparable to LHCb if 1 m H target
\Rightarrow Detailed studies of quarkonium production
(p_{T}, y, polarization, different quarkonium states, ...)

In pA

\Rightarrow RHIC @ $200 \mathrm{GeV} \times 100$ with 1 cm Pb target
\Rightarrow Detailed studies of cold nuclear matter effect in $\mathrm{pA}\left(\mathrm{p}_{\mathrm{t}}, \mathrm{y}, \mathrm{A}, \ldots\right)$

Geometrical Acceptance
Simulations using ALICE as a fixed target experiment at LHC quotes a Geometrical Acceptance of 8% for $\mathrm{J} / \psi(4 \pi) \rightarrow \mu^{+} \mu^{-}(2.5<$ $y<4)$ using the Forward Muon Spectrometer @ 115 GeV

Kurepin et al. Phys.Atom.Nucl. 74 (2011)

Target	$\int d t \mathcal{L}$	$\mathcal{B}_{\ell \ell} \frac{d N_{J / \psi}}{d y}$	$\left.\mathcal{B}_{\ell t} \frac{d N_{\mathrm{T}}}{d y}\right\|_{r=0}$
10 cm solid H	2.6	5.210^{7}	1.010^{5}
10 cm liquid H	2	4.010^{7}	8.010^{4}
10 cm liquid D	2.4	9.610^{7}	1.910^{5}
1 cm Be	0.62	1.110^{8}	2.210^{5}
1 cm Cu	0.42	5.310^{8}	1.110^{6}
1 cm W	0.31	1.110^{9}	2.310^{6}
1 cmPb	0.16	6710^{8}	$1310{ }^{6}$
$p p$ low P_{T} LHC (14 TeV)	0.05	3.610^{7}	1.810^{5}
	2	1.410^{9}	7.210^{6}
$p \mathrm{~Pb}$ LHC $(8.8 \mathrm{TeV})$	10^{-4}	1.010^{7}	7.510^{4}
$p p$ RHIC (200 GeV)	1.210^{-2}	4.810^{5}	1.210^{3}
dAu RHIC (200 GeV)	1.510^{-4}	2.410^{6}	5.910^{3}
$d \mathrm{Au}$ RHIC (62 GeV)	3.810^{-6}	1.210^{4}	1.810^{1}

Luminosity per year in fb^{-1}

Accessing the large x gluon pdf

PYTHIA simulation
$\sigma(\mathrm{y}) / \sigma(\mathrm{y}=0.4)$
statistics for one month
5% acceptance considered
Statistical relative uncertainty
Large statistics allow to access
very backward region

Gluon uncertainty from MSTWPDF

- only for the gluon content of the target
- assuming

$$
x_{\mathrm{g}}=\mathrm{M}_{\mathrm{J} / \Psi} / V_{\mathrm{S}} \mathrm{e}^{-\mathrm{yCM}}
$$

$$
\begin{aligned}
& \mathrm{J} / \Psi \\
& \quad \mathrm{y}_{\mathrm{CM}} \sim 0 \rightarrow x_{\mathrm{g}}=0.03 \\
& \mathrm{y}_{\mathrm{CM}} \sim-3.6 \rightarrow x_{\mathrm{g}}=1
\end{aligned}
$$

Y: larger x_{g} for same ycm $\mathbf{y}_{\mathrm{CM}} \sim 0 \rightarrow \boldsymbol{x}_{\mathrm{g}}=0.08$
$y_{\mathrm{CM}} \sim-2.4 \rightarrow x_{\mathrm{g}}=1$

\Rightarrow Backward measurements allow to access large x gluon pdf

Quarkonium yields in PbA@ 72 GeV

PbA

\Rightarrow Same statistics than RHIC @ 200 GeV and LHC and 2 orders of magnitude larger than RHIC @ 62 GeV
\Rightarrow Detailed studies possible for quarkonium states ($\psi^{\prime}, \chi_{\mathrm{c}}$, A dependence, ...)

Target	$\int d t \mathcal{L}$		$\mathcal{B}_{e t}{ }^{\text {d }}$ dr ${ }^{\text {dy }}$
10 cm solid H	110	4.310^{3}	8.910^{2}
10 cm liquid H	83	3.410^{5}	6.910^{2}
10 cm liquid D	100	8.010^{5}	1.610^{3}
1 cm Be	25	9.110^{5}	1.910^{3}
1 cm Cu	17	4.310^{6}	0.910^{3}
1 cm W	13	9.710^{6}	1.910^{4}
1 cm Pb	7	5.710^{6}	1.110^{4}
dAu RHIC (200 GeV)	150	2.410^{6}	5.910^{3}
dAu RHIC (62 GeV)	3.8	1.210^{4}	1.810^{1}
AuAu rhic (200 GeV)	2.8	4.410^{6}	1.110^{4}
AuAu RHIC (62 GeV)	0.13	4.010^{4}	6.110^{1}
$p \mathrm{~Pb} \mathrm{LHC}(8.8 \mathrm{TeV})$	100	1.010^{7}	7.510^{4}
PbPb LHC (5.5 TeV)	0.5	7.310^{6}	3.610^{4}

Tentative design for AFTER

Rapidity boost in a fixed target mode

- Very high boost:
- With 7 TeV beam

$$
\gamma=61.1 \text { and } \mathrm{yCMS}^{2}=4.8
$$

- With 2.76 TeV beam

$$
\gamma=38.3 \text { and } \mathrm{y}_{\mathrm{CMS}}=4.3
$$

- $\eta_{C M}=\eta_{l a b}-\mathbf{y}_{\mathbf{C M S}}$
forward region: $\eta_{\text {CM }}>0$
backward region: $\eta_{\mathbf{c м}}<\mathbf{0}$
- Taking $x_{2}=\mathbf{M} / \sqrt{ } \mathbf{s} \mathbf{e}^{-y C M}$
$-x_{2}(\mathrm{~J} / \Psi)=1 \rightarrow \mathrm{y}_{\text {lab }}(\mathrm{J} / \Psi) \sim 1.2$
$-x_{2}(\Upsilon)=1 \rightarrow \mathrm{y}_{\mathrm{lab}}(\Upsilon) \sim 2.4$
- $\eta=-\ln \tan \theta / 2$

$$
\rightarrow \theta(\text { усм }=0) \sim 0.9^{\circ}(16 \mathrm{mrad})
$$

$-\mathrm{y}_{\text {lab }}(\mathrm{J} / \Psi) \sim 4.8 \rightarrow x_{2}(\mathrm{~J} / \Psi)=0.03$
$-\mathrm{y}_{\text {lab }}(\Upsilon) \sim 4.8 \rightarrow x_{2}(\Upsilon)=0.08$

- Very well placed to access backward physics

A tentative design for AFTER

- Tentative design $1.3<$ ylab <5.3
- With 7 TeV beam : $-3.5<$ усм <0.5
- With 2.76 TeV beam: $-3<$ усм <1
- $\theta_{\text {min }}=10 \mathrm{mrad}$

- Multi-purpose detector

- Vertex
- Tracking (+ dipole magnet)
- RICH
- Calorimetry
- Muons
- High boost \rightarrow forward and as compact as possible detector

Detector dimension

Detector dimension

Multiplicity

Charged particles per unit of rapidity: (x $1.5=$ charged + neutral)

$$
\mathrm{p}+\mathrm{p} @ 115 \mathrm{GeV} \sim 2 \quad \mathrm{~d}+\mathrm{Au} @ 200 \mathrm{GeV}: \max \sim 11
$$

\rightarrow A highly granular detector is needed

Vertex ~ 450 part.

Calo ~ 700 part.

$\frac{700}{4700 \times\left(\frac{1}{0.5 \times 0.5 \mathrm{~cm}^{2}}\right)} \sim 3.7 \%$

Cynthia Hadjidakis Saclay June 22nd 2012

Conclusion and outlook

- LHC proton and lead beams continuous extraction with bent crystal offers many physics opportunities
- Large luminosities provide access to large and very large parton x measurements for quarks and gluons: QCD laboratory at large x
- Fixed-target mode allows for target versatility: hydrogen, deuteron, nucleus (nuclear effect and QGP), polarized target (spin physics)
- AFTER designed as a multi-purpose experiment
M. Anselmino (Torino), R. Arnaldi (Torino), S.J. Brodsky (SLAC), V. Chambert (IPN), J.P. Didelez (IPN), B. Genolini (IPN), E.G. Ferreiro (USC), F. Fleuret (LLR), C. Hadjidakis (IPN), J.P Lansberg (IPN), A. Rakotozafindrabe (CEA), P. Rosier (IPN), I. Schienbein (LPSC), E. Scomparin (Torino), U.I. Uggerhøj (Aarhus)

- 2011-2012: Support from France-Stanford Center for

Interdisciplinaty Studies

- February 2012: Physics case submitted to Physics Reports (arXiv:
12020.6585)
- 2012: Support from CNRS PEPS-PTI
- 2013-2016: (expected) Support from CNRS PICS with Torino

ECT* 'exploratory' workshop: "Physics at a fixed target

 experiment using the LHC beams"

- February 4 - February 13, 2013
'This is an exploratory workshop which aims at studying in detail the opportunity and feasibility of fixed-target experiments using the LHC beam.'

Drell-Yan continuum

Drell-Yan measurements in pp

Fig. 17 The $\sin \left(2 \phi-\phi_{S}\right)$ azimuthal asymmetry $A_{T U}^{\sin \left(2 \phi-\phi_{S}\right)}$ depending on Q of target proton polarized $p p$ Drell-Yan process with both γ^{*} and Z taken into account and allowed rapidity integrated in the cut $[-4.8,-2]$. The same cut of rapidity is chosen in Figs.18-22.
as Figs. 18-40.

$$
\text { ized } p p \text { Drell-Yan process at } Q=2 \mathrm{GeV} \text {. }
$$

Fig. 29 The $\sin \left(2 \phi-\phi_{S}\right)$ azimuthal asymmetry $A_{T U}^{\sin \left(2 \phi-\phi_{S}\right)}$ depending on x_{F} of target proton polarized $p p$ Drell-Yan process at $Q=5 \mathrm{GeV}$.

Drell-Yan measurements in pD

Fig. 7 The $\cos 2 \phi$ azimuthal asymmetry depending on Q of unpolarized $p d$ Drell-Yan process with both γ^{*} and Z taken into account.

Fig. 8 The $\cos 2 \phi$ azimuthal asymmetry depending on x_{F} of unpolarized $p d$ Drell-Yan process at $Q=2 \mathrm{GeV}$.

Fig. 9 The $\cos 2 \phi$ azimuthal asymmetry depending on x_{F} of unpolarized $p d$ Drell-Yan process at $Q=5 \mathrm{GeV}$.

Fig. 10 The $\cos 2 \phi$ azimuthal asymmetry depending on q_{T} of unpolarized $p d$ process in Z resonance region.

Quarkonium distributions in pp@ 115 GeV

Pythia: $\mathrm{p}(7 \mathrm{TeV})+\mathrm{p} \rightarrow \mathrm{J} / \Psi($ isub $=86)$
$\mathrm{J} / \Psi \rightarrow \mu^{+} \mu^{-}$

Physics case

- QCD at large x
- Gluon and heavy quarks distribution in the proton, neutron
- W, Z production in the threshold region
- nPDF and nuclear shadowing
- Gluon and heavy quarks distribution in the nucleus
- Spin physics using polarized target
- Gluon Sivers effect (transversely polarized target asymmetry)
- QGP
- Other?

[^0]: Abstract

 does rot alier the performance of the collididrexperimerts at the LHC. By intrumenting the tregt rapidity region, gluace and keary yarik distributions of ter proben and the neurron can be accossed at largex and even at x lager than unity in the nucker case. Single difractive physics and for the firt time, the large segative-x, domain can be scoesed. The nuckar targot-jpecies weratility provides a unique opporunity to stady nuclear matter versas the featues of de bot asd dense matier formed in heay- y-ion collisions, including te foemation of the quark-gloon placma, which can be studed in Pht collisions over the full range of target-ripidity dormain with a laje variety of nocki
 Which underie the SNers single-spin megmenery, the stady of trinsverity distnbutioes and possibly of polarixd partion distritutions. We mimicking photepproductioe processes in ep collisions. Firally, we nocte that W and Z bososs con be producod and devected in a fued-urget expriment and in treir threchold damin for the fint time. providing new ways top poote the patconic conkent of be probe and the nackeus.
 Kowards: LHC bxam, fived-uged expriment

    ```
    Contents
    Introduction
    Key numbers and features
    Nuckon partonic structure
    3.1 Dell-Yan
    32 Gluons in tre proton at largex
        321 Quarkonia
        32.2 kets
        322
    33. Gluons in the deuteron and in the neutron
    3.4 Chamn and botiom in tle proton
    3.4 Charm and botlom in the protion
        3.4.2 J/$+D D mespeduraduction
        3.4.3 Heavy-quark plus photon.
    ```

 4 Spin physics
 4.1 Transwere SSA and DY
 4.2 Quarkonium and beary-quark transerse SSA
 43 Transvers SSA and photon
 4.4 Spin Asymmetries with a final stale polar-
 ipation
 5 Nuckar matter
 5.1 Quark nPDF: Drell-Yan in $p A$ and $\mathrm{Pb} p$

 5.2 Glaon nPDF
 connelation
 5.22 Pecision quarkoaium and heavyflawour stadies
 5.3 Color filering, emergy loss, Sudakov suppeessico and hadron break-up in the nucleus
 6 Deconfinement in heavy ion collisions
 6.1 Quarkonium stadies.
 6.2 Jet quenching
 6.3 Disect photon
 6.4 Deconfixement and the target rest frame

 65 Nuckar-matter baselixe
 7 W and Z boson production in $p p, p d$ and $p A$ collisions
 7.1 First measurements in pA .

 10
 10
 $7.2 \mathrm{~W} / \mathrm{Z}$ producticn in $p p$ and $p d$. 11
 8 Exclusive, semi-exclusive and backward reactions

 Ultra-peripheral collisions
 8.2 Hard diffractive reactions
 8.2 Hard diftractive reactions 11
 8.3 Heary-hadron (diftractive) production at
 $4 \quad$ Very backward physios

